
sensors

Article

GNSS/Electronic Compass/Road Segment
Information Fusion for Vehicle-to-Vehicle
Collision Avoidance Application

Rui Sun 1,2,* ID , Qi Cheng 1, Dabin Xue 1, Guanyu Wang 1 and Washington Yotto Ochieng 1,3

1 College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
qi_cheng@outlook.com (Q.C.); xdb@nuaa.edu.cn (D.X.); guanyu_wang@outlook.com (G.W.);
w.ochieng@imperial.ac.uk (W.Y.O.)

2 State Key Laboratory of Geo-Information Engineering, Xi’an 710054, China
3 Centre for Transport Studies, Imperial College London, London SW7 2AZ, UK
* Correspondence: rui.sun@nuaa.edu.cn; Tel.: +86-25-5211-6650

Received: 24 September 2017; Accepted: 15 November 2017; Published: 25 November 2017

Abstract: The increasing number of vehicles in modern cities brings the problem of increasing
crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to
improve safety and reduce congestion is collision avoidance. This safety critical application requires
sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability,
to detect an impending collision and issue a warning or intervene in the case that the warning is not
heeded. Because of the challenging city environment, to date there is no approved method capable of
delivering this high level of performance in vehicle state estimation. In particular, the current Global
Navigation Satellite System (GNSS) based collision avoidance systems have the major limitation
that the real-time accuracy of dynamic state estimation deteriorates during abrupt acceleration and
deceleration situations, compromising the integrity of collision avoidance. Therefore, to provide the
Required Navigation Performance (RNP) for collision avoidance, this paper proposes a novel Particle
Filter (PF) based model for the integration or fusion of real-time kinematic (RTK) GNSS position
solutions with electronic compass and road segment data used in conjunction with an Autoregressive
(AR) motion model. The real-time vehicle state estimates are used together with distance based
collision avoidance algorithms to predict potential collisions. The algorithms are tested by simulation
and in the field representing a low density urban environment. The results show that the proposed
algorithm meets the horizontal positioning accuracy requirement for collision avoidance and is
superior to positioning accuracy of GNSS only, traditional Constant Velocity (CV) and Constant
Acceleration (CA) based motion models, with a significant improvement in the prediction accuracy
of potential collision.

Keywords: ITS; GNSS; autoregressive motion model; particle filter; collision avoidance

1. Introduction

With increasing traffic in cities, crashes are becoming a major safety concern. In particular,
according to the U.S. National Highway Traffic Safety Administration (NHTSA), car accidents dominate
crashes in cities, occurring every minute of the day [1]. It has been argued that the development and
implementation of early warning systems could have the impact of reducing crashes. This could be
achieved through the collision avoidance application or service of Intelligent Transport Systems (ITS).

Research to date has explored a number of aspects of collision detection. Araki et al. [2,3]
developed a collision-avoidance system based on an on-board laser radar and a Charge Coupled
Device (CCD) camera and applied fuzzy logic to evaluate the potential for a collision using the relative
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distance, velocity and acceleration of both vehicles. However, the sensors are weather sensitive and do
not support collision detection in all directions. The former also results in reduced system performance.
In addition, the work is preliminary without quantified field test results in terms of collision detection
accuracy. Risack et al. [4] developed a lane-keeping assistant video-based system with the capability for
collision avoidance by using vehicle position and the time to cross a lane. By evaluating different lane
departure detection algorithms, the blinker and braking state as well as steering activity, an acoustic
signal is transmitted to the driver to warn of an impending collision. However, the performance of
the video-based system is also affected by the weather. Furthermore, no field test results have been
reported. Ujjainiya and Chakravarthi [5] proposed a cost-effective vehicle collision avoidance system
based on vision sensors and image processing algorithms. Although it is argued that the model could
effectively detect the vehicle edge, sensitivity to the weather is still a major issue, in addition to a lack
of evidence on the performance of the system. Ueki et al. [6] developed a collision avoidance system
by inter-vehicle communication technology. This research focused on the vehicle communication
network, without addressing the quality of the real-time states of vehicles, which are critical inputs for
the detection of collision.

Ferrara and Paderno [7] investigated the possibility of designing a driver assistance system
for cars capable of making a decision between an emergency braking and a collision avoidance
manoeuvre and generating an appropriate automatic action, as long as a collision is likely to occur
within 1 s. This research mainly focussed on the control mechanism for intervention, assuming
that the vehicle state is error free, which is not realistic. Huang and Tan [8] discussed error
propagation and robustness of a cooperative collision warning system with an Extended Kalman
Filter (EKF) based trajectory prediction algorithm for vehicles equipped with a Differential Global
Positioning System (DGPS). This paper only analysed the effect of loss and latency/delay issues
related to communication on collision avoidance. The quality of vehicle state parameters was not
addressed. In addition, the traditional Constant Velocity (CV) model was with the EKF based trajectory
prediction. The CV model does not account for changes in vehicle motion. Ong and Lachapelle [9]
proposed a Global Navigation Satellite System (GNSS) based vehicle-pedestrian and vehicle-cyclist
crash avoidance system. They analyzed the effectiveness of different types of GNSS, including
real-time kinematic (RTK) GNSS, DGPS and single point positioning based Global Positioning System
(GPS). The test results showed that it is feasible to use GNSS for collision avoidance. Although the
work addressed vehicle/pedestrian collision avoidance, the idea is transferable to and adaptable
for vehicle-to-vehicle (V2V) collision avoidance. The research also indicated that GNSS only based
method is not reliable enough for collison avoidance and recommended its integration with other
sensors. Toledo-Moreo and Zamora-Izquierdo [10] developed a GPS/IMU/spatial data integrated
lateral and longitudinal information supported collision avoidance system. In this system, the vehicle
state prediction is realized by a Bi-Dimensional Interactive Multiple Model (2D-IMM) filter in which
longitudinal and lateral motions of the vehicle are distinguished and different maneuvering described
by different kinematic models. It is argued that the designed algorithm is effective at detecting the
manouvers of the vehicles under the designed scenarios by choosing an appropriate motion model.
However, model mismatch is a major limitation.

From the literature above, weather sensitivity and the lack of detection in all directions are critical
limitations for vision and radar based collision detection methods [2–5]. On the other hand, advanced
RTK GNSS based technology, in principle capable of sub-meter positioning accuracy, augmented
with data from other sensors to provide higher integrity, continuity and availability, has the potential
to provide vehicle states estimation to support high performance collision avoidance in all weather
conditions and in all directions. Through appropriate communication between vehicles equipped
with GNSS-based sensors, position and real-time dynamic information of the relevant vehicles can
be used for the detection of an impending collision and avoidance measures evoked. However,
for collision detection, there are specific scenarios that require the real-time accuracy of dynamic state
estimation to be improved [9]. In particular, state estimation accuracy deteriorates during abrupt
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acceleration and decelerations situations, which partly is the result of the current vehicle motion model
limitations [6–8,10].

In summary, in order to address the limitations of weather sensitivity, lack of multi-directional
detection, motion model limitations and low performance of the current collision detection approaches
and provide the required level of performance for state estimation in terms of accuracy, integrity,
continuity and availability, this paper develops a novel Particle Filter (PF) Autoregressive (AR) model
based GPS/electronic compass/road segment data fusion algorithm for V2V collision avoidance.
The integration of GNSS with electronic compass and road segment data provides higher performance
vehicle state estimation, which is weather insensitive and could support collision detection in all
directions. The AR based motion model is adaptive based on historical motion states and therefore
addresses the limitations of the traditional Constant Velocity (CV) and Constant Acceleration (CA)
based motion models.

The contributions of the paper are as follows.

(1) A new PF based fusion model for the real-time vehicle state estimation employing GNSS,
electronic compass and road segment.

(2) A new AR based Adaptive high precision vehicle motion model for use with the PF algorithm
(3) Specification and execution of scenarios for simulation and field experiments to demonstrate the

superiority of the AR vehicle motion based PF fusion algorithm over GNSS only and PF based
fusion with traditional CV and CA vehicle motion models. The performance is measured in terms
of the accuracy of the vehicle state estimation and prediction accuracy of potential collision.

The rest of the paper is organized as follows. The fusion algorithm for vehicle real-time state
estimation is presented in Section 2. The simulation and field experiments for the evaluation of
the proposed algorithm are presented and discussed in Sections 3 and 4, respectively. The paper is
concluded in Section 5.

2. Fusion Algorithm-Based V2V Collision Avoidance System

The ability to estimate real-time state of the vehicle is fundamental for collision avoidance and is
therefore, an important requirement for the technology chosen. In this case, GNSS based technology
with its capability for high accuracy, real-time performance and ease of integration with complementary
terrestrial sensors and spatial data, presents a potential solution to deliver state estimation with the
required navigation performance (RNP). In this section, the RNP for collision avoidance and the
approaches proposed in this paper for state estimation and collision prediction are presented.

2.1. Requirement Navigation Performance

Accuracy, integrity, continuity and availability are the main parameters to measure the
performance of a navigation system [11,12]. Accuracy refers to the statistical distribution (at the
95th percentile) of position error. Integrity is the ability of a system to provide timely and valid
warnings if the position error exceeds a specified alarm limit. Continuity risk is the probability that
a service, available at the start of an operation, is interrupted during that operation. Availability
measures a navigation system’s operational economy—a service is available if the accuracy, integrity
and continuity requirements are satisfied. Before selecting an appropriate navigation system to track
vehicle location over time, an assessment of whether the candidate systems satisfy the RNP for collision
avoidance systems is required. To date, research has focused on the quantification of the accuracy
requirement. The targets for the other parameters (acknowledged to be stringent) are still to be
agreed [11]. Therefore, this paper focuses on accuracy and adopts accuracy specified in the SaPPART
white paper of 0.5–1 m [12].
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2.2. Integrated Vehicle State Estimation Framework

The main processes or steps of the proposed algorithm are presented in Figure 1. Firstly,
the collected information from real-time RTK GNSS (positioning and velocity) and electronic compass
sensor (heading) for both vehicles as well as the corresponding road segment information (lane
geometry data) are used to determine initial state, see Equation (1). The AR based vehicle motion
model is then integrated with the vehicle state to feed the PF based fusion algorithm to generate
real-time state estimations as described in Section 2.3. The state estimates are then used to predict a
potential collision with the Time to Collision (TTC) based collision prediction model and generate the
prediction accuracy, as described in Section 2.4.
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Figure 1. High level processes for the Global Navigation Satellite System (GNSS)/compass/road
segment data fusion based vehicle-to-vehicle (V2V) collision avoidance system.

2.3. PF-AR Fusion-Based Vehicle Real-Time State Estimation Model

The vehicle state parameters of time, position and velocity are required for the prediction or
detection of a potential collision. Therefore, it is critical to employ the technologies that deliver the
RNP in terms of accuracy, integrity, continuity and availability of the relative vehicle states. Table 1
presents the error budget arising from the sensor output and related uncertainties derived from the
accuracy requirement for the collision avoidance in [12].

Table 1. Error budget for the related sources.

Sources Positioning Error (Standard Deviation, 2σ)

RTK GNSS dynamic mode 0.3 m–0.7 m
Electronic heading error 0.1 m–0.3 m

Road segment error 0.05 m–0.1 m
Total positioning error budget 0.32 m–0.77 m

The error budget indicates that the required accuracy can be met, assuming that there are no
significant GNSS outages that would result in the deterioration in accuracy due to the errors in the
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electronic compass and spatial data. This is a key aspect of the measurement of the performance for
the state estimation algorithm.

RTK GNSS is based on the principle of differential GPS, which can provide decimeter level
positioning accuracy in dynamic mode. A PF based fusion algorithm is designed with the AR motion
model to integrate data from RTK GNSS, electronic compass and road segment information with the
loosely coupled fusion method. The PF is a type of non-linear filter, which employs a set of weighted
samples (particles) to represent a posterior Probability Density Function (PDF), is adaptive to arbitrary
distribution and therefore, superior to other non-linear filters, such as EKF, in many state estimation
applications [13,14]. In this paper, PF based GNSS/electronic compass/road segment fusion model for
horizontal vehicle state estimation is specified as follows.

The defined state vector includes the state from the sensor measurements parameter
s = (EGNSS NGNSS vGNSS θCompass) and the state for the road segment parameter r = (lSeg dSeg βSeg)

for a single vehicle is given by:

x =
[
EGNSS NGNSS vGNSS θCompass lSeg dSeg βSeg

]T (1)

where

â EGNSS, NGNSS are the Easting and Northing coordinates (in meters) of the vehicle’s geometric
centre in the local coordinates system;

â vGNSS, is the heading velocity of the vehicle output from GNSS sensor;
â θCompass, is the heading of the vehicle from compass sensor output;
â lSeg, is the longitudinal displacement of the vehicle in lane segment coordinates
â dSeg, is the lateral displacement of the vehicle in lane segment coordinates
â βSeg, is the tangent angle between the tangent line of the lane central line and the Easting-

axis coordinates.

The road segment is created based on the road database information. The generation of the lane
geometry data for the road segment has been introduced in previous literatures [15–17]. One road
segment contains several lane segments with lane geometry information. Figure 2 presents the
geometric relationships for point Q in the single lane segment model. E-N and L-D are the defined
local and lane segment coordinate systems, respectively. Assuming that Q is the location of the vehicle
central point, the corresponding lateral and longitudinal displacements and tangent angle dSeg , lSeg
and βSeg, respectively. In this paper, we used straight lane segment model, therefore, βSeg is a constant
value for each lane segment.
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The main steps for the PF-AR based fusion algorithm are presented below.

(1) Initialization

The parameters in the PF initialization, are expressed as:

xi
t ( t = 0 . . . n; i = 1 . . . n) (2)

where xi
t, are the parameters in the state vector (1) at the time epoch t with the particle number i.

The filter operation starts with the initialization of the particles EGNSS
i
0, NGNSS

i
0 of the vehicle

state vector. The initial coordinates EGNSS
i
0, NGNSS

i
0 are generated following a Gaussian distribution

with the first acceptable GNSS estimation as the mean value with a standard deviation from the a
posteriori solution statistics. The initial velocity vGNSS

i
0 is 0, since at the start the vehicle is assumed

to be static. The initial heading is assumed to be along the centre line direction of the road segment,
in which the vehicle is located and thus the values for θCompass

i
0 is set as the corresponding βSeg. The PF

weight assigned to the parameters in the state vector x are noted as Dw(x), determined from the PDF
according to expression (21).

(2) Filter Prediction

A vehicle motion model is required for the prediction stage of the filter. Considering the various
maneuvers that could be made when a vehicle is moving, the assumption of a constant motion model
is not always valid. Therefore, the traditional CV and CA models, which by definition do not adapt to
variations in vehicle motion, could result in excessive errors in vehicle state estimation.

In this paper, an AR based adaptive motion model is constructed to predict vehicle motion.
The AR model is a linear prediction model. Contrary to the traditional motion models, which only
use the information of the latest epoch, the AR based model uses current and historical data to better
predict the value at a specific future point in time, e.g. point N. The AR model is expressed as:

Pt+1 = ϕ1Pt + ϕ2Pt−1 + ϕ3Pt−2 + . . . + ϕpPt−p+1 + at (3)

where Pt is the historical data, at is the noise and ϕj(j = 1, 2, . . . , p) is the regression coefficient.
The estimation of the coefficients in AR model could be achieved as follows.
The matrix of the predicted samples based on their historical data is noted as s in (4).

s = [Pt+1 Pt+2 . . . PN ]
T (4)

The matrix containing the noise of the model is noted as γ in (5)

γ = [at+1 at+2 . . . aN ]
T (5)

The matrix containing the regression coefficients is noted as ϕ in (6)

ϕ =
[
ϕ1 ϕ2 . . . ϕp

]T (6)

The transition matrix A could be expressed as (7)

A =


Pt Pt−1

Pt+1 Pt
· · · Pt−p+1

Pt−p+2
...

. . .
...

PN−1 PN−2 · · · PN−p

 (7)

Therefore, the AR model could be written as:

s = Aϕ + γ (8)

The Least Square (LSQ) solution for the regression coefficient matrix ϕ, noted as ϕ̂, could be
calculated as follows.



Sensors 2017, 17, 2724 7 of 18

ϕ̂ =
(

AT A
)−1

ATs (9)

In our model, the prediction of the s vector is undertaken using Equations (10)–(13). Our research
has shown that the most proper number of historical data could be obtained when t = 50
(i.e., The previous 50 historical data for the AR model operation), by considering the calculation
volume and estimation accuracy. Therefore, we set t = 50 for the AR operation in the simulation and
filed test.

si
t+1 =


EGNSS

i
t+1

NGNSS
i
t+1

vGNSS
i
t+1

θCompass
i
t+1

 = Ai
t ϕt + at (10)

Ai
t =


EGNSS

i
t EGNSS

i
t−1 . . . EGNSS

i
t−p+1

NGNSS
i
t NGNSS

i
t−1 . . . NGNSS

i
t−p+1

vGNSS
i
t vGNSS

i
t−1 . . . vGNSS

i
t−p+1

θCompass
i
t θCompass

i
t−1 . . . θCompass

i
t−p+1

 (11)

where Ai
t is the matrix for the states from time epoch t – p + 1 to t.

ϕt = [ϕXt ϕYt ϕvt ϕθt ]
T (12)

where ϕXt , ϕYt , ϕvt and ϕθt are the regression coefficients for EGNSS
i
t, NGNSS

i
t, vGNSS

i
t and θCompass

i
t.

at =
[
axt ayt avt aθt

]T (13)

where axt , ayt , avt , aθt are the random noise for the EGNSS
i
t, NGNSS

i
t, vGNSS

i
t, θCompass

i
t in the time

epoch t.
The difference between the states in time epoch t + 1 and time epoch t is

∆i
st = [∆i

XGNSSt
, ∆i

YGNSSt
, ∆i

vGNSSt
, ∆i

θCompasst
]
T
= si

t+1 − si
t (14)

Therefore, the prediction for the lane segment related parameters l are expressed as:

lSeg
i
t+1 = lSeg

i
t + cos

(
βSeg

i
t

)
∆i

XGNSSt
+ sin

(
βSeg

i
t

)
∆i

YGNSSt
(15)

dSeg
i
t+1 = dSeg

i
t + sin

(
βSeg

i
t

)
∆i

XGNSSt
− cos

(
βSeg

i
t

)
∆i

YGNSSt
(16)

βSeg
i
t+1 ≈ βSeg

i
t (17)

(3) Weighting and Filter Update

The valid predictions are only based on the valid current particles. Therefore, validity checking
is applied only to the current particles. In order to fully use the constraints of the constructed road
segment information, the validity of lSeg

i
t+1 and dSeg

i
t+1 are first checked using Equation (18) to

determine if the vehicle is within the same lane segment in a given time interval.∣∣∣lSeg
i
t+1

∣∣∣ < L and
∣∣∣dSeg

i
t+1

∣∣∣ < HD (18)

where L is the lane segment length and HD is half the length of the width of the lane segment.
If (18) is satisfied, the predictions in (15) and (16) are accepted and the segment number is the

same as the previous one. However, if (18) is not satisfied, the two possible cases emerge: (1) the
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vehicle is moving from the current segment to the next; and (2) the vehicle is not within any lane
segment. For the former case, the lane segment is updated, while for the latter case, the particle is
considered as invalid and weighted as 0, which also indicates the invalidity of the particle from the
previous epoch.

The weighting and update of the map segment parameter are followed by the sensor measurement
parameter. The validity of GNSS position estimates is first checked based on the Receiver Autonomous
Integrity Monitoring (RAIM) and if valid, used to adjust the predicted particles.

ei
x = mxt+1 − xi

t+1 (19)

where the ei
x is the difference between the real-time measurement vector mxt+1 for the sensor

measurement parameters and the predicted particles of the parameters in the state vector at epoch
t + 1. The real-time measurement parameters are generated by the relevant sensors, while the road
segment parameters are calculated based on the sensor readings and transformed from the local to the
lane segment coordinate system.

As it is known that the normal distribution is parametrized in terms of the mean and the variance,
denoted by µ and σ2 respectively, giving the family of densities as follows [18].

f
(

x; µ, σ2
)
=

1√
2πσ

exp(− (x− µ)2

2σ2 ) (20)

We define Dw
(

xi
t+1
)

as the weight distribution for the particle i for the parameters in the state vector x
in the time epoch t + 1, σ is the standard deviation of the estimator. The ei

x is the difference between
the real-time measurement vector mxt+1 for the sensor measurement parameters and the predicted
particles of the parameters in the state vector at epoch t + 1, which is calculated in Equation (19) .
We substitute Equation (19) to Equation (20) to obtain the Equation (21)

wi
t = Dw

(
xi

t+1

) 1√
2πσ

exp(−∑ ei
x

2

2σ2 ) (21)

Finally, the estimated state vector x is calculated by the average of the filter estimated
particle values.

For the next iteration, the weights of the particles are modified based on weight
distribution Dw

(
xi

t+1
)

and normalization and Sequential Importance Resampling (SIR) based
resampling will be carried out [19].

2.4. Collision Avoidance

As stated in [8] potential collisions can be predicted based on the states of proximate vehicles.
Therefore, the output of PF-AR estimated vehicle states from Section 2.3 are used as the input to the
collision prediction model. In Section 2.4, Time-to-Collision (TTC), which is one of the most common
indicators to determine dangerous situations, is introduced.

The definition of TTC is based on the time taken for the two vehicles to collide based on the
vehicles’ current relative speed and headings. The procedure to calculate the TTC between two vehicles
is presented in [20]. The vehicles states are represented by their known positions, speeds and directions
(Figure 3). The calculation of the cross over or intersection point of the two vehicles is, given by the
following expressions:

p+ =
(q2 − q1)− (p2tan(∅2)− p1tan(∅1))

tan(∅1)− tan(∅2)
(22)

q+ =
(p2 − p1)− (q2cot(∅2)− q1cot(∅1))

cot(∅1)− cot(∅2)
(23)

The position of two vehicles are (p1, q1) and (p2, q2). The speeds and directions of the two vehicles
are v1, v2 and ∅1, ∅2 respectively. And the expected intersection point is (p+, q+). Actually, as the
vehicles are not just single points, the vehicles will collide before the expected collision point. Note that
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firstly, the vehicle states refer to a single point on each vehicle (need to consider both size of the vehicle
and type of collision) and secondly are assumed in this case to be error-free. Both of these should be
accounted for in more sophisticated models.
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Once the intersection is computed, the time for each vehicle to arrive at the intersection point is
obtained from distance and velocity. The TTC is obtained when the two times are equal [20]. To account
for vehicle size and state estimation error, a buffer value ε is introduced in the TTC. The larger value
of ε need to be set if the vehicle size or the state estimation error is bigger. The larger value for ε lead to
more conservative behaviors by the algorithm. However, if it is too conservative, there will be negative
effects, like annoying and desensitizing the driver. Therefore, ε needs to be tuned to achieve the best
possible driver experience. The components of TTC are Time-to-Alarm (TTA), the maximum time
that elapses after collision detection for the driver to be warned of an impending collision, Driver
Reaction Time (DRT) and the Stopping Time (ST) which is the temporal aspect of Stopping Distance
(SD) which is related to vehicle’s response time and road conditions. Considering the cases from
previous investigations, DRT is usually between 1.5 and 2 s [21].

For safe detection of collision, the following condition should be satisfied.

TTA + DRT + ST + ε ≤ TTC (24)

Vehicle stopping distances and times are also crucial to determine the time it takes to stop following
the application of the brakes. This is related to the vehicle model, road condition and real-time speed
at the moment braking is applied. In most of real systems and for simplicity SD is calculated instead of
stopping time [22]. Therefore, SD is adopted in this paper and the relationship between the stopping
distance and time are calculated in (25). Assuming linearly decreasing speed while braking, then the
stopping time can be computed as follows [9]:

t =
2S
v0

(25)

where t is the stopping time, S is the SD and v0 is the pre-braking speed.

3. Simulation

The performance of the proposed PF-AR data fusion based collision prediction was initially
assessed by simulation. Comparisons are made with traditional PF data fusion algorithms employing
the CV and CA vehicle motion models.

The vehicle reference trajectory and measurements (RTK GNSS positions, electronic compass and
road segment data) are simulated in Matlab. The reference vehicle trajectory is first generated by the
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CA and CV based motion models. After the reference trajectory was generated, various errors were
added to the reference to generate the simulated RTK GNSS data and electronic compass data for the
desired error budget, see Table 2. In addition, the road segment data were generated using Matlab
with the grid accuracy of 0.05–0.1 m.

Table 2. Simulated trajectory and related noise added.

Simulated Data Noise Noise Value Range

RTK GNSS Output

E, N axis
coordinates

White Gaussian Noise~N(0, 0.52) −1.6793~1.3728 m
Uniformly distributed noise~U(−0.25, 0.25) −0.2488~0.2500 m

velocity White Gaussian Noise~N(0, 0.22) −0.5228~0.5546 m/s
Uniformly distributed noise~U(−0.1, 0.1) −0.0998~0.0999 m/s

Electronic compass Heading data White Gaussian Noise~N(0, 0.12) −0.3154~0.2658 rad
Uniformly distributed noise~U(−0.05, 0.05) −0.0497~0.0498 rad

Table 3 presents the data for three test cases in an urban environment. From previous data
collected in city environments, GNSS outages typically range from 1 to 7 s [23]. Therefore, an outage of
7 s is generated for each test case to investigate if the performance of the designed algorithm meets the
accuracy requirement for collision avoidance during GNSS outage. For each test case 1500 collisions
were simulated. As all the simulated cases involved collisions, the focus here is therefore, on the ability
of the proposed algorithm to detection collisions and not false detection. Furthermore, for each type of
collision, a number of velocity scenarios were generated. For example, for rear-end collision, the two
scenarios were considered firstly when the leading vehicle A is moving at a constant velocity and
collides with the leading vehicle B which is sudden decelerating. The second scenario is when the
leading vehicle A is abrupt decelerating while the following vehicle B is abrupt accelerating. A collision
was simulated assuming that the distance between the two vehicles is 4.5 m, by considering the general
car size.

Table 3. Simulation test cases.

Test Case
(TC) Data Rate

Number of Samples
for Each Vehicle Collision Type Gap Duration Number of

Collision
Vehicle A Vehicle B

TC1 10 Hz 667 667 Head-on collision 7 s 1500
TC2 10 Hz 666 666 Intersection perpendicular collision 7 s 1500
TC3 10 Hz 692 692 Rear-end collision 7 s 1500

The horizontal positioning accuracy for both vehicles from the proposed PF-AR based fusion and
the traditional CV and CA based algorithms, are compared with the reference trajectory to determine
if the accuracy requirement of 0.5–1 m (95%) can be fulfilled. A summary of the position fixes from
PF-AR, PF-CV and PF-CA are shown in Table 4. It is shown that the PF-AR estimated results improve
the accuracy of the positioning significantly compared to the CV and CA scenarios in these three test
cases. The 95% percentile accuracy in the head-on collision test case is 0.31 m (95%) for the PF-AR
algorithm and 1.18 m (95%) and 1.09 (95%) for the CV and CA based scenario. In the intersection
perpendicular collision case, the positioning accuracy is 0.30 m (95%) for the PF-AR algorithm, 1.21 m
(95%) in the CV scenario and 1.04 m (95%) for CA. In the rear-end collision test case, the positioning
accuracy is 0.28 m (95%) for the PF-AR algorithm, 1.13 m (95%) for CV and 0.92 m (95%) for CA.
Overall, the PF-AR algorithm has significantly improved the positioning accuracy compared to the
other traditional motion model based scenarios.
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Table 4. The position fixes results for different motion models.

Accuracy Percentage (95%)
Motion Model

CV CA AR

TC1 1.18 1.09 0.31
TC2 1.21 1.04 0.30
TC3 1.13 0.92 0.28

Figures 4–6 show the benefit of the fusion models compared to the measurements. It is clear that
the fusion models could bridge the gaps during the three test cases and that the proposed AR model
based fusion has the highest accuracy among the other traditional CV and CA motion model based
fusion. It is also noted that, during the GPS outage, the AR based fusion still performs a high accuracy
while the CV and CA based fusion models diverge.
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The simulation results of the prediction accuracy based on different positioning algorithms are
shown in Figure 7. The percentage of correctly predicted collisions is displayed as a function of time
before the collision. It can be seen that the AR based model greatly improves the collision prediction
performance, when compared to CV and CA based fusion models. Incidentally, the AR based method is
the only one that meets the accuracy requirement 0.5 m (95%). The high positioning accuracy together
with the AR based algorithm, which has full use of historical information, results in a relatively high
and stable collision avoidance prediction accuracy ranging from 80% (6 s before collision) to 100% (1 s
before collision). It should be noted that collision prediction can be determined for any TTC and that a
threshold value is required for collision avoidance. This threshold can be determined using Equation
(24) based on the values assigned to the TTA and DRT and the calculated values of ST and ε.
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4. Initial Field Test and Results Analysis

A field experiment was carried out to validate the proposed GNSS/electronic compass/road
segment information fusion algorithm for V2V collision avoidance. The test was designed in three
stages: (1) equipment set-up and data collection (Section 4.1); (2) comparison of the proposed PF-AR
fusion algorithm with other traditional motion model based algorithms for the high-precision vehicle
state estimation and assessment of the performance of the algorithms for the prediction accuracy of
potential collision (Section 4.2).

4.1. Equipment Set-up and Data Collection

The experimental site used is close to the Lincheng industrial park in Zhoushan City, Zhejiang
Province, China. The routes of the two vehicles and the equipment installed are shown in Figures 8 and 9
respectively. The GNSS and electronic compass data were captured from 15:15 to 16:10 in (Beijing Time),
for the scenarios rear-end, intersection perpendicular and head-on collision scenarios. The 3 scenarios
are shown in Figure 10 and defined in Table 5. For the collision avoidance application, the test vehicles
were driven at speeds ranging from 20 km/h to 40 km/h and the data collected at 10 Hz. The data
derived from the experiment were:

(1) The reference states (position, velocity and heading) data for both vehicles, post-processed from
the on-board RTK GNSS and high grade IMU integration (from I-Mar RT-200) as well as the
driving and collision point information recorded by a video;

(2) The RTK GNSS positioning and velocity data for both vehicles, from the ComNav GNSS RTK
network and heading of both vehicles from Hemisphere electronic compass.

(3) Road Centreline data, collected by driving a vehicle equipped with an integrated GNSS RTK/high
grade IMU, along the road centreline. The data captured were post-processed to extract the
reference centreline. Base on the road centreline, the lane centreline and lane segment information
could be defined.
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Figure 10. Scenarios designed for the test: (a) rear-end collision; (b) intersection perpendicular collision;
(c) head-on collision.

Table 5. Definition of scenarios.

Scenarios Start Time
(Beijing Time)

End Time
(Beijing Time) Collision Type Number of

Collision

1 15:19:45 15:26:35 Rear-end collision 5

2 16:10:40 16:15:45 Intersection
perpendicular collision 5

3 16:35:42 16:40:00 Head-on collision 4
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In order to ensure safety during the experiment, collisions were assumed to occur within a V2V
distance of 5 m as shown in Figure 11 by the closest approaches between the two vehicles.
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4.2. Results Analysis

The position errors arising from the use of GNSS only measurements, the AR, CV and CA based
data fusion PF algorithms are shown in Figure 12. The 95th percentile accuracy for the route are 0.48
for the PF-AR algorithm, 0.89 m for PF-CA, 1.12 m for PF-CV and 1.48 m for the measurement. Overall,
the field test results confirm those from the simulation that the PF-AR algorithm provides the best
accuracy and meets the requirement for collision avoidance.

Figure 13 demonstrates how well each navigation method predicts collisions during the field
test. In scenario 1, the simulation result is confirmed by the field test results that the AR based fusion
algorithm provides comparatively the highest prediction accuracy (e.g., 80%) even at 6 s before the
collision, while the other methods have much lower prediction accuracy. However, the prediction
accuracy is not good in Scenarios 2 and 3. The reason is that the quality of the RTK GNSS data was
poor for these two scenarios due to equipment malfunction and the complex manoeuvres involved.
This is an important finding which indicates that the algorithm performance is sensitive to the quality
of data and complexity of scenarios including the manoeuvres involved.

In summary, the GNSS/electronic compass/road information fusion algorithm with PF-AR model
has significantly improved positioning accuracy, compared to the other PF fusion algorithms with
traditional CV and CA models. Furthermore, the proposed PF-AR model supports highest prediction
accuracy than the other algorithms, for example the average prediction accuracy could be 62% for the
2 s and 87% for the 1 s before collisions. Note that a threshold is required to ensure the appropriate
TTC that results in collision avoidance. The proposed algorithm can be used to inform the specification
of such threshold.
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5. Conclusions

This paper presents a novel Particle Filter Autoregressive (PF-AR) motion model based
GNSS/electronic compass/road segment information fusion algorithm for the vehicle collision
avoidance application. Simulation and field test results have demonstrated the potential of this
approach for high accuracy positioning (including in the presence of typical GNSS outages).
In comparison to the current algorithms that employ CV and CA models, the proposed PF-AR
model meets the 95th percentile horizontal positioning accuracy requirement for the collision
avoidance application.

The proposed algorithm has been shown to not only improve the positioning accuracy and its
availability but also the performance of vehicle collision avoidance. The prediction accuracy was
analysed as a function of time before the collision. Simulation results show significant improvements
both in state estimation accuracy and collision prediction accuracy. The results of simulation are
confirmed for scenario 1 by field tests. However, for the more complex scenarios 2 and 3, the low
quality of the RTK GNSS data (as a result of equipment malfunction and complexity of manoeuvres)
resulted in low performance, pointing to the sensitivity of the algorithm to such issues. Future
work will capture and process field data (high density city areas) to investigate these sensitivities
and improve the PF-AR model. Furthermore, the other RNP parameters of integrity, continuity
and availability will be investigated, following the availability of the agreed standards for collision
avoidance. In addition, the communication links between the vehicles and the vehicle 3D navigation
performance in complex urban areas will also be considered in the future research.
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