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Abstract: This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG)
that achieves high angular displacement resolution and repeatability using a piezo-driven flexure
hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and
feedback control. The principal error of the capacitive sensor for precision microangle measurement is
analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec)
and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 µrad
(±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic
error of the 2D-MNAG after principal error compensation are determined using Monte Carlo
simulation for further improvement of the 2D-MNAG.

Keywords: angle generator; angular deflection; angle calibration; flexure hinge; capacitive sensor;
Monte Carlo method

1. Introduction

The angle is one of the most important basic geometrical quantities in the field of precision
engineering [1–4]. Various microangle measurement instruments, such as the angle encoder [5–7],
autocollimator [8,9], and angle interferometer [10], are commonly used in scientific research and
industrial metrology to provide accurate angle reference values within the feedback loop of
manufacturing and testing processes.

As angle measurement progresses from micro- to nanoradian scale, the systematic errors of these
measurement instruments account for an increasingly significant proportion of the angle measurement
results. Thus, calibration processes for determining these systematic errors are particularly important.
Ongoing developments in the domain of angle calibration has created a demand for improved angle
standardization equipment and microangle generators (MAGs).

An MAG is an important and essential functional unit in angle metrology and calibration,
which outputs microangles according to sampling intervals selected in the angle range to be calibrated.
If permitted by the testing time and data processing capability, very small sampling intervals can
be used, which better reveal the nonlinear errors in both the local and full angular ranges of the
microangle measurement instrument. In some special cases, such as applications to determine the
interpolation error in an angular range of 47.9 µrad (9.89 arcsec) corresponding to the two adjacent
lines of the circular grating in the German Physikalisch-Technische Bundesanstalt (PTB) primary angle
standard [5–7], or to determine the nonlinear error in an angular period of 11.7 µrad (2.41 arcsec)
corresponding to the pixel size of the photoelectric detector in the Elcomat 3000 autocollimator [8,9],
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the selected angle interval must be sufficiently small to yield sufficient sampling points for error
evaluation. In addition, multiple tests are usually needed at each angle interval during the calibration
process. The requirements of a small angle interval and multiple tests necessitate MAGs with a high
angle output resolution and repeatability.

Current MAGs are mainly based on a structure comprised of a precision rotary table
and piezo-driven flexure hinge. However, the manufacture of the rotary table, especially for
two-dimensional (2D) angle output, is complex and expensive [11–15]. In recent years, owing to
the traceability requirements for the radian SI (Système International d'Unités) unit for plane angles
in the fields of precision mechanics, nanopositioning, optical fabrication, etc., a flexure-hinge-based
MAG with nanoradian resolution has been developed. For example, in 2009, a flexure-hinge-based
sine-bar-type nanoradian angle generator was developed at the Istituto Nazionale di Ricera Metrologica
(INRiM), Italy [16]. This generator is driven by PZT (piezoelectric transducer), and its output angle
is monitored by a capacitive sensor and a two-mirror-based multireflection microangle amplifier.
Hence, a nanoradian angle output resolution and uncertainty of 20 nrad (0.004 arcsec) in a range of
120 µrad (24.8 arcsec) can be achieved. In 2012, a flexural-pivot-bearing-based MAG that can achieve an
angle output resolution of 5 nrad (0.001 arcsec) was developed at the Ulusal Metroloji Enstitüsü (UME),
Turkey [17]. Further, in 2015, Diamond Light Source Ltd., UK, developed a cartwheel-flexure-based
nanoangle generator that can reliably provide 1 nrad (0.0002 arcsec) minimal incremental steps
in a range of more than 7000 µrad (1444 arcsec) [18]. Finally, Physik Instrumente (PI), Germany,
has developed several products that can output tilt angles in two dimensions using a flexure hinge
with a high resolution of 20 nrad (0.004 arcsec) and high repeatability of 60 nrad (0.012 arcsec) in the
range of 350 µrad (72.2 arcsec) [19–23].

The above reports indicate that the existing rotary table and flexure-hinge-based MAGs are
highly developed and can achieve nanoradian angle output resolution. However, existing MAGs
mostly provide one-dimensional (1D) angle output, whereas the high accuracy and repeatability of
2D-MAGs are limited in the case of a large output angle range. In many cases, 2D-MAG angle outputs
are needed to satisfy 2D angle calibration requirements, for example, for the typical calibration of
an autocollimator.

This study proposes a flexure-hinge-based 2D-MNAG that employs a piezo-driven double-axis
flexure hinge for angular deflection and three high-precision capacitive sensors for output angle
monitoring and feedback control. The principal error of the capacitive sensor for precision microangle
measurement is analyzed and compensated for to guarantee high angle output resolution and
positioning repeatability for the 2D-MNAG over a large angle range in 2D. The impact of each
error component together with the synthetic error of the 2D-MNAG after principal error compensation
are also determined using Monte Carlo simulation for the further improvement of the 2D-MNAG.

2. Double-Axis Flexure Hinge Based 2D-MNAG

Figure 1a shows the basic structure of the double-axis flexure-hinge-based 2D-MNAG.
The double-axis flexure hinge is constructed using two orthogonally stacked one-axis flexure hinges
having zero friction, high motion resolution and accuracy, high positioning repeatability, etc. The two
driving points are arranged in an L-shape relative to the bearing point of the double-axis flexure
hinge to achieve angular deflection in 2D. Figure 1b shows the critical dimensions of the double-axis
flexure hinge.

The basic structure of the 2D-MNAG, including the flexure hinge, is processed from bulk spring
steel using wire-electrode cutting. Two PZTs of N-472.110 type with an E-871 controller (PI, Germany)
are used to drive the 2D-MNAG, because of their high resolution of less than 1 nm and a large output
range of 7.5 mm. Three CS1HP capacitive sensors with a DT6530 controller (Micro Epsilon, U.K.) are
used to monitor the 2D-MNAG output angle. Each CS1HP capacitive sensor with a DT6530 controller
has a resolution of 0.75 nm and a measurement range of 1 mm. The 2D-MNAG was moved in a closed
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loop and a proportional-integral-derivative (PID) controller with a non-control zone of ±0.003 arcsec
was used.

The dynamics of the 2D-MNAG is limited by both the flexure hinge and the capacitive sensor.
The first-order dynamics of the flexure hinge is 79.09 Hz, which is simulated using SolidWorks
software. The dynamics of the CS1HP capacitive sensor with DT6530 controller, which is presented in
the technical document of the product [24], is 2 Hz during operation at 0.75-nm resolution. It seems that
the dynamics of the capacitive sensor must primarily be improved. However, at present, the 2D-MNAG
can be used to yield a micro-angle with high precision for a relatively large angle range at low frequency.
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Figure 1. Design of two-dimensional micro-/nanoradian angle generator (2D-MNAG): (a) basic structure;
(b) critical dimension of double-axis flexure hinge; and, (c) picture of actual 2D-MNAG.

Figure 1 shows that the position of the deflection plane is uniquely determined using the three
capacitive sensors. Thus, indeterminacy of the bearing point position during the 2D angular deflection
of the plane can be avoided. The mathematical relationship between the outputs of the three capacitive
sensors and the deflection angle of the plane, that is, the angle output of the 2D-MNAG, is analyzed in
detail below.

Figure 2 shows the definition of the 2D angle, which is expressed as (α, β). The mathematical
relationship between the 2D angle and the coordinates of the three monitoring points of the deflection
plane are given as follows: α = arctan

(y2 − y1)(z3 − z1)− (y3 − y1)(z2 − z1)

(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)
β = arcsin((x3 − x1)(z2 − z1)− (x2 − x1)(z3 − z1))

(1)

where (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) are the coordinates of the three points on the rotation plane,
for which (x1, y1), (x2, y2), and (x3, y3) are determined by the mechanical structure while z1, z2 and z3

are monitored by the three capacitive sensors.
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According to Equation (1), the desired 2D angle output can be obtained by controlling the z-axis
positions of the monitoring points read by the three capacitive sensors.

3. Capacitive-Sensor-Based 2D Angle Monitoring Unit

3.1. Analysis of Principal Error

The capacitive-sensor-based angle monitoring unit operates based on the tangent principle.
As shown in Figure 3, the capacitive sensor is fixed while the baseboard is rotated by the rotation
arm. The deflection angle can be calculated using the distance monitored in real time by the capacitive
sensor, such that:

θ = arctan
(

d− d0

L

)
(2)

where d0 and d are the distances between the capacitive sensor and baseboard before and after angular
deflection, respectively, and L is the effective length of the rotation arm.
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The capacitance between the sensor plane and baseboard is translated into distance in the sensor
controller, according to the mathematical relationship for the parallel plate capacitor. However,
the sensor plane is not parallel with the baseboard, which is deflected with the rotation arm during
the angle measurement. Thus, the distance given by the sensor controller is not exactly that from the
center of the sensor plane along its axis to the baseboard. This is the source of the principal error in the
capacitive-sensor-based micro-/nanoangle measurement method. This principal error is analyzed in
detail below.
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The capacitance can be calculated using the integral shown in Equation (3) when the baseboard is
deflected by the rotation arm. A detailed derivation of Equation (3) is given in Appendix A.

C =
∫

dC =
∫ R

−R

2ε0εr
√

R2 − x2(
d

tan θ + x
)

θ
dx (3)

where ε0 is the permittivity of vacuum; εr, the relative dielectric constant between the sensor plane
and baseboard; R, the radius of the effective sensor plane; x, the distance from the center of the sensor
plane to the integral infinitesimal; and, θ, the angle between the sensor plane and baseboard.

The capacitance C given in Equation (3) is translated to the distance dm in the sensor controller
as follows:

dm =
ε0εrπR2

C
(4)

where dm is the measurement value of the distance d from the center of the sensor plane along its axis
to the baseboard.

Combining Equation (2)–(4), the principal error of the capacitive-sensor-based micro-/nanoangle
measurement method, which arises from the nonparallelism of the sensor plane and baseboard,
can be calculated using Equation (5). Note that the principal error must be calculated in advance and
compensated for in the angle measurement results.

Err = θm − θ = arctan
(

dm − d0

L

)
− arctan

(
d− d0

L

)
(5)

The Micro-Epsilon CS1HP capacitive sensor is taken as an example to show the magnitude of the
principal error in the micro-/nanoangle measurement. The initial distance d0 between the sensor plane
and baseboard is 0.5 mm. The effective length L of the rotation arm is 100 mm. The CS1HP resolution
is 0.75 nm; this predicts a theoretical angle measurement resolution of up to 7.3 nrad (0.0015 arcsec).
The angle measurement range is limited to ±4363 µrad (±900 arcsec) as the measurement range of the
CS1HP is 1 mm.

The maximum distance measurement error of the capacitive sensor is ~0.6 µm when the baseboard
is deflected by the rotation arm in the angle range of ±4363 µrad (±900 arcsec), yielding an angle
measurement error of 6.06 µrad (1.25 arcsec), as shown in Figure 4a. The distance measurement error
and leading angle measurement error in the range of ±1454 µrad (±300 arcsec) are 12 nm and 121 nrad
(0.025 arcsec), respectively, as shown in Figure 4b.

The simulation results obtained for the established model can be compared to those of the model
given by Micro-Epsilon [24] and the model that is given by Harb S. M. in Reference [25,26]. As shown
in Figure 4, the results of all the three models are very similar to each other, which can be used for
cross-check of the validity of all the three models. However, the models of both Micro-Epsilon and
Reference [25,26] are suitable for amending distance measurement results using the known tilt-angle,
which cannot be used in angle measurement applications. Thus, the utility of the established model of
the capacitive-sensor-based 2D angle monitoring unit presented in this study is verified.

Figure 4a shows that the principal error increase dramatically as the angle output goes to
−4363 µrad (−900 arcsec). This is because the distance measurement error tends to be much more
sensitive to the angular tilt as the distance between the capacitive sensor and the baseboard is reduced.
Therefore, principal error compensation is needed when a capacitive sensor is used for precision angle
measurement. The principal error can be well compensated for using Equation (5).
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3.2. Analysis of Error Sources

A three-dimensional (3D) spatial geometrical model of the angle monitoring unit is established
and is used for principal error analysis and the compensation of angle measurement results. Both the
sensor plane and baseboard can be expressed using the normal vector and one point of the plane.
The rotation of the baseboard can be expressed as the rotation of its point and normal vector around the
rotation axis. The measurement value of the baseboard rotation angle is calculated using the formula
that is derived in Appendix B.

As the principal error is well compensated for using Equation (5), other factors, such as the
machining and assembly error of the mechanical components, and the distance measurement error of
the capacitive sensor, become the main factors impacting the microangle measurement.

The Monte Carlo simulation is used to analyze the impact of each error source and the synthetic
error of the angle monitoring unit, as shown in Figure 5. The initial distance between the capacitive
sensor and baseboard is 0.5 mm, and the effective length of the rotation arm is 100 mm. Table 1 shows
the error sources and their impacts on the microangle measurement. The number of computations in
the Monte Carlo method is set to 10,000. A simulation is performed to obtain the angle measurement
errors and their statistical characteristics at an angle interval of 1454 µrad (300 arcsec) in the range of
±4363 µrad (±900 arcsec).

Because the angle measurement errors are most sensitive to the error sources at the angular
position of −4363 µrad (−900 arcsec), the standard deviations of the angle measurement errors at this
position are listed in Table 1 to show the impact of each error source. It can be seen that the position
error of the center of the capacitive sensor has the maximum impact on the microangle measurement;
therefore, this is the primary issue requiring improvement.
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Table 1. Error sources and their impacts on micro-angle measurement results.

Error source Distribution Pattern Distribution Range Impact at −4363 µrad
(−900 arcsec)

Orientation error of normal vector of baseboard on x- and y-axes

αB Rectangular ±145 µrad (±30 arcsec) 240 nrad (0.0494 arcsec)
βB Rectangular ±145 µrad (±30 arcsec) 2 nrad (0.0004 arcsec)

Positioning error of center of sensor plane on x-, y- and z-axes

px Rectangular ±0.03 mm 759.2 nrad (0.1566 arcsec)
py Rectangular ±0.03 mm 0 nrad (0 arcsec)

Orientation error of normal vector of sensor plane on x- and y-axes

αC Rectangular ±145 µrad (±30 arcsec) 238 nrad (0.0491 arcsec)
βC Rectangular ±145 µrad (±30 arcsec) 2 nrad (0.0004 arcsec)

Distance measurement error of capacitive sensor after calibration

dC Rectangular 10 nm 81.9 nrad (0.0169 arcsec)
Synthetic error 846.0 nrad (0.1745 arcsec)

Appendix C (Figure A1) shows part of the distributions of the synthetic errors due to all of the
error sources. Figure 6 shows the dispersion of these errors as calculated from the standard deviation
at each angle interval of the 2D-MNAG. The maximum standard deviations along the x- and y-axes
are 1280 nrad (0.264 arcsec) and 1547 nrad (0.319 arcsec) in the range of ±4363 µrad (±900 arcsec),
respectively, and 398 nrad (0.082 arcsec) and 475 nrad (0.098 arcsec) in the range of ±1454 µrad
(±300 arcsec), respectively. The simulation results reveal the microangle measurement property of
the capacitive-sensor-based angle monitoring unit when the error sources are controlled within the
range that is considered for Table 1. The simulation results can also be used as a reference for relevant
designs of other capacitive-sensor-based microangle measurement units.
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4. Experimental Results

4.1. Minimal Angle Increment and Scale Factor Test

A piezo driver based on the stick-slip principle is used in the 2D-MNAG to achieve high resolution,
large output range, and fast response characteristics. The minimal angle increment of the 2D-MNAG
is tested using the setup shown in Figure 7. The output angle of the 2D-MNAG is monitored using
both the capacitive-sensor-based angle monitoring unit and an Elcomat HR autocollimator to facilitate
a comparison in order to guarantee the reliability of the angle monitoring results. The collimating
beam of the Elcomat HR is reflected twice by the 2D-MNAG; thus, the angle measured by the Elcomat
HR is double that as measured by the 2D-MNAG, enabling easier and more accurate detection of the
minimal angle increment of the 2D-MNAG.
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Figure 7. Schematic diagram of test of both minimal angle increment and repeatability of 2D-MNAG.

The 2D-MNAG is incremented in steps of 9.7 nrad (0.002 arcsec) along the x-axis, and the output is
monitored using both the capacitive-sensor-based angle monitoring unit and the Elcomat HR, as shown
in Figure 8. It can be seen that the 2D-MNAG can reliably output increments of 9.7 nrad (0.002 arcsec)
along both the x-and y-axes.



Sensors 2017, 17, 2672 9 of 16

Sensors 2017, 17, 2672  9 of 16 

 

 

Figure 8. Angle increment of 9.7 nrad (0.002 arcsec) of 2D-MNAG and angle monitoring results of 

Elcomat HR autocollimator. 

4.2. Angle Positioning Repeatability and Output Deviation 

According to the simulation results shown in Section 3.2, no suitable instrument is available for 

determining the 2D-MNAG accuracy. For instance, the accuracy of the typical Elcomat 3000 

autocollimator is ±1.5 μrad (±0.3 arcsec) in the range of ±5090 μrad (±1050 arcsec); this is 

considerably lower than the theoretical angle output accuracy of the 2D-MNAG. Although the 

Elcomat HR has a suitable accuracy, its measurement range of 727 μrad (±150 arcsec) is considerably 

lower than the angle output range of ±4363 μrad (±900 arcsec) of the 2D-MNAG. The angle 

positioning repeatability of the 2D-MNAG is the most important parameter in regards to an 

evaluation of its working performance. 

The angle positioning repeatability of the 2D-MNAG is tested using the setup shown in Figure 

7, at angle positions of (0, 0), (0, 300), (0, 900), (600, 600), and (300, 300) arcsec. The measurement 

range of the Elcomat HR is ±727 μrad (±150 arcsec), which cannot cover all of the above angle 

positions. Therefore, the auxiliary mirror shown in Figure 7 requires the adjustment and fixing at the 

Elcomat HR measurement range for each angle position of the 2D-MNAG. Then, to evaluate its 

angle output repeatability, the 2D-MNAG is moved to different angle positions 20 times. 

Figure 9a–e show the repeatability test results. It can be seen that the 2D-MNAG has 

repeatability values of 116 nrad (0.024 arcsec) in the range of ±4363 μrad (±900 arcsec) and 53 nrad 

(0.011 arcsec) in the range of ±1454 μrad (±300 arcsec) along both the x-and y-axes; this is suitable for 

most calibration applications of 2D angle measurement instruments, such as autocollimators. 

  

Figure 8. Angle increment of 9.7 nrad (0.002 arcsec) of 2D-MNAG and angle monitoring results of
Elcomat HR autocollimator.

4.2. Angle Positioning Repeatability and Output Deviation

According to the simulation results shown in Section 3.2, no suitable instrument is available
for determining the 2D-MNAG accuracy. For instance, the accuracy of the typical Elcomat
3000 autocollimator is ±1.5 µrad (±0.3 arcsec) in the range of ±5090 µrad (±1050 arcsec); this is
considerably lower than the theoretical angle output accuracy of the 2D-MNAG. Although the Elcomat
HR has a suitable accuracy, its measurement range of 727 µrad (±150 arcsec) is considerably lower
than the angle output range of ±4363 µrad (±900 arcsec) of the 2D-MNAG. The angle positioning
repeatability of the 2D-MNAG is the most important parameter in regards to an evaluation of its
working performance.

The angle positioning repeatability of the 2D-MNAG is tested using the setup shown in Figure 7,
at angle positions of (0, 0), (0, 300), (0, 900), (600, 600), and (300, 300) arcsec. The measurement range
of the Elcomat HR is ±727 µrad (±150 arcsec), which cannot cover all of the above angle positions.
Therefore, the auxiliary mirror shown in Figure 7 requires the adjustment and fixing at the Elcomat
HR measurement range for each angle position of the 2D-MNAG. Then, to evaluate its angle output
repeatability, the 2D-MNAG is moved to different angle positions 20 times.

Figure 9a–e show the repeatability test results. It can be seen that the 2D-MNAG has repeatability
values of 116 nrad (0.024 arcsec) in the range of ±4363 µrad (±900 arcsec) and 53 nrad (0.011 arcsec) in
the range of ±1454 µrad (±300 arcsec) along both the x-and y-axes; this is suitable for most calibration
applications of 2D angle measurement instruments, such as autocollimators.
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Figure 9. Repeatability test results of 2D-MNAG at: (a) (0, 0); (b) (0, 300); (c) (0, 900); (d) (300, 300);
and, (e) (600, 600) arcsec.

4.3. Scale Factor and Output Deviation Test

As discussed in Section 4.2, no suitable instrument is available for accuracy determination for
the full 2D output range of the 2D-MNAG. However, the 2D-MNAG scale factor can be calibrated
using a 1D angle comparator or measurement instrument with high accuracy and a large range in one
dimension. The experimental setup for scale factor calibration is shown in Figure 10. The 2D-MNAG
scale factor is calibrated using a self-made air-bearing precision rotary table. The circular grating used
in the rotary table is Heidenhain RON 886 with an accuracy of ±1 arcsec. The autocollimator Elcomat
HR is used as a null-indicating instrument. The 2D-MNAG output is varied with rotation of the rotary
table to maintain the Elcomat HR read out at (0, 0) arcsec. In addition, an Elcomat 3000 autocollimator
is used to measure the rotation angle of the rotary table for comparison with the output angle given
by the rotary table itself. Thus, the scale factor of the 2D-MNAG is well calibrated. The outputs of
both the 2D-MNAG and Elcomat 3000 are compared with the data for the rotary table to eliminate
impact of relative low accuracy of the rotary table. The deviations are shown in Figure 11, indicating a
satisfactory nonlinear scale factor for the 2D-MNAG with a maximum deviation of −0.151 arcsec in
the range of ±900 arcsec.
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Figure 11. Test results for 2D-MNAG scale factor.

The angle output deviation of the 2D-MNAG is also tested within the measurement range of
±150 arcsec of the Elcomat HR with an angle interval of 30 arcsec in 2D, using the setup shown in
Figure 10. The test results are shown in Figure 12. It can be seen that the maximum output deviations on
the x- and y-axes are within the range of −0.019 to 0.015 arcsec and −0.018 to 0.015 arcsec, respectively.
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5. Conclusions

This study has presented a 2D-MNAG that uses a piezo-driven double-axis flexure hinge for 2D
angular deflection and three capacitive sensors for 2D output angle monitoring. The principal error
of the capacitive sensor for precision microangle measurement was analyzed and compensated for,
so as to achieve a high angle output resolution of 9.7 nrad (0.002 arcsec) and positioning repeatability
of 116 nrad (0.024 arcsec) over a large angular range of ±4363 µrad (±900 arcsec) for the 2D-MNAG.
The expected accuracies of the 2D-MNAG along the x- and y-axes are 0.264 and 0.319 arcsec in the
range of ±900 arcsec, respectively, and 0.082 and 0.098 arcsec in the range of ±300 arcsec, respectively.
The impact of each error component together with the synthetic error of the 2D-MNAG after principal
error compensation were also determined using Monte Carlo simulation for further improvement of
the 2D-MNAG.
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Appendix A

As shown in Figure 3, the area of the infinitesimal can be calculated using its width dx and
distance x to the center of the sensor plane, as shown in Equation (A1).

dS = 2 •
√

R2 − x2 • dx (A1)

The electric field intensity dE between the infinitesimal and the baseboard is given in
Equation (A2), where dQ is the assumed quantity of electric charge on the infinitesimal.

dE =
dσ

ε0εr
=

dQ
ε0εrdS

(A2)

The electronic field line can be assumed to be circular arc so that it can be perpendicular to both
the sensor plane and the baseboard while they are not parallel to each other. The circular arc length
can be calculated using Equation (A3).

l =
(

d
tan θ

+ x
)
• θ (A3)

The voltage dU between the infinitesimal and the baseboard can be calculated using the electronic
field intensity dE and the circular arc length l of the electronic field line, as shown in Equation (A4).

dU = l • dE =

(
d

tan θ
+ x
)

θ • dQ
2ε0εr

√
R2 − x2dx

(A4)

The capacitance between the infinitesimal and the baseboard can be calculated using the quantity
of electric charge dQ and voltage dU, as shown in Equation (A5).

dC =
dQ
dU

=
2ε0εr

√
R2 − x2(

d
tan θ + x

)
θ

dx (A5)



Sensors 2017, 17, 2672 13 of 16

Then, the capacitance between the sensor plane and the baseboard can be calculated using the
integration shown in Equation (A6).

C =
∫

dC =
∫ R

−R

2ε0εr
√

R2 − x2(
d+d0
tan θ + x

)
θ

dx (A6)

Appendix B

The computational model of the capacitive-sensor-based angle monitoring unit is established
accurately by using spatial geometrics. The equations of the sensor plane and baseboard are given by
Equations (A7) and (A8), respectively.

A(x− xC) + B(y− yC) + C(z− zC) = 0 (A7)

m(x− xB) + n(y− yB) + p(z− zB) = 0 (A8)

where PC(xC, yC, zC) is one point and VC(A, B, C) is the normal vector of the sensor plane,
and PB(xB, yB, zB) is one point and VB(m, n, p) is the normal vector of the baseboard.

The rotation of the baseboard can be described as the rotation of the point PB(xB, yB, zB) and the
normal vector of VB(m, n, p) relative to the rotation axis. The rotation matrix is given by Equation (A9).

R =

 C + A2
x(1− C) Ax Ay(1− C) + AzS Ax Az(1− C)− AyS

Ax Ay(1− C)− AzS C + A2
y(1− C) Ay Az(1− C) + AxS

Ax Az(1− C) + AyS Ay Az(1− C)− AxS C + A2
z(1− C)

 (A9)

where C = cosθ, S = sinθ, θ is the rotation angle, and (Ax, Ay, Az) is the normalized direction vector of
the rotation axis.

The point PBR and normal vector VBR after rotation can be calculated using Equation (A10).

PBR = R • PB, VBR = R •VB (A10)

The intersection point of the axis of the capacitive sensor and the plane equation of the baseboard
can be calculated using Equation (A11). The distance from the intersection point to the center of the
sensor plane can be calculated using Equation (A12), which is the actual distance d from the center of
the sensor plane to the baseboard. xI

yI
zI

 =
1

mA + nB + pC

 mAxC + (nB + pC)xB + mB(yC − yB) + mC(zC − zB)

nA(xC − xB) + nByC + (mA + pC)yB + nC(zC − zB)

pA(xC − xB) + pB(yC − yB) + pCzC + (mA + nB)zB

 (A11)

d =

√
(xC − xI)

2 + (yC − yI)
2 + (zC − zI)

2 (A12)

The angle θ between the sensor plane and the baseboard is determined by their normal vectors,
as shown in Equation (A13). The angle θ is used in Equations (6)–(8) in Section 3.1 to calculate the
principal error of the capacitive-sensor-based angle monitoring unit for further compensation of the
angle measurement results.

θ = arccos

(
Am + Bn + Cp√

A2 + B2 + C2
√

m2 + n2 + p2

)
(A13)
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Figure A1. Distribution of angle measurement errors of capacitive-sensor-based angle monitoring unit
at different angle positions: (a) along x-axis at (300, 300) arcsec; (b) along x-axis at (600, 600) arcsec;
(c) along x-axis at (900, 900) arcsec; (d) along y-axis at (300, 300) arcsec; (e) along y-axis at (600,
600) arcsec; (f) along y-axis at (900, 900) arcsec.
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