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Abstract: This paper presents a price-searching model in which a source node (Alice) seeks friendly
jammers that prevent eavesdroppers (Eves) from snooping legitimate communications by generating
interference or noise. Unlike existing models, the distributed jammers also have data to send to
their respective destinations and are allowed to access Alice’s channel if it can transmit sufficient
jamming power, which is referred to as collaborative jamming in this paper. For the power used to
deliver its own signal, the jammer should pay Alice. The price of the jammers’ signal power is set
by Alice and provides a tradeoff between the signal and the jamming power. This paper presents,
in closed-form, an optimal price that maximizes Alice’s benefit and the corresponding optimal power
allocation from a jammers’ perspective by assuming that the network-wide channel knowledge
is shared by Alice and jammers. For a multiple-jammer scenario where Alice hardly has the
channel knowledge, this paper provides a distributed and interactive price-searching procedure that
geometrically converges to an optimal price and shows that Alice by a greedy selection policy achieves
certain diversity gain, which increases log-linearly as the number of (potential) jammers grows.
Various numerical examples are presented to illustrate the behavior of the proposed model.

Keywords: optimal pricing; secure capacity; power allocation; Stackelberg game; distributed pricing

1. Introduction

Due to the inherent broadcast nature of the wireless medium, eavesdropping is one of major
threats in wireless network security. Especially, wireless sensor networks, where tiny sensing
devices are transmitting information data through radio links, are vulnerable to eavesdroppers (Eves).
Physical layer security emerges as an effective means of securing wireless communications against
eavesdropping by exploiting the physical characteristics of wireless channels. In the presence of
an Eve, a so-called secrecy capacity is given in [1,2] as the difference between the channel capacity
from a source (referred to as Alice) to destination (referred to as Bob) and that from the source to Eve.

In tremendous research efforts in enhancing physical layer security (for example, listed in [3]),
jamming has been widely accepted as an attractive way, which prevents Eves from snooping
legitimate communications by generating friendly interference or noise. In [4], the coverage of
friendly jamming is evaluated, and the secrecy outage probability (SOP) is characterized for various
levels of channel state information. In [5], optimal power allocation between multiple friendly
jammers that cooperatively jam multiple Eves is investigated in order to maximize the secrecy capacity,
and SOP is also analyzed. Jamming signals are sometimes transmitted by intermediate relay nodes to
secure the source signals, which is so-called cooperative jamming [6,7]. In [8], multiple intermediate
nodes are designated as either relays or jammers, for which optimal relay and jammer selection
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is investigated. In [9], the cooperative jammers harvest energy transmitted by a source and use it to
generate artificial noise to jam the Eves cognitive Internet-of-Things networks, in which an auction
framework that formulates the jammer selection and the power allocation together is also provided.
In an amplify-and-forward relay network, the destination can work as a friendly jammer by generating
artificial noise in the first phase to prevent the possibly untrusted relay from decoding the signal [10].

Though there have been plenty of works on investigating the secrecy performance of friendly
or cooperative jamming, to the best of our knowledge, why and how much the jammers waste their
valuable power or time for Alice is not well modeled in the literature. In [11], a game-theoretic model is
established for this purpose, where Alice pays the jammer for the jamming power to interfere with Eve,
therefore achieving more secrecy capacity, and the relationship between the jamming power and the
price is investigated.

In this paper, we pay attention to the great burden that Alice should suffer in the previous model,
though it is a legitimate user having a valuable right to access certain bandwidth. Our model relieves
its burden by allowing the jammer to send its own data as a secondary legitimate user and letting Alice
charge for the power used to deliver the jammer’s signal, which is referred to as collaborative jamming
in this paper. The proposed collaborative jamming is more efficient than the previous jamming
techniques in the sense that the jamming power is not just wasted, but used to send information data.
To maintain the communication quality of Alice, the collaboration is allowed only if it does not degrade
a predetermined level of secrecy capacity.

With the collaboration, we provide an optimal price issued by Alice and an optimal power
allocation by the jammer corresponding to the price, where Alice is often called a price-leader and
Jack is a price-follower in Stackelberg games. In order to provide the optimal solutions, we assume
that legitimate sensors have perfect and full knowledge of Eve’s channel in their vicinity. We further
investigate two scenarios for the collaboration: Bob and the jammer share common artificial signals
(CASs) that are used for jamming signals so that Bob could (partly) cancel the jamming interference
from the received signals; Additionally, Bob and the jammer have no CASs, and thus, the whole power
from the jammer is treated as interference by Bob. We further extend the model with multiple jammers,
in which Alice selects the most beneficial jammer that would provide the greatest payment. With such
a greedy-selection policy, it is shown that the benefit taken by Alice increases as the number of
potential jammers increases. Moreover, the probability (in asymptotic environments) that Alice’s
benefit drops below a certain predefined threshold is shown to decrease geometrically as the number
of jammers grows. If multiple jammers exist, it is hard for Alice to know the network-wide channel
information for jammers and/or for Eves. By assuming that only the jammers, but Alice, know the
relevant channel information, an interactive and iterative price-searching procedure is provided.
The procedure converges geometrically to an optimal price. With numerical investigation, we show that
the convergence speed is sufficiently fast with the moderate number of jammers. Numerical examples
are also provided for illustrating the proposed optimal pricing and power allocation for a single
jammer and multiple jammers, respectively. The result especially show that about a 6–28% increase in
Alice’s benefit is achieved by allowing eight jammers to participate in the price-searching procedure.

The contributions of this paper can be summarized as follows:

• provides a new price-searching model that explains an adequate price level of the transmitting
power used to deliver secondary traffic by friendly jammers; who also contribute to protecting
the secure transmission of Alice,

• presents, in closed-form, an optimal price that maximizes Alice’s benefit and the corresponding
optimal power allocation from a jammers’ perspective;

• provides a distributed and interactive price-searching procedure that can be applied for
multiple-jammer scenarios and geometrically converges to an optimal price; and

• shows that Alice by a greedy selection policy achieves a certain diversity gain, which increases
log-linearly as the number of (potential) jammers grows.
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The remainder of the paper is organized as follows. The system model that includes the
collaboration condition and signal representations in the collaboration is provided in Section 1,
In Section 2, optimal pricing and power allocation are provided for a single-jammer case. An optimal
price is presented in closed-form for both scenarios: with and without CAS, respectively. Section 3
extends the result with a single jammer to a case of multiple jammers. When Alice selects the best
jammer among potential jammers, it is shown that it enjoys a certain diversity gain that log-linearly
increases as the number of jammers grows. In order to cope with a more practical problem in which
Alice cannot gather the whole channel information in the network, a distributed and interactive
collaboration search procedure (ICSP) is also provided in Section 3. The convergence of ICSP is
numerically investigated in Section 4, in which a variety of other numerical examples is also discussed.
Finally, conclusions are presented in Section 5. The main notations used in this paper are listed
in Table 1.

Table 1. Notations.

Notation Description

A Source node (Alice)
B Destination node (Bob)

PA Transmit power of Alice
J Friendly jamming node (Jack)
E Eavesdropper (Eve)
JR Receiver of jammers

Rs
AB Secrecy rate target desired by Alice
λ Price of power used to send jammer’s signal
PJ Transmit power of a jammer
x1 Complex symbol transmitted by Alice
x2 Complex symbol transmitted by a jammer to JR
xJ Artificial jamming signals transmitted by a jammer
α Power allocation factor between message signal x2 and artificial jamming signal xJ

yB Received signal at Bob
yJR Received signal at JR
yE Received signal at Eve
ηB Noise at Bob
ηJR Noise at JR
ηE Noise at Eve

CAB Channel capacity over link A-B
CAE Channel capacity over link A-E
Cs

AB Secrecy rate on link A-B
α0 Maximally-allowable fraction of jammer’s power to its own signals while keeping CAC
RJ Data rate of a jammer
ωJ Return per the data rate achieved by a jammer
UJ Net revenue (utility) of a jammer

UAB Benefit of Alice by the collaboration
JC Set of jammers that have CAS
JN Set of jammers that have no CAS

Umax
AB (K) Alice’s utility with K cooperative jammers
Pout Utility outage probability
P̃out Asymptotic utility outage probability
Ei(·) Exponential integral function

2. System Model

2.1. Collaboration Model

We first consider a wireless network that consists of two source-destination pairs and
an eavesdropper: (A, B), (J, JR) and E, respectively, as shown in Figure 1a. The system with multiple
jammers (in Figure 1b) is investigated in Section 4. Alice (A) and Bob (B) are primary legitimate
users where primary source Alice is allocated radio resources such as a unit time slot and transmit
power PA to send its own data to Bob. On the other hand, secondary source Jack (J) has been partly
allowed to access the time slot only if it does not degrade communication quality between the primary
users by certain collaboration to be defined below. Eve (E) is another party that is eavesdropping
the primary communication. We assume that Eve does not care about Jack’s messages and treats it
as interference.
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Jack seeks an opportunity to send signals to JR by jamming Eve to prevent it from eavesdropping
Alice’s signal. Let Rs

AB be a secrecy rate target desired by Alice. Alice allows Jack to access the time
slot if Jack has sufficient jamming power by which Rs

AB can be maintained and pays λ (dollars) per
power unit that is used to send Jack’s own data. In summary, the collaboration between Alice and Jack
could be established if:

• the collaboration would not have dropped the secrecy rate between the primary users below Rs
AB;

• Jack would pay λ to Alice for a unit power that it allocates to its own signal during
the collaboration; and

• the benefit expected by the collaboration would be positive for both Alice and Jack.

We assume that Jack has transmit power PJ . For a given λ, Jack would maximize its utility of PJ by
deciding whether it joins the collaboration and how much power it will use to send its own data and
pay the charge. Alice wants to attract Jack and maximize its revenue by setting an adequate price λ.

Alice is often called a price-leader and Jack is a price-follower in Stackelberg games. Our main interest
lies in finding optimal λ that maximizes Alice’s revenue and Jack’s optimal power allocation strategies.

(a) (b)

Figure 1. The system models: (a) single-jammer model; (b) multiple-jammer model.

2.2. Signal Model for the Collaboration

Let h1, h2, h3, h4, h5 and h6 (shown in Figure 1) be the complex channel coefficients between A-B,
A-E, J-E, J-B, J-JR and A-JR links, respectively. The channels are assumed to be static during the
collaboration. Let x1 and x2 be complex symbol vectors for the message transmitted by Alice to Bob and
Jack to JR, respectively. If Alice and Jack (also JR) have common artificial signals (CASs), Jack designates
them as specific jamming signals denoted by xJ . Otherwise, xJ is not used. When CAS exits,

Jack transmits a superimposed signal
√

αPJ x2 +
√
(1− α)PJ xJ where α(0 ≤ α ≤ 1) represents a power

allocation factor between message signal x2 and artificial signal xJ . If CAS does not exist, α = 1 (it is
also shown to be optimal shortly). Let η{·} be noise power at the receivers. The signals received at Bob
and JR are:

yB = h1
√

PAx1 + h4

(√
αPJ x2 +

√
(1− α)PJ xJ

)
+ ηB, (1)

yJR = h5

(√
αPJ x2 +

√
(1− α)PJ xJ

)
+ h6

√
PAx1 + ηJR , (2)

respectively. Eve also receives the signals simultaneously such that:

yE = h2
√

PAx1 + h3

(√
αPJ x2 +

√
(1− α)PJ xJ

)
+ ηE. (3)

We assume that the transmitted symbols have zero mean and unit power. The complex additive
Gaussian noises with zero mean and variance σ2 are assumed for ηB, ηJR and ηE, respectively.



Sensors 2017, 17, 2697 5 of 18

For notational brevity, let γi = |hi |2
σ2 for all i. We assume that Alice and Jack know the relevant

channel information perfectly.

3. Optimal Pricing and Power Allocation

3.1. When CAS Exists

3.1.1. With Fixed PJ

When CAS exits, xJ is known to Bob, as well as JR and can be canceled at the respective receivers.
Thus, the channel capacities over A-B and A-E are given by:

CAB = log
(

1 +
γ1PA

γ4αPJ + 1

)
, (4)

CAE = log
(

1 +
γ2PA

γ3PJ + 1

)
, (5)

respectively, where only αPJ is the interfering power from Jack at Bob since (1− α)PJ can be removed
using an interference cancellation technique. Secrecy rate on A-B is then defined by [12]:

Cs
AB , max {CAB − CAE, 0} . (6)

The collaboration is then possible if:

Cs
AB ≥ Rs

AB, (7)

which is referred to as the collaboration allowance condition (CAC) in this paper.
Substituting (4) and (5) into (7), we obtain a collaboration-allowable power range:

α ≤ α0, (8)

where:

α0 = min
[

1
γ4PJ

(
γ1PA

2Rs
AB+CAE − 1

− 1
)

, 1
]

. (9)

α0 is a maximally-allowable fraction of Jack’s power to its own signals while keeping CAC. If α0 ≤ 0,
CAC cannot be held with any positive power allocation, and then, the collaboration fails.

In the collaboration with Alice and Bob, Jack can achieve data rate:

RJ = log
(

1 +
γ5αPJ

γ6PA + 1

)
. (10)

Let Jack have positive return ωJ (dollars) per the achieved data rate. The net revenue (utility) of
Jack then can be modeled as:

UJ(α; λ) = ωJ RJ − λαPJ

= ωJ log
(

1 +
γ5αPJ

γ6PA + 1

)
− λαPJ .

(11)

For given λ, ωJ and PJ , Jack finds an optimal power allocation α∗ by solving:

max
0≤α≤α0

UJ(α; λ). (12)

By investigating the Karush–Kuhn–Tucker condition for (12), analogous to the method found
in [13], we can have the following optimal power allocation.
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Lemma 1 (Jack’s optimal power allocation).

α∗(λ) =


α0, 0 ≤ λ ≤ λL,
ωJ
ln 2

1
λPJ
− γ6PA+1

γ5PJ
, λL ≤ λ ≤ λU ,

0, λ ≥ λU .

(13)

where: {
λL =

ωJ
ln 2

γ5
γ5α0PJ+γ6PA+1 ,

λU =
ωJ
ln 2

γ5
γ6PA+1 .

(14)

For Alice and Bob, the payment by Jack can be regarded as compensation for the collaboration.
If Jack optimizes its revenue with the power allocation in (13), the incentive for the primary users is
then given by:

UAB(λ) = λα∗(λ)PJ =


λα0PJ , 0 ≤ λ ≤ λL,
ωJ
ln 2 −

γ6PA+1
γ5

λ, λL ≤ λ ≤ λU ,

0, λ ≥ λU .

(15)

If we assume that Alice further knows ωJ and PJ , Alice can maximize its incentive in (15).
Obviously, UAB(λ) is maximized at λ∗ = λL.

Lemma 2 (Optimal pricing by Alice). When Jack allocates transmit power to maximize its own revenue in
(11), an optimal pricing policy by Alice is λ∗ = λL, and the maximum incentive for Alice is U∗AB = λLα0PJ .

3.1.2. Optimal PJ

It is noted that Jack’s optimal power allocation is always α0 if Alice maximizes its incentive by
disseminating an optimal price λL and CAC holds. Keeping CAC, α0 ≥ 0 is equivalent to:

PJ ≥
1

γ3

 γ2PA
γ1PA+1

2Rs
AB
− 1
− 1

 , P(C)
J . (16)

By substituting α0 into (11) and letting PJ0 , α0PJ, we have a new problem to determine PJ0 for Jack:

max
PJ0

UJ(PJ0; λL) = ωJ log
(

1 + γ5PJ0
γ6PA+1

)
− λLPJ0, (17)

for which an optimal solution is given by:

Popt
J0 =

ωJ

ln 2
1

λL
− γ6PA + 1

γ5
. (18)

Furthermore, let us denote the maximum available power at Jack by Pmax
j . An optimal PJ is thus

obtained by equating α0P∗J = Popt
J0 :

P∗J = min

max


1

γ3

 γ2PA

1
2Rs

AB

(
γ1PA

γ4Popt
J0 +1

+ 1
)
− 1
− 1

 , P(C)
J

 , Pmax
j

 . (19)

3.2. When CAS Does Not Exist

In this case, Jack’s signals cannot be distinguished between jamming and data signals, and Alice
assumes that the whole power from Jack is used to deliver Jack’s signal and hence sets α = 1. For Jack,
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it is also optimal to set α = 1, since it should pay λPJ if it uses power PJ . Let us denote the secrecy rate
on A-B with α = 1 by C̃s

AB. Then, CAC C̃s
AB ≥ Rs

AB gives a quadratic inequality on PJ with interim
constants a, b and c such that:

aP2
J + bPJ + c ≤ 0, (20)

where a = (2Rs
AB − 1)γ3γ4, b = 2Rs

AB γ2γ4PA − γ1γ3PA + (2Rs
AB − 1)(γ3 + γ4), and c = (2Rs

AB γ2 −
γ1)PA + 2Rs

AB − 1. Since a > 0, if b2 − 4ac < 0, CAC cannot hold for any real PJ ; otherwise,

letting P(L)
J and P(U)

J (P(L)
J ≤ P(U)

J where the equality holds if b2− 4ac = 0) be the two real roots of (20),
PJ should be:

P(L)
J ≤ PJ ≤ P(U)

J and PJ ≥ 0 (21)

in order to keep CAC. We assume in this paper that P(U)
J ≥ 0 to ensure the given problem is feasible.

For given λ, Jack is now solving:

max
PJ

UJ(PJ ; λ) = ωJ log
(

1 +
γ5PJ

γ6PA + 1

)
− λPJ , (22)

under the constraint in (21). An optimal solution can be obtained by:

P∗J (λ) =

 P(U)
J , λ = 0,

max
(

P(L)+
J , min

(
Popt

J , P(U)
J , Pmax

j

))
, λ > 0

, (23)

where P(L)+
J = max

(
0, P(L)

J

)
and:

Popt
J =

ωJ

ln 2
1
λ
− γ6PA + 1

γ5
. (24)

It is noted that Popt
J in (24) is an unconstrained optimal solution of (22) that is similar to (18).

For Alice, referring to (15), an optimal pricing policy is λL with α0 = 1, which gives:

λ̃∗ =
ωJ

ln 2
γ5

γ5P(V)
J + γ6PA + 1

, (25)

where P(V)
J = min

(
P(U)

J , Pmax
j

)
. Putting (25) into (24), we can have P∗J (λ̃

∗) = Popt
J = P(U)

J .

Lemma 3 (Optimal pricing and power allocation when CAS is not available). When CAS is not
available, an optimal pricing policy by Alice is λ̃∗, and an optimal transmit power by Jack is P(V)

J if feasible.

The corresponding incentive for Alice is now U∗AB =
ωJ
ln 2

γ5P(V)
J

γ5P(V)
J +γ6PA+1

.

4. Extension to Multiple Jammers

4.1. Greedy Jammer Selection

Let JC and JN denote sets of jammers who have CASs or not, respectively, and let us assume
JC ∪ JN 6= ∅. For jammer j ∈ JC, we assume that each of them transmits at a maximum power level
P(j)

max. Hereafter, superscript (j) is used to denote the respective jammers. For j ∈ JN , we assume that
each jammer has real roots for (20), and the greater one is denoted by P(j)

U ≥ 0; further assume that

P(j)
U ≤ P(j)

max without loss of generality.
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When λ is given by Alice, jammers compute α(j)∗(λ) and P(j)∗(λ) according to (13) and (23),
respectively. Let the payment by each of the jammers be denoted by U(j)

AB(λ). Then:

U(j)
AB(λ) =

{
λα(j)∗(λ)P(j)

max, j ∈ JC

λP(j)∗, j ∈ JN .
(26)

Let us define:
Umax

AB (λ) , max
{

U(j)
AB(λ), for all j ∈ JC ∪ JN

}
. (27)

Thus, optimal price λ for multiple jammers is given by:

λ∗m = arg max
λ≥0

Umax
AB (λ). (28)

In (27), it can be seen that there exists at least one j ∈ JC ∪ JN such that Umax
AB (λ) = U(j)

AB(λ) for

given λ. Let us denote by k a jammer that provides Umax
AB (λ∗m) = U(k)

AB(λ
∗
m). Thus, jammer k offers

a maximum payment to Alice. Alice maximizes its utility by choosing jammer k, which is referred to as
a greedy selection in this paper. Ties, if any, could be broken arbitrarily. Selected jammer k determines
its optimal power allocation according to either (13) or (23).

4.2. Asymptotic Analysis

When there are K jammers, Alice can select one of them as a friendly jammer, which may provide
a maximum payment. Let U(j)

AB be the maximum payment by jammer j, which is determined when
an optimal price is offered by Alice. Then, Alice’s maximum utility with K cooperative jammers
Umax

AB (K) can be:

Umax
AB (K) = max{U(1)

AB, U(2)
AB, · · · , U(K)

AB }. (29)

Umax
AB (K) obviously increases as K increases, which means that Alice enjoys the benefit from

the diversity of potential jammers with the greedy selection principle. To quantify this benefit,
let us assume that Alice has a utility target µ and suffers from a utility outage when Umax

AB (K) ≤ µ.
The probability of utility outage is then defined by:

Pout = Pr{Umax
AB (K) ≤ µ}

= Pr{U(1)
AB ≤ µ, U(2)

AB ≤ µ, · · · , U(K)
AB ≤ µ}.

(30)

We assume that j ∈ JC for brevity. It is easy to show that the following observation is analogously
valid for j ∈ JN .

As PJ goes to infinity, λL decreases and converges to:

ωJ

ln 2
γ5

γ5P̄J + γ6PA + 1
, (31)

where P̄J =
1

γ4

(
γ1PA

2Rs
AB−1

− 1
)

. Additionally, U∗AB also converges to:

ωJ

ln 2
γ5P̄J

γ5P̄J + γ6PA + 1
. (32)

When PA further goes to infinity, P̄J ≈ γ1PA/(γ4β) where β = 2Rs
AB − 1. An asymptotic expression

of U(j)
AB is given by:
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Ũ(j)
AB =

γ1Ω(j)

γ1Ω(j) + β
, (33)

where Ω(j) = γ
(j)
5 /(γ(j)

4 γ
(j)
6 ). Let:

Ω = max

{
γ
(1)
5

γ
(1)
4 γ

(1)
6

,
γ
(2)
5

γ
(2)
4 γ

(2)
6

, · · · ,
γ
(K)
5

γ
(K)
4 γ

(K)
6

}
. (34)

Then, the asymptotic outage probability becomes (if we assume that every jammer has the same
ωJ for brevity):

P̃out = Pr

{
γ1Ω

γ1Ω + β
≤ µ ln 2

ωJ

}

= Pr

{
Ω ≤ β

(
ωJ

µ ln 2 − 1)γ1

}
(35)

=
∫ ∞

0
FΩ

( βµ ln 2
(ωJ − µ ln 2)x

)
fγ1(x)dx,

where fγ1(x) and FΩ(x) represent the PDF of γ1 and the CDF of Ω, respectively.

We assume that γ1 and γ
(j)
k (k = 4, 5, 6) have the exponential distribution with mean m1 and mean

m(j)
k , respectively, and that all the channels are mutually independent. Then, the PDF of γ1 is given by

fγ1(x) = e−x/m1 /m1, and the PDF of γ
(j)
k is given by f

γ
(j)
k
(x) = e−x/m(j)

k /m(j)
k . The CDF of Ω is then

given by:

FΩ(x) =
K

∏
j=1

Pr

{
γ
(j)
5

γ
(j)
4 γ

(j)
6

≤ x

}

=
K

∏
j=1

{
1−

∫ ∞

0

∫ ∞

0
Fγ4

(
z

xy

)
fγ6(y) fγ5(z)dydx

}
(36)

=
K

∏
j=1

{
1 +

σ(j)

x
e

σ(j)
x Ei

(
− σ(j)

x

)}
,

where σ(j) = m(j)
5 /(m(j)

4 m(j)
6 ) and Ei(x) = −

∫ ∞
−x e−t/tdt.

Lemma 4. Umax
AB (K) achieves full diversity gain in the sense that the log of utility outage probability decreases

as an order of K when every σ(j) → ∞ and the channel gain γ1 is known and fixed.

Proof. Let us denote the fixed γ1 by γ̄1, and we assume independent and identical γ
(j)
k ’s (k = 4, 5, 6),

so that σ = σ(j) for all j. By using approximation Ei(−x)
x→∞≈ −e−x

x

(
1− 1

x

)
in (36), when σ → ∞,

P̃out with given γ̄1 becomes:

P̃out(γ̄1) = Pr

{
Ω ≤ β

(
ωJ

µ ln 2 − 1)γ̄1

}

= FΩ

( βµ ln 2
(ωJ − µ ln 2)γ̄1

)
(37)

≈
( βµ ln 2
(ωJ − µ ln 2)γ̄1

)K
σ−K.
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Thus,

lim
σ→∞

− ln P̃out

ln σ
= K. (38)

When Alice wants to keep its utility from dropping below a threshold µ, the increasing number of
cooperative jammers probabilistically helps to reduce the probability of utility outage. Lemma 4 tells us
how the number of jammers contributes to diminishing the outage probability. It tells us that when the
channel between Jack and its receiver becomes relatively very good compared to the interfering links:
Alice to JR and Jack to Bob, both of which are unwanted signal paths, the outage probability decreases
log-linearly. This property also holds for jammers in JN even without assuming fixed γ1. For the utility
provided in Lemma 3, it is seen that only the ratio m(j)

5 /m(j)
6 matters in achieving the full diversity gain

for jammers in JN .

4.3. Distributed Collaboration Protocol for Multiple Jammers

For a single jammer, Alice and Jack can share the whole channel knowledge by adequate
feedback channels. However, if there are multiple (potential) jammers, it is hard for Alice and the
jammers to have the wide-range channel information over the whole network. In this subsection,
we assume that Alice has only the channel information on γ1 and γ2, and each jammer has its own
channel information on γ

(j)
3 , γ

(j)
4 , γ

(j)
5 and γ

(j)
6 .

Looking for the collaboration, Alice initially broadcasts λ with channel information γ1, γ2 and
secrecy rate target Rs

AB (and also PA if it is not known to the jammers in advance). Each jammer j that
has some message to send and also seeks the collaboration opportunity then computes either α(j)∗(λ)

or P(j)∗(λ) according to (13) and (23), respectively. Of course, each jammer has prior knowledge of ω
j
J

and P(j)
max. Each jammer sends either α(j)∗(λ) or P(j)∗(λ) with P(j)

max, if needed, which could be already
known to Alice by previous communications. Jammers send the power allocation as an agreement of
the collaboration when the power allocation is positive. Alice receives the response from the jammers
and tries to determine whether it will send a new price or stop sending the price and choose the best
jammer with the feedbacks so far.

According to (13), α(j)∗(λ) is not dependent on λ if λ ≤ λ
(j)
L . However, it decreases if λ ≥ λ

(j)
L .

Let us denote by λ(i) the i-th price successively sent by Alice looking for the collaboration. By using
two successive designated prices λ(i) and λ(i+1) (λ(i) < λ(i+1)), Alice can have partial information
on power allocation by jammer j ∈ JC from the responses such that if α(j)∗(λ(i)) = α(j)∗(λ(i+1)),
then α(j)∗(λ(i)) = α0 and λ(i) < λ(i+1) ≤ λ

(j)
L . Getting α0 and a lower bound on λ

(j)
L by the

above reasoning, Alice can also have an upper bound on λ
(j)
L by a response α(j)∗(λ(l)) > λ(i+1),

which means λ
(j)
L ≤ λ(l).

For jammer j ∈ JN, its response on power allocation P(j)∗(λ) will be one of P(j)
L , P(j)

U , P(j)
opt

and P(j)
max. When Alice increases λ, the response finally reaches either P(j)

U or P(j)
max: If P(j)

U ≤ P(j)
max,

it eventually becomes P(j)
U ; Otherwise, P(j)

max. When Alice increases λ, regarding the sequence of responses,

jammer j ∈ JN falls into one of three classes: the first type that responds with either fixed power P(j)
U

or P(j)
max, the second type that increases its power from P(j)

opt to P(j)
U and the third type that increases its

power from P(j)
opt to P(j)

max. Since Alice knows P(j)
max from the feedback, it finally understands whether the

jammer allocates P(j)
U or P(j)

max.
Motivated by the above findings, an interactive and iterative collaboration search procedure (ICSP)

is provided in Table 2. It is primarily based on the bisectional search that guides Alice’s pricing trials
to find λL or λ̃∗. In this procedure, λsmall and λbig represent a lower and an upper limit of the price
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in practice, respectively, which are set by Alice. ICSP tries to find the collaboration starting with the
smallest possible price λsmall, by which Alice can attract as many as friendly jammers possible. In ICSP,
if uj|λr,j − λl,j| < ε for a predefined threshold ε, it is regarded that the price is sufficiently exploited for
jammer j. If every potential jammer satisfies the condition, ICSP terminates with an individual pricing
range of the jammers, and then, the most plausible jammer is selected for the collaboration. Otherwise,

further improvement in the payment by jammer j is expected by uj

(
λl,j+λr,j

2

)
and the biggest jammer is

selected for the next price-searching. Since
λl,j+λr,j

2 replaces either λl,j or λr,j for some j, ICSP converges
geometrically and terminates within N log2 |(λbig − λsmall)/ε|, where N represents the total number
of potential jammers in JC ∪ JN .

Table 2. Interactive collaboration search procedure (ICSP).

Step 0 (Initializing memories)

Set i = 0,Ss = JC ∪ JN , Sa = ∅, umax = 0, jmax = null,

and λl,j = λsmall, λr,j = λbig, uj = α0,j = P0,j = 0 for all j ∈ Ss.

Set λ(0) = λsmall.

Step 1 (Broadcasting test price and receiving feedbacks)

Try λ(i), and get α(j)∗(λ(i)) from j ∈ JC and P(j)∗(λ(i)) from j ∈ JN .

Step 2 (Updating jammers’ information)

For j ∈ JC,

if i = 0, then keep α0,j = α(j)∗(λ(i));

if uj ≤ λ(i)α(j)∗(λ(i))P(j)
max, then update uj = λ(i)α(j)∗(λ(i))P(j)

max

and if α(j)∗(λ(i)) = α0,j and λl,j < λ(i), then λl,j = λ(i); else if λr,j > λ(i), then λr,j = λ(i).

if uj > λ(i)α(j)∗(λ(i))P(j)
max and α(j)∗(λ(i)) 6= α0,j and λr,j > λ(i), then λr,j = λ(i).

if uj > λ(i)α(j)∗(λ(i))P(j)
max and α(j)∗(λ(i)) = α0,j and λl,j < λ(i), then λl,j = λ(i).

For j ∈ JN ,

if i = 0, then keep P0,j = P(j)∗(λ(i));

if P0,j ≤ P(j)∗(λ(i)) and λl,j < λ(i), then λl,j = λ(i).

if P0,j ≤ P(j)∗(λ(i)) and uj ≤ λ(i)P(j)∗(λ(i)), then uj = λ(i)P(j)∗(λ(i)).

if P0,j > P(j)∗(λ(i)) and λr,j > λ(i), then λr,j = λ(i).

Step 3 (Updating collaboration benefit and checking a termination condition)

Find utemp = max
{

uj, j ∈ JC ∪ JN

}
and set jtemp as the corresponding jammer’s index such that ujtemp = utemp.

If utemp ≥ umax, then update umax = utemp and jmax = jtemp.

For j ∈ Ss, if uj|λr,j − λl,j| < ε, then update Ss = Ss − {j} and Sa = Sa + {j}.

If Ss = ∅, then stop the procedure with selected jammer jmax and searched price λl,jmax .

Otherwise, i = i + 1 and continue to Step 4.

Step 4 (Finding the most plausible jammer and updating searching price)

Find j∗ such that j∗ = arg max
{

uj

(
λl,j+λr,j

2

)
, j ∈ Ss

}
.

Set λ(i) =
λl,j∗+λr,j∗

2 and repeat Step 1.

5. Numerical Examples

5.1. A Single Jammer

To illustrate the pricing mechanism proposed in this paper, we use the network configurations
shown in Figure 2. The location of a communication node appears in a Euclidean (x, y) coordinate.
Alice, Bob, Eve and JR are fixed at (0, 0), (d1, 0), (d1/2, d1/4) and (d1/2,−d1/4), respectively. Jack is
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assumed to move either from (0, 0) to (d1, 0) along with the horizontal line (as shown in Figure 2a)
or from (2,−1) to (2, d1/4) along with the vertical line (as shown in Figure 2b). The position of Jack
is denoted by (dJ,x, 0)(0 ≤ dJ,x ≤ d1) or (2, dJ,y)(−1 ≤ dJ,y ≤ d1/4). We assume a geometric path
loss law of γi = ai/dν

i where di is the distance of the respective link, ν is a path loss exponent and ai
represents the effect of the other fading components. We also assume that PA/σ2 = PJ/σ2 = 15 dB,
ωJ = 1 and Rs

AB = 0.1.

(a) (b)

Figure 2. Network models used in the simulation: (a) the jammer moves horizontally; (b) the jammer
moves vertically.

Figure 3a,b illustrates the optimal prices obtained in this paper when Jack moves horizontally
from Alice to Bob and vertically from (2,−1) to (2, d1/4), respectively. In Figure 3a, Jack in JC can
be attracted to the collaboration with a relatively low price, for example less than 0.8940, until it
reaches (4, 0). Beyond this point, higher prices can be possible. Jack in JN allows a relatively high
price compared to the price for JC. However, in Figure 3b, Jack in JN mostly requires a low price for
collaboration. When Jack moves along with the vertical line, the price goes down immediately after it
is closer to Eve than to JR, which means that the transmitting power contributes to jamming greatly,
and hence, the price would be low.

In Figure 4a,b, the resulting power allocation is provided for similar scenarios used (and thus,
for the prices obtained) in drawing Figure 3a,b, respectively. In Figure 4a, it is seen that around position
(2.6, 0), the whole power is allocated to send Jack’s own signal for which the prices might be low.
In Figure 4b, after Jack gets closer to Eve, the power allocated to send Jack’s own signal is increased
with relatively low prices as described in Figure 3b. This is because the power is more efficiently used
for jamming, and Jack enjoys low prices for sending its signal. However, if Jack goes too far from JR
(for example, above (−2, 4.6)), it is hard to enjoy the above favorable circumstances.

Figure 5a,b provides the utility values obtained by the collaboration, which is established by
the prices obtained in Figure 3a,b, respectively. In both of the figures, it is seen that if Alice and
jammers share CAS, then they have a significantly positive benefit at more positions than without CAS.
For Figure 5a, significantly positive benefit for the collaboration without CAS is possible if it is between
(2.4, 0) and (3.4, 0). With CAS, the range is widened to (1.0, 0) and (6.4, 0) in the tested scenario.
In Figure 5b, the collaboration without CAS cannot achieve a positive benefit if Jack is closer to JR than
to Eve. With CAS, there is no limitation on the collaboration. It is noted that the absolute values of the
utilities are hardly compared since scale factors for the rate and the power are given arbitrarily for
the simulation.
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Figure 3. Optimal prices. (a) the jammer moves horizontally; (b) the jammer moves vertically.
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Figure 4. Power allocation for the collaboration: (a) the jammer moves horizontally; (b) the jammer
moves vertically.
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Figure 5. Utilities obtained by the collaboration: (a) the jammer moves horizontally; (b) the jammer
moves vertically.

5.2. Multiple Jammers

To illustrate the behavior of optimal pricing, we randomly generate four jammers in JC (i.e.,
with CAS) and let each of them, at each time instant, move in the respective random direction of θ with
fixed distance r. Between two successive time instants (i.e., two successive movements), the moving
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directions are designated to have a correlation of 0.8. The distance step distinguishes two classes
of jammers: slow speed with r = 0.1 and high speed with r = 0.2. To test and compare, we use exactly
the same trajectories for jammers in JN with those simulated for jammers in JC. That is, along with
a trajectory generated in the simulation, two jammers (one from JC the other from JN) move together.

In Figure 6a,b, optimal UAB with each jammer at each time instant is illustrated. Jammers tested
are indexed as 1, 2, 3, 4 ∈ JC and 5, 6, 7, 8 ∈ JN , among which 1, 2, 5, 6 are low-speed jammers and
3, 4, 7, 8 are high-speed jammers. In Figure 6a, as time elapses from one to 20, optimal UAB payed by
the jammers with CAS is plotted according to the movement. At the beginning, Jammer 2 is the best
one that is willing to pay the most, and Alice would agree to the collaboration with Jammer 1. At Time
Instant 5, Jammer 1 would pay more than Jammer 2 and be possibly selected as the collaboration
partner until Time Instant 18. Jammers 3 and 4 have no chance in participating in the collaboration
and to access the channel to send their own data. In Figure 6b, the payment by jammers without CAS,
but with the same trajectories used, is plotted. In this group of jammers, Jammer 6 (on the same path
with Jammer 2) enjoys the collaboration until Time 16, and Jammer 8 takes it from Time 17 to 20.
Even on the same trajectories, the selection looks different. Jammer 1, the most frequently selected one
if it has CAS, hardly has found a chance for collaboration without CAS.
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Figure 6. Comparison of payment to Alice from different jammers: (a) jammers from JC; (b) jammers
from JN .

Figure 7a,b summarizes the selection result from Jammers 1 through 8 investigated in Figure 6a,b.
In Figure 7a, the selected jammer is illustrated at each time instant. Until Time 3, Jammer 6 without
CAS is selected. After Time 4, Jammer 1 and then Jammer 2 are selected, both of which have CAS.
The resulting payment is illustrated in Figure 7b. It shows a 6.39%, 9.13% and 28.55% increase of the
utility by Alice compared with a single jammer case of Jammers 1, 2 and 6, respectively.

Figure 8a,b illustrates the convergence behavior of ICSP. ICSP with 8, 12, 16 potential jammers
is tested, respectively. In Figure 8a, umax (an updating variable that indicates the current greatest
payment) is shown as iteration proceeds. umax, as expected, monotonically increases and almost
approaches its maximum within around 15, 50 and 82 iterations with 8, 12 and 16 jammers, respectively.
It is also seen that the increasing number of jammers provides a greater umax, which is increased by
24.53% and 37.67% with a 50% and 100% increase of jammers from eight, respectively. Figure 8b shows
the maximum of convergence-testing metric uj|λr,j − λl,j| used in ICSP. If max{uj|λr,j − λl,j|} < ε,
then ICSP terminates. It is seen that all three examples tested are terminated within around 23 iterations
for ε = 10−4 and around 30 iterations for ε = 10−6 with eight jammers.
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Figure 7. Multiple-jammer effects: (a) selected jammer by the greedy policy; (b) utility achieved by
Alice with multiple jammers.
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Figure 8. Convergence behavior of ICSP: (a) payment behavior; (b) convergence speed.

Figure 9a,b provides the CDF of the number of iterations required to achieve target ε’s. Figure 9a,b
tests the different numbers of jammers, 20 and 40, respectively, half of which are jammers with CAS
and the other half without CAS. Instant collaborations from 10,000 random samples are used for each
of the CDFs. With 20 jammers, more than 90% of tests are terminated within 78 and 401 iterations for
ε = 10−3 and 10−6, respectively. Furthermore, with 40 jammers, more than 90% of tests are terminated
within 113 and 734 iterations, respectively.
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Figure 9. CDF of the number of iterations required for convergence of ICSP: (a) 20 jammers (b) 40 jammers.
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5.3. Comparative Result

In this subsection, we numerically compare the proposed method with an existing method that
provides an optimal power allocation for friendly jammers [5] (referred to as OPF in the following) in
terms of sum-rate (the sum of Alice’s secrecy rate and Jack’s data rate). The proposed method does
not intend to maximize the sum-rate, but provides data rates that are determined by an optimal price.
On the other hand, the method in [5] maximizes the secrecy rate between Alice and Bob, but does not
allow Jack’s usage of the bandwidth. A direct comparison between the two methods is not fair. Thus,
the purpose of this comparison is to provide an insight about how the proposed pricing allocates the
limited radio resource between Alice and Jack compared with the existing optimal power allocation
that just maximizes Alice’s data rate.

Figure 10a,b compares the sum-rates provided by the optimal price given in this paper and OPF
in [5]. For Figure 10a, Jack moves horizontally from Alice to Bob as used in Figure 3a. In this case,
OPF provides its maximal rate of 0.12 at (3, 0), from which the rate goes down since Jack approaches Bob.
The proposed pricing achieves maximal sum rates of 2.81 and 2.57 at (3.4, 0) and (3, 0) with and
without CAS, respectively, when the secrecy rate target Rs

AB = 0.1. When Rs
AB = 0.12, the proposed

method achieves maximal sum rates of 2.69 and 2.14 at (3.4, 0) and (3, 0) with and without CAS,
respectively. It is thus seen that the sum-rate achieved by the proposed method is significantly greater
than the sum-rate by the optimal power allocation if the collaboration is established. The collaboration
however can fail when large Rs

AB is required especially without CAS. For Figure 10b, Jack moves
vertically from (2,−1) to (2, d1/4) as used in Figure 3b. In this case, OPF provides its maximal rate of
0.39 at (2, 2.2), to which the rate goes up since Jack gets close to Eve. The proposed pricing achieves
maximal sum rates of 1.89 and 2.28 at (2, 0) and (2, 0.4) with and without CAS, respectively, when the
secrecy rate target Rs

AB = 0.1. When Rs
AB = 0.39, the proposed method achieves maximal sum rates of

1.15 and 0.65 at (2, 0.2) and (2, 2) with and without CAS, respectively. In this figure, it is also seen that
the proposed method can achieve the greater sum-rates if the collaboration is possible.
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Figure 10. Comparison of sum-rates with a single jammer. (a) The jammer moves horizontally;
(b) the jammer moves vertically.

Figure 11a,b compares the sum-rates when multiple jammers exist, which randomly move
according to the similar principle described in Subsection 5.2. In the simulation, we assume Rs

AB = 0.3.
In Figure 11a, the number of jammers is assumed to be four with and without CAS, respectively.
OPF provides its maximal rate of 0.79 at the elapsing of Time 6, at which the proposed method
achieves 0.79 and 0.58 with and without CAS, respectively. On the other hand, the proposed method
achieves the maximum sum-rate of 2.8 and 1.05 at Times 20 and 13 with and without CAS, respectively.
In Figure 11b, the number of jammers is assumed to be 10 with and without CAS, respectively.
In this figure, OPF provides its maximal rate of 0.82 at the elapsing of Time 11, at which the proposed
method achieves 2.09 and 1.19 with and without CAS, respectively. The proposed method achieves
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the maximum sum-rate of 3.05 and 1.28 at Times 17 and 14 with and without CAS, respectively.
In comparison with Figures 10a,b and 11a,b, it is seen that both of the methods enjoy a diversity
gain from multiple friendly jammers. If the number of friendly jammers increases, the probability of
collaboration also increases, and the proposed method could have a greater chance to achieve a greater
sum-rate since it allows secondary usage of the radio resource by the jammers.
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Figure 11. Comparison of sum-rates with multiple jammers. (a) When the number of jammers is four;
(b) when the number of jammers is 10.

6. Conclusions

This paper has provided a pricing model to explain and encourage the proposed collaboration
between Alice and friendly jammers. Optimal price and power allocation are analyzed and presented
in closed-form. In wireless sensor networks, distributed sensor nodes often suffer from a lack of
bandwidth and then can work as a jammer to share the bandwidth by the proposed collaboration.
Greedy use of the bandwidth by jammers is limited by pricing the power used to send their own signal.
For a multiple-jammer scenario, ICSP is provided for a practical implementation of the price-searching.
The convergence is reached within 78 to 734 iterations depending on the number of participating
jammers and the termination condition. To reduce the speed of finding a price, we limit the iterations
by 10 and 20, respectively, motivated by Figure 8a and find that the average utility loss is only around
6% for both cases. Especially when the number of jammers is 40, the loss is 1.7% and 1.6%, respectively.
This implies that the early termination does not cause significant loss in Alice’s utility and can be
a promising method for massive sensor networks where a number of friendly jammers can exist.
When considering 5 ms to be a typical period of radio scheduling in modern communication systems,
a new good price can be searched within 50 to 100 ms for distributed multiple jammers. Finally,
the channel assumption used in the simulation is somewhat limited, and we leave it for future
study to apply more realistic fading environments such as, for example, correlated composite
Nakagami-m/Gamma fading channels used in [14].
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Abbreviations

The following abbreviations are used in this manuscript:

CAS Common artificial signal
Eves Eavesdroppers
ICSP Iterative collaboration search procedure
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