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Abstract: A novel electrocardiogram (ECG) signal de-noising and baseline wander correction method
based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and
wavelet threshold is proposed. Although CEEMDAN is based on empirical mode decomposition
(EMD), it represents a significant improvement of the original EMD by overcoming the mode-mixing
problem. However, there has been no previous study on using CEEMDAN to de-noise ECG signals,
to the authors’ best knowledge. In the proposed method, the original noisy ECG signal is decomposed
into a series of intrinsic mode functions (IMFs) sorted from high to low frequency by CEEMDAN.
Each IMF is then analyzed by the autocorrelation method to find out the first few high frequency
IMFs containing random noise, and these IMFs should be de-noised by the wavelet threshold.
The zero-crossing rate (ZCR) of all IMFs, including final residue, are computed, and the IMFs with
ZCR less than a certain value are removed. Finally, the remaining IMFs are reconstructed to obtain
the clean ECG signal. The proposed algorithm is validated through experiments using the MIT–BIH
ECG databases, and the results show that the random noise in the ECG signal can be effectively
suppressed, and at the same time the baseline wander can be corrected efficiently.

Keywords: electrocardiogram (ECG) signal; complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN); wavelet threshold; random noise; de-noise; baseline wander

1. Introduction

The electrocardiogram (ECG) has been widely used for the clinical diagnosis of heart disease.
ECG is a weak, non-linear and non-stationary human physiological signal. The ECG in a normal sinus
rhythm, as shown in Figure 1, consists of waveform components that indicate electrical events during
one heartbeat. These waveforms are labeled P, Q, R, S, T and U. The P wave is the first deflection and
is normally an upward waveform. It indicates the atrial depolarization. The QRS complex follows the
P wave and it normally begins with a downward deflection, Q, then a larger upward deflection, R,
and lastly a downward S wave. The QRS complex represents the depolarization of the right and left
ventricles. The T wave is normally a modest upward waveform, representing ventricular repolarization.
The U wave is hypothesized to be caused by the repolarization of the interventricular septum, and this
wave component may not be observable. The PR interval is measured from the beginning of the P
wave to the beginning of the QRS complex. This interval reflects the time the electrical impulse takes to
travel from the sinus node through the atrioventricularnode. The ST segment is the line from the end

Sensors 2017, 17, 2754; doi:10.3390/s17122754 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0175-4579
http://dx.doi.org/10.3390/s17122754
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 2754 2 of 16

of the QRS complex to the beginning of the T wave, and represents the period when the ventricles are
depolarized. The QT interval represents the time of ventricular activity, including both depolarization
and repolarization. It is measured from the beginning of the QRS complex to the end of the T wave [1].
The actual shape of the ECG waveform depends on the recording aspect (i.e., electrode position).

Figure 1. The electrocardiogram (ECG) of a heart in a normal sinus rhythm.

In the past few years, methods have been proposed to obtain basic medical characteristics from
an ECG [2–6]. Laguna et al. [7] presented an automatic waveform boundaries detection algorithm for
multiple lead ECG signals. Given these locations, features of clinical importance, such as each wave
duration, may be readily obtained. Stridh and Sornmo [8] proposed a spatiotemporal approach to
QRST cancellation in ECGs with atrial fibrillation, and this method compensates for morphological
changes caused by variations in the electrical axis and uses linear transformations to combine multiple
lead information. De Chazal et al. [9] developed a method for the automatic processing of the ECG
signal for the classification of heartbeats. Rubel et al. [10] proposed a method of quantitative assessment
of the extent and significance of serial ECG changes of the repolarization phase.

In practice, many adverse factors negatively impact the ECG signal during the data acquisition
and transmission process, resulting in signal deviation and diagnostic inaccuracy. These adverse
factors include various noises such as Gaussian noise, muscle artifacts, power-line interference,
and baseline wander. To suppress noise and to obtain a clean ECG signal, many different algorithms
are proposed [11–13]. The commonly used ECG signal de-noising methods include the morphological
filtering method, the adaptive filtering method, the wavelet-based method, and the empirical mode
decomposition (EMD) method. The morphological filtering method can achieve good effect when
filtering the limit interference signal [14], however, a truncation error will be produced when filtering
the high-frequency interference signal. The adaptive filtering (AF) method can automatically adjust the
filter quality factor according to the noise characteristics of the signal. Agostinelli et al. [15] proposed
a segmented beat modulation method for ECG estimation from noisy recordings. Ren et al. [16]
introduced an improved adaptive algorithm for interference cancellation of ECG signals. Lim et al. [17]
proposed an adaptive signal extraction method that uses discrete wavelet transformation coupled
with adaptive parameters to address variated ECG signals due to varying heartrates. In addition,
the adaptive filtering de-noising effect is good, and the waveform cannot be easily distorted; however,
the computation load is quite heavy with AF.

Wavelet transform is a kind of mature method for signal processing [18]. With the characteristics
of different scales and low entropy, it has great advantages in non-stationary signal processing.
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In the wavelet threshold de-noising method proposed by Donoho [19], combined with the existing
orthogonal wavelet decomposition and reconstruction algorithm, a complete set of threshold
de-noising strategies have been developed, and they can be used for suppressing random noise.
Yi et al. [20] employed an improved wavelet threshold technique for noise smoothing, and achieved
a good effect. Singh and Tiwari [21] presented a selection procedure of mother wavelet basis functions
applied to de-noising of the ECG signal in the wavelet domain while retaining the signal peaks
close to their full amplitude. The obtained wavelet-based de-noised ECG signals retain the necessary
diagnostics information contained in the original ECG signal. Liu et al. [22] proposed an improved
wavelet threshold algorithm for ECG de-noising. Das et al. [23] proposed a wavelet based de-noising
technique by thresholding the less significant wavelet coefficients. Here, the threshold is based on the
probability of the wavelet coefficients at a particular sub-band. The data used for testing purposes is
taken from MIT–BIH Database. Chen and Chen [24] developed a hardware design and implemented
a wavelet de-noising procedure for medical signal preprocessing. The wavelet threshold method can
effectively remove the noise interference in ECG signals, but the choice of threshold is a troublesome
process, and has a direct impact on the noise-filtering effect.

The empirical mode decomposition (EMD) method has many advantages for non-stationary
signal analysis [25–27], and the EMD can be used for ECG noise reduction. Blanco-Velasco et al. [28]
proposed an EMD-based algorithm to remove the baseline wander and high-frequency noise of ECGs.
Singh and Sunkaria [29] developed an ECG signal de-noising method based on the empirical mode
decomposition and the moving average filter. The proposed method is an enhancement of the existing
EMD-based de-noising algorithms. Kabir and Shahnaz [30] presented an ECG de-noising approach
based on noise-reduction algorithms in EMD and discrete wavelet transform. Unlike the conventional
EMD-based ECG de-noising approaches that neglect a number of initial intrinsic mode functions
(IMFs) containing the QRS complex as well as noise, the new approach performs windowing in
the EMD domain to reduce the noise from the initial IMFs instead of discarding them completely,
thus preserving the QRS complex and yielding a relatively cleaner ECG signal.

The major disadvantage of EMD is the so-called mode-mixing effect. The mode mixing indicates
that oscillations of different time scales coexist in a given intrinsic mode function (IMF), or that
oscillations with the same time scale have been assigned to different IMFs. To overcome these problems,
Wu and Huang [31] proposed an ensemble empirical mode decomposition (EEMD) algorithm, which
performs the decomposition over an ensemble of noisy copies of the original signal, obtaining the final
results by averaging. The addition of white Gaussian noise reduces the mode mixing by populating
the whole time–frequency space, taking advantage of the dyadic filter bank behavior of the EMD.
Thus, more regular modes are obtained, with similar scales for the entire time span. Zhao et al. [32]
developed a human ECG identification system based on ensemble empirical mode decomposition.
Chang [33] proposed a noise-filtering algorithm based on EEMD to remove artifacts in ECG signals.
Ye et al. [34] studied the de-noising method of ECG signals based on the EEMD and improved the
wavelet threshold. Chang [35] studied EEMD for high-frequency ECG noise reduction. Even if EEMD
has shown to be useful in a wide range of applications, it also creates new difficulties. The white
Gaussian noise added by EEMD cannot be completely canceled after a finite average, resulting in
a reconstruction error. Although with the increase of the average time, the reconstruction error can be
reduced, the computational cost is greatly increased. To improve EEMD, Torres et al. [36] proposed
the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm.
By adding adaptive white Gaussian noise in every stage of EMD, CEEMDAN obtains every IMF mode
through calculating the unique residue. With the CEEMDAN, the decomposition process can effectively
overcome the mode-mixing problem, and the reconstruction error is almost zero, with greatly reduced
computational cost. Therefore, the CEEMDAN represents a significant improvement on the original
EMD. However, there has been no previous study of using CEEMDAN to de-noise ECG signals, to the
authors’ best knowledge.
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In this paper, a novel ECG signal de-noising algorithm based on CEEMDAN and wavelet
threshold is proposed. The noisy ECG signal is decomposed into a series of IMFs sorted from high
to low frequency, and each IMF is analyzed by the autocorrelation method to find out the first few
IMFs containing random noise [37]. These IMFs should first be de-noised by the wavelet threshold.
Then, the zero crossing rate (ZCR) of all IMFs, including the final residue, is computed. Removing
the IMFs with ZCR less than a certain value allows for correction of the baseline wander in the
ECG signal [38]. After the remaining IMFs are reconstructed, the clean ECG signal is obtained.
This methodology is validated through experiments on the MIT–BIH ECG databases, and results show
that the random noise in the ECG signal can be effectively suppressed and the baseline wander can be
corrected efficiently as well.

2. Basic Principle

2.1. EMD, EEMD, CEEMDAN Algorithm

The EMD decomposes a signal s(t) into a number of intrinsic mode functions (IMFs) or modes.
To be considered as an IMF, the following two conditions must be satisfied: (1) the total extreme points
and zero crossings should be equal, or at most differ by one; and (2) at any time, the mean of upper
and lower envelope formed by the local extreme points is zero.

The procedure of the EMD algorithm is described as follows:

Step 1. Find all extreme points (both minima and maxima) in the test signal s(t).
Step 2. Use the cubic spline interpolation between maxima (minima) to obtain the upper (lower)

envelope u0(t) (d0(t)).
Step 3. Compute the mean envelope,

m0(t) =
1
2
(u0(t) + d0(t)) (1)

Step 4. Subtract the mean envelope from s(t) to obtain,

h1(t) = s(t)−m0(t) (2)

Step 5. If h1(t) follows the criteria of the IMF, then it is the IMF1, otherwise h1(t) is considered as the data
of the sifting process, and repeat steps 1 to 4. Thus a new function h11(t) is obtained. This process
will be repeated until either h1k(t) follows the criteria of IMF or a certain termination condition
(generally standard deviation criteria) is met.

Step 6. Subtract the IMF1 from s(t) to obtain the residue,

r1(t) = s(t)− IMF1 (3)

Step 7. Treat the residual r1(t) as a new signal, repeat steps 1 to 6, and other IMFs such as IMF2,
IMF3, . . . , IMFN can be obtained, until rN(t) becomes either a constant, a monotonic slope,
or a function with only one extremum. After the EMD decomposition, the original signal s(t)
can be expressed as,

s(t) =
N

∑
i=1

IMFi + rN(t) (4)

where N is the number of IMFs, and rN(t) is the final residue.

The EMD method has many advantages for non-stationary signal analysis, and is suitable for
ECG de-noising. The major disadvantage of EMD is the so-called mode-mixing effect. By adding finite
Gaussian white noise, the EEMD method largely eliminates the mode-mixing of the EMD.

The procedure of the EEMD algorithm is described as follows:
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Step 1. The Gaussian white noise with zero mean and unit variance ni(t) is added to the original signal
s(t), to obtain a new signal,

si(t) = s(t) + ni(t) (5)

Step 2. For every i = 1, . . . , I, decompose each si(t) by EMD, to obtain IMFik, where k = 1, . . . , N denote
the number of IMFs.

Step 3. Average IMFik, to obtain EEMD mode,

IMFk =
1
I

I

∑
i=1

IMFik (6)

Even though EEMD eliminated the mode mixing, the Gaussian white noise added by the EEMD
cannot be completely canceled after a finite average, resulting in a reconstruction error. The CEEMDAN
is an improvement on EEMD. With CEEMDAN, the decomposition process can effectively overcome
the mode-mixing problem, and the reconstruction error is almost zero, with greatly reduced
computational cost.

The procedure of the CEEMDAN algorithm is described as follows:
Define Ej(·) as the operator that produces the j-th mode obtained by EMD, and let ni(t) be

a realization of zero mean unit variance white noise. If s(t) is the target signal, the CEEMDAN
algorithm steps are as follows:

Step 1. For every i = 1, . . . , I, decompose each si(t) = s(t) + ε0ni(t) by EMD, until its first mode,
and define the first CEEMDAN mode as,

ĨMF1 =
1
I

I

∑
i=1

IMFi1 (7)

Step 2. At the first stage (j = 1), calculate the first residue,

r1(t) = s(t)− ĨMF1 (8)

Step 3. For every i = 1, . . . , I, decompose each r1(t) + ε1E1(ni(t)) by EMD, until its first mode,
and define the second CEEMDAN mode as,

ĨMF2 =
1
I

I

∑
i=1

E1(r1(t) + ε1E1(ni(t))) (9)

Step 4. For j = 2, 3, . . . , N, calculate the j-th residue,

rj(t) = rj−1(t)− ĨMFj (10)

Step 5. For every i = 1, . . . , I, decompose each rj(t)+ ε jEj(ni(t)) by EMD, until its first mode, and define
the (j + 1)-th CEEMDAN mode as,

ĨMFj+1 =
1
I

I

∑
i=1

E1(rj(t) + ε jEj(ni(t))) (11)

Step 6. Go to step 4 for the next j.
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Repeat steps 4 to 6 until the obtained residue can no longer be further decomposed by the
EMD, because either it satisfies IMF criteria or it has been less than the three local extrema. The final
residue satisfies,

rN(t) = s(t)−
N

∑
j=1

ĨMFj (12)

with N being the total number of modes. Therefore, the target signal can be expressed as,

s(t) =
N

∑
j=1

ĨMFj + rN(t) (13)

which ensures the completeness property of the CEEMDAN decomposition, thus providing an exact
reconstruction of the original data. The final number of modes is determined only by the data and the
stopping criterion. The coefficient ε allows the selection of the SNR at each stage.

2.2. Improved Wavelet Threshold Function

The key to de-noising based on wavelet threshold is the selection of the threshold function.
The hard and soft threshold functions proposed by Donoho are widely used in practice. Combining the
different characteristics of hard and soft threshold functions, this paper adopts an improved threshold
function [39] for estimation of wavelet coefficients,

ω̃j,k =

 sgn(ωj,k)[
∣∣∣ωj,k

∣∣∣−tc·(λj−|ωj,k |)λj],
∣∣∣ωj,k

∣∣∣≥ λj

0,
∣∣∣ωj,k

∣∣∣< λj
(14)

where ωj,k denotes the k-th wavelet coefficients under j-th scale decomposition, ω̃j,k denotes the estimated
wavelet coefficients. t =

√
2 ln N, N is the signal length. λj is the threshold, and λj = σjt = σj

√
2 ln N

with σj being the standard deviation of noise.

When
∣∣∣ωj,k

∣∣∣ is close to the threshold λj, ω̃j,k ≈ sgn(ωj,k)[
∣∣∣ωj,k

∣∣∣−λj] , and Equation (14) is similar
to the soft threshold function. When c→ 0 , Equation (14) is the same as soft threshold function.
When c→ ∞ , Equation (14) is the same as the hard threshold function.

The improved threshold function is a compromise between the hard threshold and soft threshold
functions. Using the improved threshold function, the reconstructed signal can preserve the original
signal’s characteristics.

3. ECG Signal De-Noising Procedure

3.1. Flowchart of ECG Signal De-Noising

The ECG signal de-noising based on the CEEMDAN and wavelet threshold undergoes the
following procedure. Decompose the noisy ECG signal into a series of IMFs sorted from high to
low frequency by CEEMDAN, and the first few IMFs contain random noise. To find out the first few
specific IMFs, each IMF is analyzed through the autocorrelation method. Once the IMF containing the
random noise is identified, it should be de-noised by the wavelet threshold. Then, the zero crossing
rates (ZCR) of all IMFs including the final residue are calculated, and remove the IMFs with ZCR less
than 1.5. Finally, reconstruct the remaining IMFs so as to obtain the clean ECG signal. The flowchart of
ECG signal de-noising is shown in Figure 2.
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Figure 2. The flowchart of ECG signal de-noising.

3.2. Random Noise Suppression in the ECG Signal

The noisy ECG signal is decomposed into a series of IMFs sorted from high to low frequency by
CEEMDAN. The first few IMFs contain high-frequency random noise. Random noise suppression by
the EMD is in general carried out by partial signal reconstruction, and the first few high frequency IMFs
are removed. This method will introduce ECG signal distortion due to some useful information such
as the QRS complex that may be contained in the first few high-frequency IMFs. On the other hand,
the exact number of the first few high-frequency IMFs containing random noise is hard to determine.
This paper employs autocorrelation analysis to find out the first few high-frequency IMFs. Instead of
removing these specific high-frequency IMFs, they should be de-noised with the wavelet threshold so
as to suppress the random noise. This method will not result in an ECG signal distortion.

The autocorrelation function is used to measure the similarity between signal x(t) and signal
x(t + τ); the normalized autocorrelation function is defined as,

Rx(τ) =
E[x(t) · x(t + τ)]

E[x(t) · x(t)] (15)

where Rx(τ) denotes the normalized autocorrelation function, and E(·) represents the mean value.
The autocorrelation function plot of pure random noise is a sharp pulse, however, the plot of

a noisy ECG signal has a certain width. The noisy ECG signal is decomposed into a series of IMFs by
CEEMDAN, when there is more random noise in an IMF, and the central part of the autocorrelation
function plot narrows. Therefore, the first few specific IMFs containing random noise can be determined
according to the autocorrelation function plots.

Here, we select the No. 100 ECG record from the MIT–BIH arrhythmia database for the experiment.
The sampling frequency is 360 Hz. The sampling duration is 10 s. To synthesize a noisy ECG signal,
15 dB Gaussian white noise and the baseline wander signal from the MIT–BIH noise stress test database
are added to the No. 100 ECG signal. The synthetic noisy ECG signal is decomposed into 11 IMFs and
1 residue component by CEEMDAN, as shown in Figure 3.
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Figure 3. Synthetic noisy ECG signal and its intrinsic mode functions (IMFs) decomposed by complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN).

The partial corresponding autocorrelation function plots are as shown in Figure 4. It can be seen
from Figure 4b that the width of the central part of the synthetic noisy ECG autocorrelation function
plot is about 50 ms. Only in Figure 4c–e (IMF1~IMF3) is the width of the central part of autocorrelation
function plots less than 50 ms, and this illustrates IMF1~IMF3 containing much more random noise
than the other IMFs. Therefore, only the first three IMFs (IMF1~IMF3) should be chosen for de-noising
by the wavelet threshold to suppress random noise.
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Figure 4. Partial autocorrelation function plots of the synthetic noisy ECG signal.

3.3. ECG Baseline Wander Correction

The ECG baseline wander is a slow-changing signal, and its frequency is less than 1.5 Hz.
The baseline wander signal is decomposed into the final IMFs (including the final residue) by the
CEEMDAN. The baseline wander can be corrected if the specific final IMFs are removed from the
noisy ECG signal. Now the only issue is how to determine the specific final IMFs. Here, we employ
the zero-crossing rate (ZCR) in order to do so. The ZCR is often used to extract the signal feature and
has a relationship with frequency. Average ZCR can be used to estimate roughly the frequency of an
IMF. As shown in Figure 3, the synthetic noisy ECG signal is decomposed into 11 IMFs and 1 residue
component. The ZCRs of all the IMFs, including the residue component, are calculated and as listed in
Table 1. We can tell the last three ZCRs are less than 1.5, so the IMF10~IMF11 as well as the residue
component should be removed. The IMFs with frequencies less than 1.5 Hz are considered as the
baseline wander signals. Then, after the remaining IMFs are reconstructed, the ECG baseline wander
correction can be achieved and the clean ECG signal is obtained.

Table 1. Zero-crossing rates (ZCRs) of all the IMFs for the No. 100 ECG signal.

IMF IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 Residue

ZCR 246.6 119.2 61.4 33.5 18.7 11.4 6.6 4.1 2.3 0.7 0.2 0.0

4. ECG Signal De-Noising Results

4.1. Synthetic Noisy ECG Signal De-Noising Results

To obtain the noise-free ECG signal, we adopt the morphological modeling method [40] to
simulate ECG waveforms. With this approach, the significant features of ECG, such as P, Q, R, S,
and T waves, the duration of each wave, and certain time intervals, can be simulated. The ECG signal
generated by the simulator is noise-free. To synthesize a noisy ECG signal, 15 dB Gaussian white
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noise is added to the simulated ECG signal. The synthetic noisy ECG signal is then de-noised by
the proposed CEEMDAN plus wavelet threshold method. For the purpose of comparison, both the
wavelet-based method and the EMD partial reconstruction method are applied. The de-noising results
are shown in Figure 5.

Figure 5. Synthetic noisy ECG (simulated ECG) signal de-noising results.

Figure 5a shows the simulated ECG signal, Figure 5b–e, plot the synthetic noisy ECG signal,
the wavelet-based de-noising result, the EMD partial reconstruction de-noising result, and the proposed
CEEMDAN plus wavelet threshold de-noising result, respectively. In the wavelet-based method,
a 6-level discrete wavelet transform with the Symlet wavelet of order 7 (Sym7) is used for de-noising.
The Symlet family wavelets are popular for signal de-noising because of their energy concentration
at low frequency. In the EMD partial reconstruction method, the noisy ECG signal is decomposed
into a series of IMFs to remove the first two high-frequency IMFs, and then the remaining IMFs are
reconstructed to obtain de-noising results.

To illustrate the advantages of the proposed algorithm quantitatively, signal-to-error ratio (SER)
and mean square error (MSE) are used as the performance indices of de-noising. SER defines the
signal energy with respect to the energy of the error. MSE defines the energy of the error signal in the
de-noising process.

The formulas of SER and MSE are, respectively, given as,

SER = 10lg10


N
∑

i=1
s2

i (t)

N
∑

i=1
(si(t)− ŝi(t))

2

 (16)

MSE =
1
N

N

∑
i=1

(si(t)− ŝi(t))
2 (17)

where si(t) is the original ECG signal, ŝi(t) is the de-noised ECG signal, and N is the signal length.
Performance indices computed under different noise intensity are as listed in Table 2.

Table 2 clearly shows that the proposed method has the highest SER and lowest MSE,
which demonstrates the superiority of the proposed method over other methods.
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Table 2. Performance indices under different noise intensity (simulated ECG).

Noise Intensity Index Wavelet Based EMD Partial
Reconstruction

CEEMDAN Plus
Wavelet Threshold

5 dB
SER 0.8751 6.8711 18.3150
MSE 0.0452 0.0218 0.0016

10 dB
SER 0.5978 5.9251 17.0436
MSE 0.0466 0.0271 0.0021

15 dB
SER 0.4232 4.8161 12.5823
MSE 0.0492 0.0295 0.0056

20 dB
SER 0.2435 3.9363 10.4129
MSE 0.0709 0.0638 0.0097

We also select the No. 103 ECG record from the MIT-BIH arrhythmia database for experiment.
The sampling frequency is 360 Hz. The sampling duration is 10 s. The synthetic noisy ECG signal
is achieved by adding 15 dB Gauss white noise. The wavelet based method, the EMD partial
reconstruction method and the proposed CEEMADN plus wavelet threshold method are applied
to de-noise the synthetic noisy ECG signal, respectively. The de-noising results are as shown in
Figure 6. Performance indices computed under different noise intensity are as listed in Table 3.
Once again, the table clearly shows that the proposed method has the highest SER and lowest MSE,
which demonstrates the superiority of the proposed method over other methods.

We now focus on the case when both random noise and baseline wander appear in the ECG
signal. We selected the No. 100 ECG record from the MIT–BIH arrhythmia database for the experiment.
The sampling frequency was 360 Hz. The sampling duration was 10 s. To synthesize a noisy ECG signal,
15 dB Gauss white noise and the baseline wander signal from the MIT–BIH noise stress test database
were added to the ECG signal. The synthetic noisy ECG signal was de-noised by the same three
kinds of method described above. The de-noising results are shown in Figure 7. Performance indices
computed under different noise intensities are as listed in Table 4. As with the previous cases, Table 4
clearly shows that the proposed method has the highest SER and lowest MSE, which demonstrates the
superiority of the proposed method over other methods.

Figure 6. Synthetic noisy ECG signal de-noising results (No. 103 MIT-BIH ECG).
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Table 3. Performance indices under different noise intensity (No. 103 MIT-BIH ECG).

Noise Intensity Index Wavelet-Based EMD Partial
Reconstruction

CEEMDAN Plus
Wavelet Threshold

5 dB
SER 14.7072 16.2526 27.8397
MSE 0.0201 0.0113 0.0006

10 dB
SER 13.1222 15.6894 25.3689
MSE 0.0210 0.0129 0.0011

15 dB
SER 11.7577 13.9286 20.4182
MSE 0.0316 0.0154 0.0035

20 dB
SER 10.6856 11.9397 16.1626
MSE 0.0405 0.0217 0.0095

Figure 7. Synthetic noisy ECG with baseline wander de-noising results (No. 100 MIT–BIH ECG).

Table 4. Performance indices under different noise intensity (No. 100 MIT–BIH ECG).

Noise Intensity Index Wavelet-Based EMD Partial
Reconstruction

CEEMDAN Plus
Wavelet Threshold

5 dB
SER 14.9580 17.9656 26.6223
MSE 0.0213 0.0096 0.0010

10 dB
SER 12.8418 16.1767 24.8403
MSE 0.0235 0.0105 0.0016

15 dB
SER 11.3410 14.8742 21.6968
MSE 0.0380 0.0124 0.0041

20 dB
SER 10.3478 13.7996 17.8879
MSE 0.0438 0.0198 0.0097

In summary, as the objective of this study was to de-noise the ECG signals and to remove the
baseline wonder, the SER is a relevant performance index to quantify the efficacy of reducing noise.
MSE tracks the accuracy of the de-noising technique to estimate the original signal. Hence, a larger
SER value denotes a better de-noising effect, and a lower MSE value denotes a better estimation of
the original signal and a better preservation of signal details. As can be observed from Tables 2–4,
the proposed CEEMDAN plus wavelet threshold method attains a greater SER value as well as a lower
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MSE value, as compared to the other two methods with respect to the given noise intensity, in both
cases of the simulated ECG signal and the MIT–BIH arrhythmia database. This illustrates that the
proposed method has a better de-noising effect. The EMD partial reconstruction method attains a lower
SER (larger MSE) than that of the proposed method. Although the EMD method can reduce the noise
in the ECG signal, the de-noising effect is not good enough due to the drawback of mode-mixing.
The wavelet based method attains the worst SER and MSE values in the given noise-intensity cases.
On the other hand, we can see the behavior of the wavelet-based method in Figure 7c, where only the
random noise is smoothened, however it is unable to remove the baseline wander signal components.

4.2. Real ECG Signal De-Noising Results

We selected the No. 109 and No. 203 ECG records from the MIT–BIH arrhythmia database for
real signal de-noising. These two records were subject to severe random noise and baseline wander
interference. We employed the proposed CEEMADN plus wavelet threshold method to de-noise
these two real ECG signals. As a comparison, both the wavelet-based method and the EMD partial
reconstruction method were also employed, and the de-noising results are shown in Figures 8 and 9.
Performance indices are listed in Table 5.

As can be observed from Table 5, with the wavelet-based de-noising method, both the SER and
the MSE values are not as good as the other two de-noising methods. From Figures 8b and 9b, we can
tell that only the random noise have been smoothened, but the baseline wander signal cannot be
removed. This shows that the wavelet-based de-noising method has some limitations in real ECG
signal de-noising cases. With the EMD partial reconstruction method, the SER and the MSE values
are better than those of the wavelet-based method, and it can achieve a better de-noising result.
From Figures 8c and 9c, we can see not only that the random noise is suppressed, but also that the
baseline wander is corrected. Even so, this method will introduce ECG signal distortion owing to the
EMD mode-mixing. Among the three de-noising methods, the proposed CEEMDAN plus wavelet
threshold method is the best. In both the No. 109 ECG record and the No. 203 ECG record situations,
the SER is the largest, and the MSE is the lowest. The de-noising results are very clear from Figures 8d
and 9d, the random noise is obviously reduced, and the baseline wander is corrected effectively.
These results further demonstrate that the proposed method is suitable for real ECG signal de-noising
in different cases.

Figure 8. No. 109 MIT–BIH ECG signal de-noising results.
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Figure 9. No. 203 MIT–BIH ECG signal de-noising results.

Table 5. Real ECG signal de-noising performance indices data.

MIT–BIH ECG Record Index Wavelet-Based EMD Partial
Reconstruction

CEEMDAN Plus
Wavelet Threshold

No. 109
SER 8.2816 13.6221 19.7232
MSE 0.0560 0.0317 0.0196

No. 203
SER 12.0928 16.4504 21.7684
MSE 0.0510 0.0409 0.0284

5. Conclusions

In this paper, a novel ECG signal de-noising and baseline wander correction algorithm based on
CEEMDAN and the wavelet threshold is proposed. The noisy ECG signal is decomposed into a series
of IMFs. The first few IMFs containing random noise are determined by the autocorrelation analysis
and are de-noised by the wavelet threshold. The last few IMFs with ZCR less than 1.5 are removed
for baseline wander correction. Finally, the remaining IMFs are reconstructed to obtain the clean
ECG signal. The proposed algorithm is validated through experiments on both the simulated synthetic
noisy ECG signal and the MIT–BIH ECG databases. The results show that the random noise can be
suppressed effectively and the baseline wander can be corrected efficiently. As a new signal-processing
method, CEEMDAN has advantages in dealing with non-linear and non-stationary signals. Although
CEEMDAN is based on empirical mode decomposition (EMD), it represents a significant improvement
on the original EMD by overcoming the mode-mixing problem. This advanced technique will be
beneficial for future computer-based automated diagnostic systems. We use the SER and the MSE as
quality estimators for de-noising, as described earlier. Recently, a new type of weighted diagnostic
distortion (WDD) estimating method has been introduced [40]. Although WDD has the disadvantage
of requiring heavy computation, it correlates better with the real quality of the tested ECG signal, and
we will try to use this kind of quality estimator in our future work. In this paper, we focus only on
random noise reduction and baseline wander correction; however this is not the limit of our work
in this area. We will continue to improve the ECG signal de-noising method. Our future work will
involve WDD and muscular noise cancellation, which is another challenge.
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