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Abstract: Combining Fourier transform infrared spectroscopy (FTIR) with endoscopy, it is expected
that noninvasive, rapid detection of colorectal cancer can be performed in vivo in the future.
In this study, Fourier transform infrared spectra were collected from 88 endoscopic biopsy
colorectal tissue samples (41 colitis and 47 cancers). A new method, viz., entropy weight
local-hyperplane k-nearest-neighbor (EWHK), which is an improved version of K-local hyperplane
distance nearest-neighbor (HKNN), is proposed for tissue classification. In order to avoid limiting
high dimensions and small values of the nearest neighbor, the new EWHK method calculates feature
weights based on information entropy. The average results of the random classification showed that
the EWHK classifier for differentiating cancer from colitis samples produced a sensitivity of 81.38%
and a specificity of 92.69%.

Keywords: Fourier transform infrared spectroscopy (FTIR); colorectal cancer; pattern recognition;
entropy weight local-hyperplane k-nearest-neighbor (EWHK)

1. Introduction

Every year, the number of cancer-caused deaths rises [1]. Among all types of cancer, colorectal
cancer is the third most common cause of cancer death worldwide, with an annual incidence of
approximately one million cases and 600,000 deaths. The high mortality rate is partially attributed
to the fact that established clinical procedures lack reliability and sensitivity for finding cancer at
early stages [2,3]. Thus, the importance of early diagnosis in preventing and treating cancer mandates
development of an accurate, fast, convenient, and inexpensive diagnostic tool for early detection [4].

Substantial modifications in cancer cells at the molecular level occur prior to morphological
changes could be observed in tissues. Therefore, molecular spectroscopes are promising tools to
detect cancer-related chemical changes at an early stage [1]. In particular, Fourier transform infrared
spectroscopy (FTIR), a popular tool in modern analytical chemistry labs, provides rich information
about the bio-molecules that act as building blocks in tissues and cells [5–8]. Existing clinical diagnosis
requires taking biopsy via endoscope, which causes pain and requires lengthy pathological exams.
In addition, surgical resection can lead to taking biopsies from non-cancerous tissues due to a number
of factors, and there is always a possibility that malignant cells could go into blood stream during
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such invasive procedure. Therefore, being able to diagnose colorectal cancer in vivo or ex vivo could
largely overcome the limitations of existing procedures, providing accurate and rapid determination
of proper operative treatment. Combining an attenuated total reflectance (ATR) fiber probe-coupled
FTIR spectrometer with an endoscope, a simple, rapid, and noninvasive method to detect human
cancer tissues directly with minimal sample preparation may achieve results comparable to the
gene expression-based method [9–13]. The current work was carried out on ex vivo tissues using
an ATR-FTIR probe.

In recent years, the use of FTIR to diagnose various cancers, such as lung, breast, gastric, liver,
and colorectal cancer, has been reported [14–23]. Chemometric methods, such as support vector
machine (SVM) [21], K-nearest neighbor classifier (KNN) [22], and K-local hyperplane distance nearest
neighbor (HKNN), enable efficient information extraction and classification model calibration [24,25].
These afore mentioned reports indicate that FTIR spectroscopy along with an effective chemometric
classifier could be a useful tool for screening a variety of human tumors. Until now, few studies
have been developed for diagnosis and discrimination of colorectal cancers and colitis using FTIR
spectroscopy [26]. Most research efforts focus on enabling a high-accuracy and high-sensitivity
algorithm for cancer diagnosis. In this study, we combine preprocessing techniques and a novel
classification method for analyzing FT-IR spectral data and achieve high accuracy in diagnosing
colorectal cancer tissues.

2. Materials and Methods

2.1. Tissue Specimens

All colorectal cancer and colitis tissues were provided by the Medical Division of the First Hospital
of Xi’an Jiaotong University, China. Informed consent was obtained from each patient prior to the
study, and clinical diagnosis was confirmed by histopathology. A total of 88 tissue samples from
42 female and 46 male patients, were obtained. The average age was 53.7 years old with the oldest
being 76 years and the youngest age being 21 years. One fresh endoscopic biopsy of 1–3 mm in
diameter was obtained from each patient. According to the pathological exam results, the samples
consisted of 41 cases of colitis and 47 cases of cancer.

2.2. Instrumentation and FTIR Data Collection

A WQF-500 FTIR spectrometer linked with a modified attenuated total reflectance (ATR) fiber
probe (Beijing No. 2 optical instrument factory, Beijing, China) was used to acquire spectra. The FTIR
spectrometer was equipped with a liquid-nitrogen-cooled mercury cadmium telluride (MCT) detector.
Specimens were frozen and transported to the laboratory. Before experiment, frozen specimens were
thawed at room temperature for approximately 3–5 min. Then, a background spectrum was acquired
first. The ATR probe was placed at a 90◦ angle on the tissue specimen surface for spectrum acquisition.
To achieve an acceptable signal-to-noise ratio at a resolution of 4 cm−1, 32 scans were recorded with
wavenumbers ranging from 1000 cm−1 to 4000 cm−1. The procedure took approximately 1–2 min.
After sample spectra were recorded, samples were stored in liquid nitrogen and sent for the histological
examination as reference for spectral analysis.

2.3. Spectra Preprocessing Method

Two preprocessing methods, viz., smoothing and standard normal variate (SNV) [27–29],
were performed on the FTIR spectra. First, the Savitsky–Golay algorithm with a window width
of 5 points was applied to each spectrum to reduce random noise in the data. Then, all available
spectra were normalized by the SNV method to remove multiplication interference, slope variation,
and scatter effects generated by particles of the sample.
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For spectrum xij of sample i at wavenumber j, SNV standardization is defined as follows:

xij,SNV =
xij − xi√

∑n
j=1
(
xij − xi

)2
(n− 1)1/2 (1)

where xi denotes the average spectrum of sample i, n denotes the number of wavelengths, and (n− 1)
denotes the degree of freedom.

2.4. Entropy Weight Local-Hyperplane K-Nearest Neighbor Method

A novel classification method called entropy weight local-hyperplane k-nearest neighbor (EWHK)
is proposed for discrimination between colorectal cancer and colitis. For the EWHK method,
which is an upgrade of K-local hyperplane distance nearest neighbor (HKNN) algorithm [24,25],
feature weights of training sets based on the information entropy are objectively considered to measure
the importance of each single feature and to avoid the bias in high dimensions and the limit in small
values of the nearest neighbor. On the other hand, HKNN treats every variable as an equally relevant
component for classification. Therefore, the class labels of unknown samples are calculated according
to the feature weights, the Euclidean distance, and the local hyperplane.

Suppose that training set X = (x1, · · · , xm)
T consists of m training instances with L classes. Each

training instance consists of n input features xi = (xi1, · · · , xin)
T with known class label yi = c, for

i = 1, · · · , m and c = 1, · · · , L. The class label of a query with input vector q = (q1, · · · , qn)
T . The three

stages in the proposed method were as follows: prototype selection, local hyperplane construction,
and query classification.

Firstly, the feature weight is estimated objectively based on the concept of information entropy to
figure out the entropy weight according to the variance of every variable. Low information entropy
resulted in high feature weight, which corresponds to a feature with better class separation capability.
The entropy weight wj is calculated according to the following formula:

zij =
xij

∑m
i=1 xij

, β = 1
ln(m)

Hj = −β∑m
i=1 zij ln(zij)

wj =
1−Hj

n−∑n
j=1 Hj

, ∀j = 1, · · · , n
(2)

where zij denotes the normalized jth component of sample i in the training set; β denotes the
regularization parameter; Hj denotes the information entropy of the jth feature of the sample. Hence,
new weighted Euclidean distance metric D between xi and q is defined as follows:

D(xi, q) =

√√√√ n

∑
j=1

wj(xij − qj)
2. (3)

Then, a local hyperplane of class c is constructed for the given query q according to the distance
metric D and the number k of nearest neighbors of class c. Formally, the formula is as follows:

LHc(q) =
{

s
∣∣∣∣s = k

∑
i=1

αiV.i + mc

}
mc =

1
k

k
∑

i=1
pci

V.i = pci −mc

α = (α1, · · · , αk)
T

(4)
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where pi is the ith nearest neighbor of class c; α is solved by minimizing the distance between q and
LHc(q) using regularization. Thus, the calculated minimum distance is as follows:

Jc(q) = min
α

n
∑

j=1
wj(Vj.α + mcj − qj)

2 + λαTα

= min
α

(s− q)TW(s− q) + λαTα

W = diag(w1, · · · , wn)

(5)

where λ is the regularization parameter. Jc(q) is minimized, and the equation (UTV + λIk)α = UT(q−mc),
where UT = VTW is used to calculate α, is derived. Finally, the class of the query q is assigned as follows:
class(q) = arg minc Jc(q).

3. Results and Discussion

3.1. Preprocessing of FTIR Spectra

In the process of measurement, the obtained spectra contain not only useful information regarding
the molecular structure and the components of the measured samples, but also the noises, such as the
high-frequency random noise, the baseline drift, and the stray light. This additional noise needs to be
eliminated; otherwise, they will affect the discrimination result.

Prior to classification analysis, data preprocessing is necessary to improve performance of the
classification model. Savitzky–Golay (SG) smoothing reduces random noise, and SNV was applied
to remove unwanted background variances to some extent. There is no bio-molecules absorbance
peak in the 1800–2800 cm−1 region, the majority of peaks are in the 1000–1800 cm−1 region and in the
2800–3800 cm−1 region. Thus, the SNV method was separately used from 1000 to 1800 cm−1 and from
2800 to 3800 cm−1.The FTIR spectra of colitis and cancerous tissues before and after preprocessing are
shown in Figure 1. After performing background correction and normalization, useful information of
all spectra (such as at the wavenumber near 1743 cm−1, 2858cm−1, and 2924 cm−1) were marked as
shown in Figure 2. The quality of FTIR spectra was greatly improved after data preprocessing.
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Figure 1. The Fourier transform infrared spectra (FTIR) of colitis and cancerous tissues. (a) Original 

spectra of colitis tissues; (b) original spectra of cancerous tissues; (c) preprocessed spectra of colitis 

tissues using smoothing and standard normal variate (SNV); (d) preprocessed spectra of cancerous 

tissues using smoothing and SNV. 
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Figure 2. The typical FTIR spectra of colorectal biopsies after preprocessing. 

3.2. Analysis of FTIR Spectra 

A total of 88 spectra were obtained by FTIR spectroscopy within the spectral region between 

1000 and 4000 cm−1. Because there were no bio-molecule absorbance peaks in the 1800–2800 cm−1 

region, the SNV method was separately used from 1000 to 1800 cm−1 and from 2800 to 3800 cm−1 after 

smoothing. 

Figure 2 shows the spectra of colitis and colorectal cancer biopsies after preprocessing, where 

the band assignments of major absorption in the FTIR spectra of colorectal tissue are marked. The 

major peaks are similar for the spectra of colitis and colorectal cancer. However, the differences 

including peak shape and relative intensity can be observed. These results are reasonable because 

significant changes occurred in both the structure and composition of the main bio-molecules, which 

constitute the cell such as DNA, water, protein, and lipids, between cancerous and colitis tissues. 

Figure 1. The Fourier transform infrared spectra (FTIR) of colitis and cancerous tissues. (a) Original
spectra of colitis tissues; (b) original spectra of cancerous tissues; (c) preprocessed spectra of colitis
tissues using smoothing and standard normal variate (SNV); (d) preprocessed spectra of cancerous
tissues using smoothing and SNV.
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Figure 2. The typical FTIR spectra of colorectal biopsies after preprocessing.

3.2. Analysis of FTIR Spectra

A total of 88 spectra were obtained by FTIR spectroscopy within the spectral region between
1000 and 4000 cm−1. Because there were no bio-molecule absorbance peaks in the 1800–2800 cm−1

region, the SNV method was separately used from 1000 to 1800 cm−1 and from 2800 to 3800 cm−1

after smoothing.
Figure 2 shows the spectra of colitis and colorectal cancer biopsies after preprocessing, where the

band assignments of major absorption in the FTIR spectra of colorectal tissue are marked. The major
peaks are similar for the spectra of colitis and colorectal cancer. However, the differences including
peak shape and relative intensity can be observed. These results are reasonable because significant
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changes occurred in both the structure and composition of the main bio-molecules, which constitute
the cell such as DNA, water, protein, and lipids, between cancerous and colitis tissues.

As is shown in Figure 2, the spectral profile of cancerous tissues indicates the presence of fewer
lipids and more proteins compared with colitis tissues. The peak intensity of the C=O band assigning
to the lipids (near 1743 cm−1) and the peak intensity of C-H stretching vibration bands relating to
the lipids (near 2958 cm−1, 2924 cm−1, and 2858 cm−1) decrease and even disappear in the spectra of
malignant tissues, making it essential to consume fat in the malignant tissue to meet the nutritional
and energy requirements in carcinoma development. The spectral profile of cancerous tissues indicates
the presence of proteins at wavenumbers ~1643 cm−1 and ~1550cm−1, which belong to amide I band
and amide II band of the protein, respectively. The relative intensity near I1550/I1643 decreases more
for the spectra of cancerous tissues than for those in colitis biopsies because of the changes in the
proportion of proteins during tumor formation. The intensity of the ~1460 cm−1 peak is weaker than
that of the ~1400 cm−1 peak in the spectra of the cancerous samples, while the peak at ~1460 cm−1

is stronger than or equal to that of ~1400 cm−1 in the spectra of colitis samples. Cancerous tissue
contains greater amounts of nucleic acids, collagen, and certain amino acids compared to the colitis
ones. In colitis tissues, the peak at ~1240 cm−1 is weaker, and the band near 1310 cm−1 becomes weak
and sometimes disappears. The absorption peak ~1080 cm−1 assigned to nucleic acid is obviously
weaker in the spectra of colitis samples than that in the spectra of cancerous tissues. The peak at
~1160 cm−1 assigned to carbohydrate decreases noticeably in the spectra of the cancerous samples.
Thus, the characteristics mentioned above between cancerous and colitis tissues provide the basis for
spectroscopic diagnosis.

Specific assignments of individual peaks can be found in Table 1.

Table 1. Peak positions and assignments of FTIR bands in colon tissues.

Peak Positions (cm−1) Major Assignment

1080 Stretching vibration(DNA, RNA)
1160 Carbohydrate
1240 Asymmetric stretching vibration(RNA)
1310 C-H deformation vibration & Amide III (protein)
1550 amide II (protein)
1643 amide I (protein)
1743 C=O stretching vibration(lipids)

2858, 2924, 2958 C-H stretching vibration (lipids)
3300 N-H stretching vibration( protein), O-H stretching vibration(water)

3.3. Classification Analysis

After spectra preprocessing, 88 spectra data (41 colitis and 47 cancers) were analyzed to identify
their class labels. The total 88 spectra were divided into two data sets. The 44 FTIR spectra (21 colitis and
23 cancers) after preprocessing were randomly selected as the training set. The other 44 FTIR spectra
(20 colitis and 24 cancers) after preprocessing were randomly selected as the test set. Both EWHK and
traditional classification models were built by the training set and validated by the test set. Traditional
classification models include SVM and HKNN in this paper. These procedures were repeated five
times. The five predicted results were averaged. Table 2 shows the classification results of colorectal
tissues with entropy weight local-hyperplane k-nearest neighbor (EWHK). Table 3 shows the average
of the five results using the three different methods.
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Table 2. The average of predict results of colorectal tissues with entropy weight local-hyperplane
k-nearest neighbor (EWHK).

Histologic Examination
The Predicted Results of Fourier Transform

Infrared Spectroscopy (FTIR) Spectra

Cancer Colitis

Cancer 38 9
Colitis 3 38

Table 3. Comparison of the average of statistical analysis results with several classification models.

Method Sensitivity (%) Specificity (%) PPV 1 (%) NPV 2 (%) Accuracy (%)

EWHK 81.38 92.69 92.68 80.85 85.91
HKNN 66.46 96.19 95.25 70.43 79.77

SVM 72.46 68.70 70.30 71.87 70.45

Note: 1 Positive predictive value; 2 Negative predictive value.

The experiment results are summarized in Tables 2 and 3. The classification results of colorectal
tissue samples with EWHK (Table 2) showed that, among the 88 cases of colorectal tissue samples,
only three colitis samples and nine cancer samples are misclassified. In Table 3, EWHK achieved
a high accuracy, viz., 85.91%. In addition, other statistics results of detection of colorectal biopsies
by FTIR spectroscopy with EWHK and traditional classification models are shown in Table 3.
For colorectal cancer diagnosis with EWHK, sensitivity is 81.38%, specificity is 92.69%, predictive
value of a positive test is 92.68%, and the predictive value of a negative test is 80.85%. In comparison,
statistical analysis results with HKNN were worse than those with EWHK in diagnosing colorectal
cancer tissues, achieving 66.46% sensitivity and 79.77% accuracy. The SVM works worse than HKNN.
SVM can perform well with large-scale data. However, the choices of the parameters for the kernel
are complex and unstable. The HKNN works well only for small values of the nearest-neighbor.
However, the accuracy decreases as values of the nearest-neighbor increase. The FTIR spectra can be
classified accurately with EWHK because it considers the influence of feature weight according to the
information entropy of every variable. In conclusion, the results indicate that the EWHK has better
capability in identifying colorectal cancer from colitis.

4. Conclusions

This study shows that it is feasible to classify colitis and cancers using FTIR spectroscopy and
chemometrics. FTIR fiber-optic ATR spectroscopy is a powerful tool to detect changes at the molecular
level and can rapidly capture small changes in molecular compositions and structures. Therefore,
it has the potential to be further developed into noninvasive, in vivo, and real-time detection tools
of cancerous tissues before a surgical operation is required. Data pre-processing such as smoothing
and SNV greatly improved the signal-to-noise ratio for the FTIR spectra of colorectal tissues, and the
EWHK classifier achieved a classification accuracy of 85.91%. The reason that EWHK performs well
is because feature weights are calculated according to the information entropy of every variable.
The proposed preprocessing and classification method using FTIR spectroscopy is effective and
practical for in vivo colorectal cancer or other malignant tissue diagnosis and will be pursued in
future studies.
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