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Abstract: Energy consumption is a critical performance and user experience metric when developing
mobile sensing applications, especially with the significantly growing number of sensing applications
in recent years. As proposed a decade ago when mobile applications were still not popular and most
mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic
sensing and participatory sensing do not explore the relationship among concurrent applications
for energy-intensive tasks. In this paper, inspired by social relationships among living creatures
in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining
equivalent performance to existing paradigms. The key idea is that sensing applications should
cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing
so, this sensing paradigm executes sensing tasks with very little extra resource consumption and,
consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with
the existing ones, we develop mathematical models in terms of the completion probability and
estimated energy consumption. The quantitative evaluation results using various parameters
obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing
and participatory sensing in large-scale sensing applications, such as road condition monitoring,
air pollution monitoring, and city noise monitoring.

Keywords: participatory sensing; opportunistic sensing; success probability; energy consumption;
mobile sensing; massive sensing

1. Introduction

Smartphones with integrated sensors have enabled the development of low-cost and reliable
large-scale sensing systems including personal sensing [1–4], social behavior sensing [5–8],
environmental monitoring [9–12], smart transportation and road monitoring [13–16], electromagnetic
monitoring [17], radiation monitoring [18], and event monitoring [19]. Since smartphones are
consumer devices, a sensing service design should consider a user’s role in performing sensing
tasks: data collection, analysis, verification, and sharing. The two most popular sensing paradigms
are opportunistic sensing [20] and participatory sensing [21]. Opportunistic sensing executes sensing
tasks transparently to the users. Conversely, participatory sensing requests the users to interact with
the application to perform sensing tasks.

Although these sensing paradigms have been widely used in large-scale sensing systems, they do
not focally address the energy consumption on smartphones. One of the reason might be there were not
so many applications and sensors on smartphones as there are today. With the significant development
of smartphone technologies, more sensors will be integrated including sophisticated and power-hungry
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sensors such as gas sensors [22]. Consequently, data harvesting through smartphones invokes a variety
of challenges related to the limited available battery capacity. Additionally, potential privacy breaches
when using smartphone applications are of increasing concern in society [23]. Therefore, it is hard to
convince users to take part in sensing tasks, especially when the application is not of their interest.
A common solution for this problem is an incentive for participants [24–26]. However, it is costly
to recruit a large number of participants. Therefore, these energy and privacy constraints are still
challenging when deploying large-scale sensing applications on smartphones.

Besides the aforementioned constraints, multi-task mobile operating systems also yield the issue
of application concurrency. Sensing applications may not be able to access some sensors such as
microphones when they are being used by another application. This issue is especially important
as the average number of applications per smartphones in 2015 is 36 [27]. A recent report [28] also
reveals that the monthly time a person spends on smartphone applications has risen to 63% in two
years, from about 23 h in 2012 to about 37.5 h in 2014. Consequently, the possibility of conflict between
sensing applications acquiring the same sensing resources will increase. However, existing sensing
paradigms do not consider this concurrency issue.

Therefore, there is a demand for new sensing paradigms that not only are transparent to users but
also can cope with energy, concurrency, and privacy constraints. Inspired by symbiotic relationships
among nature livings, we propose a symbiotic sensing paradigm to realize such an emerging demand.
The intuition is that if sensing applications can adapt themselves to the environment where they are
installed and run transparently, the total used energy would be significantly reduced. The environment
includes other applications, smartphone contexts, user activities and the physical world. In addition,
the applications should collaborate to gain off-the-shelf benefits from each other. For example, if two
applications can share common resources or derived information, they do not have to waste energy
performing the same sensing tasks multiple times. To overcome the concurrency problem and to
prevent potential privacy breaches, we develop a cross-sensing service, called SENSILO, to allow
sensing applications to share and exchange data, as well as results, in an efficient and secure manner.
We make this service publicly available to the research community to deploy symbiotic sensing in real
large-scale sensing applications.

We note that symbiotic sensing does not conflict with existing sensing paradigms. Indeed,
symbiotic sensing enhances opportunistic sensing in terms of the energy consumption and the conflict
of acquiring the same resources. Examples include when a sensor is occupied by one application and
cannot be accessed by another application. Therefore, we also propose a hybrid sensing paradigm
that combines symbiotic, opportunistic, and participatory sensing for applications that prioritize task
completion over energy consumption.

To compare the aforementioned sensing paradigms, we develop mathematical models for
evaluating them in terms of success probability and energy consumption in relation to the total number of
smartphones participating in the system. Success probability is the probability of accomplishing
a sensing task. Our evaluation model takes into account multiple aspects that have not been
addressed in existing evaluation models, such as sensor availability, resource conflict, and task overlap.
The models are evaluated with available statistical data and experimental datasets to compare the
performance of symbiotic sensing with existing paradigms. Our quantitative analysis shows that
symbiotic sensing achieves an equivalent probability of success to others when there are sufficiently
large quantity of smartphones participating in the system. This condition is satisfiable by the current
proliferation of smartphones. Moreover, our proposed sensing paradigm is more efficient than existing
ones in terms of energy consumption.

In short, our main contributions in this work are listed as follows.

1. A comprehensive review of existing sensing paradigms and their applications with 64 high-impact
mobile sensing systems.

2. The proposal of symbiotic sensing, a paradigm inspired by symbiotic relationships among living
creatures in the nature.
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3. Mathematical models for evaluating sensing paradigms that take into account multiple issues
encountered in real-world sensing situations.

4. Quantitative evaluation results of sensing paradigms using statistical parameters and available
experimental datasets obtained by existing literature.

5. The implementation of SENSILO, a cross-sensing service running on the Android platform to
allow the deployment of symbiotic sensing in real world.

The rest of this paper is organized as follows. Section 2 reviews related work in large scale urban
sensing. Section 3 discusses the symbiotic relationships among living species in the natural world,
which motivates our proposed symbiotic sensing paradigm. Section 4 formulates the problem in
terms of evaluation criteria and presents the evaluation models. The sensing paradigms are then
quantitatively evaluated in Section 5. Section 6 presents our discussion in regards to key features,
privacy issues, and SENSILO implementation. Finally, we conclude our paper in Section 7.

2. Background on Urban Sensing

Sensing with mobile device integrated sensors is a new approach that empowers citizens to create
a large-scale network to improve the living condition of society. Smartphone owners are encouraged to
contribute sensing tasks (e.g., data collection, analysis, verification, and sharing) using their devices for
societal and environment information extraction and services, which include healthcare, public safety,
environment conservation, and transportation.

In the last decade, a number of studies have developed frameworks, platforms and techniques
for various applications with mobile phones using the opportunistic sensing paradigm. Table 1
partially lists the papers that can be found with the keywords including mobile pervasive computing,
mobile sensing, smartphone-based sensing, human-centric sensing, urban sensing, mobile crowd sensing,
and mobile crowdsensing. We use these generic keywords to avoid bias selection of sensing paradigms.
With these keywords, we search most relevant literatures in various digital libraries including Google
Scholar, IEEEexplore, Web of Science, and Scopus. It is interesting to observe that most current
large-scale mobile sensing systems are developed based on either opportunistic sensing [20] or
participatory sensing [21]. Only a few systems use hybrid sensing, albeit their approaches simply
combine the opportunistic and participatory sensing approaches. Although some recent work,
such as [29], have already used communication piggybacking to save energy consumed through
the transmission of data to central server, they have not considered the collaboration between the
applications, resource sharing and information exchange.

Literatures listed in Table 1 are summarized in Figure 1. We classify the applications according to
five main criteria: sensing paradigm (opportunistic, participatory, and hybrid), analysis method
(centralized vs. local), network, energy, and privacy. The summary numbers show that most
current work use either opportunistic or participatory sensing approaches. We hypothesize this
is because opportunistic and participatory sensing are plausible in terms of implementation. Moreover,
most current work are deployed in a small-scale and controllable experiments. Therefore, they do not
seriously encounter the problems of resource conflict and battery consumption, which are confirmed
by our evaluations in Section 5.

Figure 1 also shows that 73% of listed studies (47/64) send sampled data to a powerful central
server for heavy data processing. Most applications (61/64) send (processed) data directly to a server
through infrastructure-based networks such as 3G or WiFi. In addition, only 40% of the studies (26/64)
concern energy consumption, and 45% of the studies (29/64) the privacy problem of their systems.
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Table 1. Smartphone-based Sensing Applications.

Reference Description Application Paradigm Approach a Network Energy Privacy

DietSense [1] Image Scape Personal Participatory C Infrastructure No Yes
PerFallD [2] Fall Detection Personal Opportunistic L Infrastructure Yes Yes

HealthGear [3] Sleep Monitoring Personal Opportunistic L Infrastructure No No
SociableSense [4] Speaker Recognition Personal Opportunistic L Infrastructure Yes No

DarwinPhones [30] Speaker Recognition Personal Opportunistic L Ad-hoc Yes Yes
EyePhone [31] Eye-based Control Personal Participatory L Infrastructure Yes No

CONSORTSS [32] Health Monitoring Personal Participatory L Infrastructure No No
SPA [33] Health Monitoring Personal Participatory C Infrastructure No Yes

BALANCE [34] Food Advice Personal Participatory C Infrastructure No No
UbiFit Garden [35] Activity Advice Personal Participatory L Infrastructure No Yes

HyperFit [36] Nutrion & Exercise Personal Participatory C Infrastructure No No
HealthAware [37] Obesity Tackling Personal Participatory L Infrastructure No No

PACER [38] Paper Reading Personal Participatory C Infrastructure No No
HeartToGo [39] Cardiovascular Personal Opportunistic C Infrastructure No No

EmotionSense [40] Speaking Recognition Social Behavior Opportunistic L Infrastructure Yes Yes
CenceMe [5] Sport Analysis Social Behavior Participatory C Infrastructure No Yes

MoVi [6] Video Highlights Social Behavior Participatory C Infrastructure Yes Yes
Party [7] Party Detection Social Behavior Participatory C Infrastructure Yes Yes

Crowd Counting [8] Crowd Density Social Behavior Opportunistic L Ad-hoc Yes Yes
Human Mobility [41] Mobility Pattern Social Behavior Opportunistic C Infrastructure No Yes
Pedestrian Flocks [42] Flock Detection Social Behavior Opportunistic C Infrastructure No No

WhozThat [43] Indoor Localization Social Behavior Opportunistic C Infrastructure No Yes
Blueetooth Sensing [19] Mobility and Interactions Social Behavior Participatory C Infrastructure Yes No

FlierMeet [44] Public Information Sharing Social Behavior Participatory C Infrastructure No No
Laermometer [45] City Noise Map Environmental Participatory C Infrastructure No No

PEIR [46] Environment Impact Environmental Participatory C Infrastructure No Yes
EarPhone [47] City Noise Map Environmental Participatory C Infrastructure Yes Yes
MicroBlog [48] Micro Map Environmental Participatory C Infrastructure Yes No

SoundSense [49] Music Detector Environmental Participatory L Infrastructure Yes Yes
Citizen Journalist [7] Citizen Journalist Environmental Participatory C Infrastructure Yes Yes

MobGeoSen [50] City Noise Map Environmental Participatory L Infrastructure No Yes
SmartDC [9] Human Mobility Environmental Opportunistic L Infrastructure Yes No
DeepEar [10] Environmental Sound Environmental Opportunistic L Infrastructure Yes No
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Table 1. Cont.

Reference Description Application Paradigm Approach a Network Energy Privacy

CommonSense [11] Air Monitoring Environmental Participatory C Infrastructure No No
MAQS [12] Indoor Air Monitoring Environmental Opportunistic C Infrastructure Yes No

iSee [51] Event Localization Environmental Participatory C Infrastructure No No
Crowdsourcing [24] Incentive Design Environmental Participatory C Infrastructure No No

Visibility [52] Air Visibility Environmental Participatory C Infrastructure Yes Yes
NoiseTube [53] City Noise Map Environmental Hybrid C Infrastructure No Yes

PEIR [46] Environment Impact Environmental Hybrid C Infrastructure No Yes
BikeNET [54] Environment Impact Environmental Hybrid C Infrastructure No Yes
T-Shape [55] Environment Impact Environmental Hybrid C Infrastructure No Yes

Bubble Sensing [56] Environment Impact Environmental Hybrid C Infrastructure No Yes
UnLoc [57] Indoor Localization Environmental Opportunistic L Infrastructure No No
2Loud? [58] City Noise Map Environmental Participatory C Infrastructure No Yes

Noise Monitoring [59] City Noise Map Environmental Participatory C Infrastructure Yes Yes
Smart Cities [60] City Noise Map Environmental Hybrid C Infrastructure Yes No

CarTel [61] Driving Pattern Transportation Opportunistic C Delay-Tolerant No No
Refuelling Behavior [62] Gas Station Placement Transportation Opportunistic C Infrastructure No No

GreenGPS [63] Fuel Efficient Routes Transportation Participatory C Infrastructure No No
ParkNet [64] Road-side Parking Transportation Opportunistic C Infrastructure No No

Travel Time [65] Congestions Detection Transportation Opportunistic C Infrastructure No Yes
Bus Waiting [66] Bus Arrival Prediction Transportation Participatory C Infrastructure Yes No
Railway Trip [67] Passenger Congestion Transportation Opportunistic C Infrastructure No No

Crowd Density [68] Crowd Density Transportation Opportunistic C Infrastructure No No
Pedestrian Flows [69] Crowd Congestion Transportation Participatory C Infrastructure Yes No

VTrack [70] Route Planning Transportation Participatory C Infrastructure Yes No
NeriCell [13] Bump Detection Transportation Opportunistic L Infrastructure Yes Yes

Road Bump [7] Bump Detection Transportation Opportunistic C Infrastructure Yes Yes
AnomySense [71] Lost&Found Transportation Opportunistic C Infrastructure Yes Yes
SmartRoad [14] Traffic Regulator Detection Transportation Participatory C Infrastructure Yes No
PublicSense [15] Public Facility Management Transportation Participatory C Infrastructure No No

CrowdWatch [16] Sidewalk Obstacle Detection Transportation Opportunistic L Infrastructure No No
Road Crack [72] Road Crack Monitoring Transportation Participatory C Infrastructure No No

a C: centralized, collected data are mainly processed at a central sever; L: local, collected data are mainly processed on mobile devices.
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Figure 1. Statistics of the surveyed applications. We classify the applications according to five criteria:
sensing paradigm (opportunistic, participatory, and hybrid), analysis method (centralized vs. local),
network, energy, and privacy.

2.1. Opportunistic Sensing

In opportunistic sensing, the smartphones start performing sensing tasks themselves when
the context is appropriate, satisfying user preferences, location, time, and sensor availability.
Opportunistic sensing systems run unobtrusively such that the users may not be aware of the sensing
tasks performed on their devices. Figure 2 illustrates a common architecture for the opportunistic
sensing systems. When sensing context is satisfied, sensory data will be unobtrusively captured and
analyzed by the application. The collected data will then be sent to a server for further analysis.

User Preference

Sensing configuration

Sensing Condition

Smartphone context 

(e.g. location, time, etc. )

Unoccupied sensors

(e.g. microphone, 

accelerometers, etc.)

Automated Sampling

(when sampling condition is 

satisfied)

Unobtrusively capture data

Collected Data

Contextual data

(Raw data or extracted 

features with timestamp)

GIS data

(data format for geographic 

information systems)

Scientific models

(estimation of the true data 

distribution)

Applications

Personal sensing

Social behavior 

sensing

Environmental sensing

Infrastructure sensing

Smartphone Smartphone/Server Server

Figure 2. Common architecture for opportunistic sensing.

Although opportunistic sensing is transparent to users, as data sampling is fully automated,
there are still several reasons that may deter users from installing the sensing applications.
Opportunistic sensing drains batteries and may disclose personally sensitive information (e.g., a user’s
location or context) indirectly when providing sensory data without the permission or awareness of
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the user. Nevertheless, many users would still accept installing the sensing application in order to
participate in opportunistic sensing because they can receive incentives [25,26], or are altruistic by
themselves for the greater societal benefit.

However, maintaining transparency is a challenging task since it is technically difficult to
determine when the context of the device is suitable for data sampling. An example is to know
when the smartphone is out of pocket or bag to collect sound samples for a city noise map application.
A common solution is tracking users’ activities and their devices’ context continuously; albeit it is not
an easy task.

2.2. Participatory Sensing

In participatory sensing, the user is involved in the sensing process to actively collect and share
data. In contrast to opportunistic sensing, participatory sensing places the burden on the user to
enhance data collection. Figure 3 illustrates the common architecture of the participatory sensing
paradigm. When the sensing condition is unsatisfied, the user is requested to cooperate with the
smartphone to perform sensing tasks. For example, the user is asked to capture some photos of
an event happening where he/she is standing or to validate and share context information retrieved
by the application. The higher level of data processing can be done locally on the device or centrally
on a powerful server [60].

User Preference

Sensing configuration

Sensing Condition

Smartphone context 

(e.g. location, time, etc. )

Sensor availability

(e.g. microphone, 

accelerometers, etc.)

Automated Sampling

(when sampling condition is 

satisfied)

Unobtrusively capture data

User Participation

Modify sensing 

condition

Manually capture data

Provide feedbacks

Actively share 

information

(when sensing condition is 

unsatisfied)

User Condition

Incentives (e.g. money, 

game items, social 

membership)

User availability (e.g. free 

time, good mood)

Collected Data

Contextual data

(Raw data or extracted 

features with timestamp)

GIS data

(data format for geographic 

information systems)

Scientific models

(estimation of the true data 

distribution)

Applications

Personal sensing

Social behavior 

sensing

Environmental sensing

Infrastructure sensing

Smartphone Participant Smartphone/Server Server

Figure 3. Common architecture for participatory sensing.

Since participatory sensing demands the involvement of the users, more users will hesitate to
participate and may not allow the application to be installed on their devices, when compared with
opportunistic sensing. To this end, participatory sensing should focus on tools and mechanisms that
reduce user effort to as little as possible to provide data. Another solution is the provision of some
credits, such as social benefits, monetary incentives [73,74], or game items, to the participants to
encourage their participation. However, it would be costly to recruit a large number of participants in
a large scale sensing system.
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3. Symbiotic Sensing: Motivation and Definition

In biology, symbiosis refers to relationships between organisms of different species that show
an intimate association with each other. A symbiotic relationship requires at least one of the
participating species to have a nutritional advantage, usually called the host. In general, symbiosis is
categorized into the three following types, depending on the nature of the relationship.

• Parasitism is the relationship in which the parasite derives nourishment from the host. It is
detrimental to the host. Examples include ticks, fleas, and leeches living on other big animals.

• Commensalism is the relationship that benefits only one of the partners. Neither of species is
dependent on the other for its existence. Examples include the relationship between porcelain
anemone crabs and anemones. The crabs benefit by gaining protection from the anemones.

• Mutualism is the relationship in which both partners benefit from each other but they may still
be able to live independently. For example, the clown fish gain protection from the anemones.
In return, they drop craps of food for the anemones to eat.

In the context of symbiotic relationships, opportunistic sensing and participatory sensing can
be seen as parasitism. In opportunistic sensing, sensing applications drain sensing resources from
the smartphones, which may be in use by another application. Consequently, smartphone battery is
depleted more quickly and other applications may not be able to access the resources. In participatory
sensing, sensing applications send requests to the user to obtain data. Users are supposed to manually
return their observation or to activate required sensors to collect data. Either way, participatory
sensing demands effort from the users. Moreover, in opportunistic and participatory sensing,
there might be a conflict when the same sensor is requested by more than one application. Thus,
if the sensing application has a lower priority, which is a common situation, the sensing task may not
be accomplished.

However, a sensing application can reuse the information or data that has already been obtained
by another application. For example, an application aiming to detect a user’s mood can reuse the
voice signal sensed by the microphone during phone calls. By doing so, the application consumes
very little extra energy. It also does not require the users to perform additional tasks for sensing.
More importantly, the sensing application can perform its sensing tasks without any conflict with the
phone call application. Note that the exchange can be performed not only between the applications
within the same smartphone but also among multiple smartphones in a cooperative manner.
If a smartphone does not have a certain type of sensor required for a sensing task, the application can
also acquire the data from nearby smartphones that have such sensors by means of commensalism
and mutualism. Therefore, if a sensing application is developed using the symbiotic mechanism, it can
benefit from the smartphones, other applications, and users without interrupting or draining much
extra energy. These advantages would help symbiotic sensing to attract more altruistic people to use the
sensing application. To improve the deployment success rate, incentive mechanisms should be explored
and implemented [24–26,73,74].

Inspired by the aforementioned symbiotic relationships, we propose the symbiotic sensing
paradigm that allows sensing applications to reuse resources and information available from other
applications to reduce energy consumption. The paradigm also avoids the conflict of requesting the
same sensing resources concurrently.

Definition 1. Symbiotic sensing is a sensing paradigm that allows sensing applications to share either
resources or sensing results with each other to avoid acquiring or processing the sensory data multiple times.
Applications designed with symbiotic sensing do not detriment each other, but they benefit from the association
by gaining shared resources and results.

Figure 4 illustrates a common architecture of the symbiotic sensing paradigm. The key feature
is a cross-application layer that allows applications to share sensed information such as contextual
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data, derived information and models. Unlike the opportunistic sensing paradigm, which performs
sampling data only when the sensor is unoccupied, the symbiotic sensing acquires the sensor if
and only if it is being used by another application to save energy. This piggybacking behavior of
symbiotic sensing is also applied for communication and derived information. For example, an activity
recognition application can benefit from a tracking application to enhance its reliability. It is unlikely
that a smartphone user is walking when the tracking application identifies that they are moving at
a high speed similar to a car.

User Preference

Sensing configuration

Sensing Condition

Smartphone context 

(e.g. location, time, etc. )

Sensors activated

(e.g. being used by another 

application)

Cross-application

(when sampling condition is 

satisfied and sensors are 

already activated by 

another application)

Unobtrusively piggyback 

sensory data and/or 

information retrieved by 

another application

Collected Data

Contextual data

(Raw data or extracted 

features with timestamp)

GIS data

(data format for geographic 

information systems)

Scientific models

(estimation of the true data 

distribution)

Applications

Personal sensing

Social behavior 

sensing

Environmental sensing

Infrastructure sensing

Smartphone Smartphone/Server Server

Figure 4. Common architecture for symbiotic sensing.

4. Problem Formulation and Evaluation Models

A daunting task for large-scale sensing applications using smartphones is the collection of reliable
data in a region of interest by using off-the-shelf smartphone sensors and then sending them to a central
server. Some examples of the collected data are environmental noise, temperature, dust particles,
carbon dioxide levels, radiation levels, road conditions, and events. For high reliability, data needs
to be sampled by at least a number smartphones. However, smartphones are controlled by different
users, and functioning in multiple roles, for example, in an application using the smartphones of car
drivers to detect road bumps. However not all cars runs via the same roads. Most drivers try to avoid
the bumps also. Moreover, some smartphones may run out of battery or the initial sensors may be
occupied by mobile games. Therefore, it is a tough challenge to ensure the completion probability of
data collection under these various sensing contexts.

Without loss of generality, we formulate the evaluation models for the data collection problem.
We assume that data is required to be collected from C types of sensors. We further assume that the
sensing application is installed on N smartphones. The collected data will then be sent to a central
server in raw or processed format. To obtain a certain accuracy, each type of sensory data needs to be
collected by at least M smartphones, where M 6 N.

To be able to choose a suitable sensing paradigm to deploy such sensing application, we need
quantitative evaluations to compare the performance of sensing paradigms. Two most important
aspects to evaluate a sensing paradigm is the probability of success and energy consumption. Therefore,
in this paper, we propose evaluation models on these aspects. Formally, we define success probability
and estimated energy consumption in the following subsections.
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4.1. Probability of Success

A sensing task is considered successful if and only if it is performed by at least M smartphones,
where M is predefined. In reality, the number of required smartphones is typically much smaller that
the total number of available smartphones N.

Definition 2. Probability of Success of a sensing paradigm is the probability that a sensing task is performed
by at least M smartphones to obtain a certain level of accuracy, given a system consisting of N smartphones,
M 6 N.

As a sensing task can only be executed under a certain condition, such as sensor availability,
smartphone context, and time, let p be the probability that the sensing application can perform
a sensing task on a single smartphone. The probability of success of a generic sensing paradigm is
given in the following lemma.

Lemma 1. Probability of Success. The success probability of a sensing paradigm is computed as:

P = 1−
M−1

∑
k=0

Ck
N pk(1− p)N−k, (1)

where Ck
N = N!

(k!(N−k)!) is the number of k-combinations of N elements.

Proof. The probability that the sensing task is performed by an arbitrary set of k smartphones is the
joint probability that k smartphones perform the sensing task and N − k smartphones do not perform
the sensing task, i.e., pk(1− p)N−k. In fact, there are Ck

N combinations where the sensing task is carried
out by k smartphones. Therefore, the probability that the sensing task is performed by k smartphones
is given by

P(k) = Ck
N pk(1− p)N−k.

Since the sensing task needs to be performed by at least M smartphones, the probability of success
is computed as

P = 1−
M−1

∑
k=0

P(k) = 1−
M−1

∑
k=0

Ck
N pk(1− p)N−k.

The rationale behind Lemma 1 is that the probability of success heavily depends on whether
a smartphone can perform a sensing task requested by the sensing application, which is represented
by p. Different sensing paradigms impose different conditions for the smartphone that result in
a different sensing probability p. Since the performance of smartphones are independent of each other,
the probability of success is a joint probability.

The probability that the smartphone can perform a sensing task, denoted by p, is assumed
to be equal for all the smartphones in Lemma 1. This simplification aims at making the model
comprehensible. In real-world applications, the probability p can be different among smartphones
due to the heterogeneity, e.g., different smartphones models and brands, different users, and different
tasks. Under these circumstances, p in Lemma 1 can be simply computed by averaging the individual
probabilities, which is sufficient for most applications. For a more accurate model of the probability of
success, a heterogeneous model should be studied like [75,76].

There are several issues that may affect the chance of a sensing task being performed on
a smartphone. For example, the user must agree to take part in the sensing task, the phone must be in
a suitable context for data sampling (e.g., at a particular location), the phone must have the required
sensor, etc. Therefore, to make the derivation more clearly, we first define a number of elementary
probabilities as follows.
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Definition 3. Probability of Permission (Pp) is the probability that a user agrees to take part in sampling data
when there is a request.

Definition 4. Probability of User (Pu) is the probability that a user actually takes part in sampling data,
for example, the probability that a user takes their smartphone out of their pocket just to take a photo of the sky
for an air monitoring application when the application requests.

Definition 5. Probability of Context (Pc) is the probability that a smartphone has its context matched with the
sampling requirements, for example, when a smartphone is out of the pocket for some other purpose but also can
thus be used to record environmental noise.

Definition 6. Probability of Sensor (Ps) is the probability that a smartphone is integrated with the sensor type
required by the sensing task.

Definition 7. Probability of Occupation (Po) is the probability that the required sensors are being occupied
by another application given the matched context, for example, the percentage of time the user using his/her
smartphone to take a picture for himself/herself.

In symbiotic sensing, a phone completes a sensing task only if it owns the required sensor,
it is in relevant context, and there is another application using the required sensor. In other words,
the probability that it completes the sensing task is a joint probability p = PsPcPo. Therefore, the success
probability of symbiotic sensing is

Psymbiotic = 1−
M−1

∑
k=0

Ck
N (PsPcPo)

k (1− PsPcPo)
N−k. (2)

On the other hand, in opportunistic sensing, a phone completes a sensing task only if the required
sensor is not being used by any other application, making the probability p = PsPc P̄o, where P̄o = 1− Po

is the complement of Po. Therefore, the success probability of opportunistic sensing is

Popportunistic = 1−
M−1

∑
k=0

Ck
N (PsPc P̄o)

k × (1− PsPc P̄o)
N−k . (3)

There are two scenarios in which a sensing task is completed in participatory sensing. When the
sensing context is matched, the smartphone may execute the sensing task without help from the user
with probability PpPsPc P̄o. Otherwise, if the sensing context is not matched, the application will request
the user to help. However, the user might be reluctant to do so with a probability of Pu. Therefore,
the probability that the smartphone can execute the sensing task with the support from the user is
the joint probability PpPs P̄cPu, where P̄c = 1− Pc. Thus, we have the probability that the smartphone
can execute the sensing task with participatory sensing as p = PpPs (Pc P̄o + P̄cPu). Replacing this
probability p into Equation (1), we have the success probability of participatory sensing computed as

Pparticipatory = 1−
M−1

∑
k=0

Ck
N
[
PpPs (Pc P̄o + P̄cPu)

]k ×
[
1− PpPs (Pc P̄o + P̄cPu)

]N−k . (4)

The hybrid sensing paradigm is slightly different to participatory sensing. When the sensing
context is matched, the smartphone will sample data regardless of the availability of the required sensor
with the support of a resource sharing application service. Additionally, a hybrid sensing application
does not request the user to support collecting data if the sensing context is matched. Therefore,
the probability that the smartphone can execute the sensing task when the context is matched is
PsPc. If the sensing context is unmatched, the application will request the user to assist in sampling
data. Therefore, the probability that the sensing task can be completed with the assistance of the
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user is Ps P̄cPpPu. Hence, the possibility that the smartphone can perform the sensing task is the joint
probability p = Ps

(
Pc + P̄cPpPu

)
. Thus we can define the success probability of hybrid sensing as

Phybrid = 1−
M−1

∑
k=0

Ck
N
[
Ps

(
Pc + P̄cPpPu

)]k ×
[
1− Ps

(
Pc + P̄cPpPu

)]N−k . (5)

4.2. Estimated Energy Consumption

To have a sensing task performed by at least M smartphones, the application needs to be installed
on N smartphones. As the task execution is probabilistic, we need to estimate the total energy
consumption of the application on such N devices.

Definition 8. Estimated Energy Consumption of a sensing paradigm is the estimated quantity of energy
consumed by the application installed on N devices of the system during a unit of time, such that a sensing task
is performed by at least M smartphones to obtain a certain level of accuracy, M 6 N.

Energy consumption of a sensing system consists of multiple aspects, e.g., the energy to run the
phone and sensors in idle mode, the energy to run the sensors for data collection, and data transmission
energy. Therefore, we define the elementary energy consumption as follows.

Definition 9. Idle Energy Consumption (ei) is the energy that the application consumes during a unit of time
when it is idle, without capturing any data from sensors or doing localization.

As the energy consumed during active mode is typically higher than the energy consumed during
idle mode, we define the following types of energy as the extra amount of energy consumed during
idle mode.

Definition 10. Sensor Energy Consumption (es) is the extra energy that the requested sensor consumes while
performing the sensing task during a unit of time.

Since the sensory data might not be meaningful without the associated location information,
we consider energy consumption for localization as one of the key elements to estimate
energy consumption.

Definition 11. Localization Energy Consumption (el) is the extra energy that a localization system consumes
to update the location information of sampled data during a unit of time.

Definition 12. Communication Energy Consumption (ec) is the extra energy that a device consumes to transmit
sampled data to another device or a server during a unit of time.

Given the above definitions of elementary energy consumption, we propose the estimated energy
consumption for a generic sensing paradigms as follows.

Lemma 2. Expectation of Energy Consumption. Let p be the probability of a sensing task being performed
successfully on a single smartphone in a system of N smartphones. The expectation of the total energy E
consumed by the system is given by

Ē =
N + M

2
p (es + el + ec) + Nei (6)

where M is the required minimum number of smartphones that perform the sensing task.
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Proof. By definition, p is the probability that the phone is in active mode for sensing, which consumes
sensor energy es, localization energy el , and communication energy ec, on top of idle energy ei. This also
means that (1− p) is the probability that the sensing application is in idle mode, which consumes only
idle energy ei. Therefore, the estimated energy consumed by the application on a single smartphone is
given by p (es + el + ec + ei) + (1− p) ei.

If the sensing task is performed by k smartphones, the estimated energy consumed by those
k smartphones is k [p (es + el + ec + ei) + (1− p) ei]. At the same time, there are another (N − k)
application instances that are in idle mode and consume a quantity of energy equal to (N − k) ei. Thus,
the energy consumed by the system when there are k smartphones performing the sensing task is
given by

E(k) = k [p (es + el + ec + ei) + (1− p) ei] + (N − k) ei

= kp (es + el + ec) + Nei.

As the sensing task succeeds only when it is performed by at least M smartphones, we only take
into account E (k) with M ≤ k ≤ N. The estimated energy consumption can be one of the values in the
set {E (k) , k = M, . . . , N} with a probability of 1

N−M+1 . Therefore, we have the expectation of energy
consumption computed by

Ē =
N

∑
k=M

1
N −M + 1

E (k)

=
N

∑
k=M

1
N −M + 1

[kp (es + el + ec) + Nei]

=
N + M

2
p (es + el + ec) + Nei.

For symbiotic sensing, as shown in Equation (2), the probability that the sensing application
performs the task is p = PsPcPo. We can replace this probability p in Equation (6). However,
unlike other sensing paradigms, a symbiotic sensing application does not consume extra energy
to activate the sensor as it reuses the data sampled by another host application. It can also retrieve
the location information recently retrieved by another application, such as Google maps or Facebook.
Furthermore, it is possible to piggyback on another application to transmit sampled data without
consuming extra power by increasing the bandwidth or data rate as being studied in [77]. Therefore,
es, el and ec in Lemma 2 can be omitted for symbiotic sensing in most cases. In other words, we have
the expected energy consumption of symbiotic sensing given by

Ēsymbiotic = Nei. (7)

As shown in Equation (3) for opportunistic sensing, the probability that the sensing application
performs the sensing task is p = PsPc P̄o. Replacing this probability p into Lemma 2, we obtain the
expected energy consumption of opportunistic sensing as

Ēopportunistic =
N + M

2
PsPc P̄o (es + el + ec) + Nei. (8)
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For participatory sensing as can be seen in Equation (4), the probability that the sensing application
performs the task is p = PpPs(Pc P̄o + P̄cPu). Replacing this probability p into Lemma 2, we obtain the
expected energy consumption of participatory sensing as

Ēparticipatory =
N + M

2
PpPs (Pc P̄o + P̄cPu)

×(es + el + ec) + Nei.
(9)

For hybrid sensing as shown in Equation (5), the probability that the sensing application performs
the sensing task is p = Ps

(
Pc + P̄cPpPu

)
. However, the probability that the application executes the

sampling task by acquiring sensors is only Ps
[
Pc (1− Po) + P̄cPpPu

]
. For the rest of the probability,

PsPcPo, the application piggybacks on other applications to gain the power consumption benefit.
Therefore, the expected energy consumption of hybrid sensing is given by

Ēhybrid =
N + M

2
Ps

[
Pc (1− Po) + P̄cPpPu

]
× (es + el + ec) + Nei.

(10)

5. Quantitative Evaluation

In this section, we evaluate symbiotic, opportunistic, participatory and hybrid sensing paradigms
in terms of the models given in Section 4. Although our evaluation models are applicable to any kind
of sensor, we demonstrate them on two case studies of urban sensing applications using microphones
or cameras of smartphones. The reason for choosing to demonstrate on these sensors is that they are
the most power-hungry sensors of modern smartphones. Looking at the applications listed in Table 1
(Section 2), we observe that road monitoring [13,14,16,60,72] and noise monitoring [45,47,53,58,59]
are quite common applications. Among these works, we select NeriCell [13] (road bump detection)
and Ear-Phone [47] (city noise map) as representatives since they have been very well recognized
by the urban sensing community. NeriCell had more than 1000 citations and Ear-Phone had more
than 500 citations. Moreover, NeriCell is a representative of opportunistic sensing while Ear-Phone is
the counterpart of participatory sensing. In these case studies, we evaluate the probability of success
and estimated energy consumption using realistic statistical parameters obtained from the literature.
For each case, we first evaluate the system with the original sensing paradigm and then evaluate it with
the symbiotic or hybrid sensing paradigm. As explained in Section 4.1, the probabilities are assumed
to be equal on all the smartphones. When building a real system, the probabilities of smartphones
should be averaged when applying our probabilistic models. More realistic models that incorporate
the heterogeneity of smartphones like [75,76] are planned in future work. The evaluation models were
implemented with Matlab. The source codes that were used to produce the results in this paper can be
found at [78].

5.1. Case Study 1: Road Bump Detection

NeriCell [13] proposes a smartphone-based sensing system based on the opportunistic sensing
paradigm that aims to detect potholes, bumps, braking, and honking. Besides accelerometers,
GSM radio, and/or GPS sensors, NeriCell uses microphones of smartphones to detect honks and
identify noisy and chaotic traffic conditions like that at an unregulated intersection. The number
of detected honks, together with corresponding locations and time, are sent to a data server for
further processing.

To evaluate the system in this use case, we obtain the elementary probabilities such as the
probability of sensor Ps or probability of context Pc from the literature. As each smartphone has at least
one microphone, we set Ps = 1 for the microphone sensor type. Since microphones are power-hungry,
the NeriCell system continuously monitors the Global System for Mobile Communications (GSM)
radio and accelerometer to trigger the microphones when needed, such as when braking is detected.
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If significant levels of braking as well as honking are detected, it might indicate traffic chaos.
Such a condition can be considered as an element of context matching for sampling data. During their
experiments in Bangalore and Seattle, microphones were active 5% of the time. In addition,
when performing opportunistic sensing in real-world situations, smartphones also need to be outside
pockets for reliable audio measurements [79]. In 2012, Bristons spent an average of 90 min per day
on their smartphones [80]. Although a smartphone can be out of pocket even if it is not in use (such
as when it is left idle on a table) we use this statistical number as an approximate probability of the
context matching. Therefore, the probability that the context of a smartphone is matched with the
sensing condition is given by

Pc = PHaveBump × POutPocket

= 0.05× (90/(24× 60)) = 0.0031.
(11)

Moreover, in [13], microphones on smartphones are assumed to be always ready to perform a
sensing task, but this assumption does not hold in real-world scenarios due to the conflict of access
with other smartphone applications. As also presented in [80], Bristons used their mobile phones
17% of such 90 min per day for making phone calls. Given the microphone is an exclusive sensor
that typically cannot be accessed by multiple applications at the same time, except being supported
by some middleware platform for cross-sensor applications, we conservatively set the probability of
occupation Po = 0.17.

Using these values of Ps, Pc, and Po, we compute the success probability of symbiotic,
opportunistic, and hybrid sensing paradigms for this application, following Equations (2), (3), and (5),
respectively. Since NeriCell does not specify the minimum number of smartphones to detect a bump,
we set M = 1. Varying the total number of smartphones N in the system, we plot these probabilities
in Figure 5.
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Figure 5. Evaluation of the NeriCell [13] honk detection application in terms of the success probability
when applying opportunistic sensing (original work), symbiotic sensing, and hybrid sensing.

Figure 5 shows that for the same number of smartphones N, symbiotic sensing achieves a lower
probability of success compared to opportunistic and hybrid sensing. In other words, if NeriCell
had implemented a symbiotic sensing approach, it would have required a larger total number of
smartphones to ensure that audio data is recorded when a bump is detected by accelerometers.
To achieve a success probability of 1, the original implementation of NeriCell with opportunistic
sensing requires at least 1774 smartphones, while symbiotic sensing requires at least 8667 smartphones,
approximately five times more. This is the trade-off to the energy saving gained by using the symbiotic
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sensing approach. Note that in large-scale mobile sensing systems, there are thousands of smartphones
participating. In such cases, the probability of success will be close to 1 even for symbiotic sensing.

In terms of energy consumption, since the HP iPAQ used in NeriCell [13] is outdated and its
energy consumption is different to that of today’s smartphones, we use recent specification to derive
parameters for our energy consumption models. For this, we use the energy consumption estimated by
Ciman and Gaggi [81] on Samsung Galaxy i9250 smartphones using the Monsoon Power Monitor [82].
Specifically, the extra energy consumed when activating microphones is 0.4154 mAh, and that of
GPS is 1.5959 mAh. Therefore, we set the Sensor Energy Consumption es = 0.4154 mAh, and the
Localization Energy Consumption el = 1.5959 mAh. Furthermore, the power consumption in idle
mode is ei = 1.6582 mAh.

For the transmission of data from the smartphones to a base station, we assume that a WiFi
connection is used for its low power consumption—as low as five times less than that of other wireless
interfaces such as GSM 3G or LTE [83]. As being measured by [83], the extra power consumption of WiFi
when actively transferring data is 650 mAh. Thus, we set the Communication Energy Consumption
ec = 650 mAh.

Replacing these energy consumption parameters into Equations (7), (8), and (10), we obtain the
expected energy consumption per device of the bump detection application when it is implemented
with symbiotic, opportunistic, and hybrid sensing, respectively. The results are plotted in Figure 6.
As proven in Equation (7), each smartphone installed with a symbiotic sensing paradigm consumes
a constant amount of energy, which is equal to the idle power consumption such as 1.6582 mAh
in our study case. Conversely, the other sensing paradigms consume more energy. For example,
hybrid sensing consumes more than 7 mAh per device.
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Figure 6. Evaluation of the NeriCell [13] honk detection application in terms of the estimated
energy consumption when applying opportunistic sensing (original work), symbiotic sensing,
and hybrid sensing.

Comparing to opportunistic sensing implemented in NeriCell [13], the symbiotic sensing
paradigm saves just a small amount of energy. The reason is that NeriCell continuously detects
bumps with accelerometers. Then they use the detected bumps to trigger the microphones in order
to conserve the battery life of the smartphones. The empirical evidence from their experiments
shows that the microphones were activated by triggers only 5% of total time, which is already energy
efficient. To validate this conjecture, we simulate energy consumption without the sensing condition
constrained by triggers. Under such circumstances, the energy consumption per device when using
the opportunistic sensing approach rises up to more than 6 mAh, which is approximately four times
larger than when using the symbiotic sensing approach. Therefore, symbiotic sensing is more energy
efficient than opportunistic and hybrid sensing.
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5.2. Case Study 2: City Noise Map

In this case study, we evaluate the sensing paradigms when deployed for a noise map
application using smartphones’ microphones like the Ear-Phone [47]. As the Ear-Phone application
was implemented using a participatory sensing scheme, we compare this sensing paradigm with
symbiotic and hybrid sensing using the models proposed in Section 4 and realistic parameters obtained
from the literature.

We approximate the probability of permission Pp as the probability of participating in cellphone
surveys. For example, Brick et al. [84] contacted 4448 individuals to ask them to complete an interview
via cellphones, and 1561 of them agreed to participate. Therefore, we set the probability of permission
to be Pp = 0.3. Additionally, in the same study, only 318 participants completed all the questions.
Hence, we set the probability of user Pu = 318/1561 ≈ 0.2.

Unlike the NeriCell system, Ear-Phone does not generate triggers to activate the
microphones. Therefore, we assume that the context suitable for recording environmental
sound is when the smartphone is out of pocket. Hence, we assume the probability of
context Pc = 90/(24× 60) = 0.0625, according to [80]. The probability that microphones are occupied
is assumed to be equal the probability of usage time for making phone calls. Thus we have a probability
of occupation of Po = 0.17, according to [80]. Since each smartphone has at least one microphone,
we set the probability of sensor Ps = 1.

Replacing these parameter values into Equations (2), (4) and (5), we obtain the probabilities of
success as plotted in Figure 7a. This figure shows that the participatory sensing paradigm achieves a
higher probability of success than the symbiotic sensing paradigm for the same number of smartphones
N. This is consistent with our theorems since participatory sensing benefits from the collaboration of
users. Nevertheless, when increasing the number of participated smartphones, the success probability
of symbiotic sensing also increases to 1, as high as the other sensing paradigms. Figure 7a also shows
that hybrid sensing is the best choice for small-scale systems that prioritize the probability of success
over energy consumption.
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Figure 7. Evaluation of the Ear-Phone [47] city noise map application in terms of the success probability
when applying participatory sensing (original work), symbiotic sensing, and hybrid sensing with
different minimum required observations: (a) M = 1; (b) M = 5.

Recall that environmental audio samples collected from mobile phones are incomplete and
inaccurate because of diversity. Ear-Phone [47] uses compressive sensing to interpolate missed samples.
Another way to improve the quality of samples is to require more than one smartphone to sample
the same event, i.e., M > 1. Figure 7b shows the probability of success when M = 5. As needing
more observations, all sensing paradigms require more smartphone to deploy the sensing application.
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For example, to achieve the success probability of 1, the number of smartphones required by symbiotic
sensing increases from 432 to 1089.

To evaluate the energy consumption of the city noise map application, we use the same parameter
values presented in the previous section. A comparison of estimated energy consumption per
smartphone of symbiotic, participatory and hybrid sensing is plotted in Figure 8. This comparison
shows that the average energy consumed by symbiotic sensing is only 80% of that consumed by
participatory sensing.
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Figure 8. Evaluation of the Ear-Phone [47] city noise map application in terms of the expectation of
estimated energy consumption when applying participatory sensing (original work), symbiotic sensing,
and hybrid sensing with different minimum required observations: (a) M = 1; (b) M = 5.

Comparing the bar graphs in Figure 8a,b we observe that the estimated energy consumption
per device does not change much for all sensing paradigms when we change M from 1 to 5.
The reason is that the energy consumption per device heavily depends on the probability of performing
sampling tasks, when the device has to activate power-hungry components and services. Nonetheless,
only symbiotic sensing can yield an absolutely constant power consumption per device when varying
the required observation number M with average energy consumption of 1.6582 mAh for both cases of
M. For other sensing paradigms, the estimated power consumption per device indeed increases when
M is increased. For example, the estimated power consumption per device of participatory sensing
increases from 8.2287 mAh (M = 1) to 8.2436 mAh (M = 5), and that of hybrid sensing increases from
12.5125 mAh (M = 1) to 12.5372 mAh (M = 5). For the whole system, the total energy consumption for
different sensing paradigms may become more distinguishable, when multiplying these incremental
values with a large number of smartphones.

6. Discussion

In this section we will discuss remarkable points related to important features, security and
privacy, and implementation feasibility of symbiotic sensing.

6.1. Key Features

Regardless of the absolute parameters and results of the quantitative validation in Section 5,
we observe several points when considering the risk and reward in terms of the success probability
and energy saving as follows.

• Sharing required resources among sensing applications, the symbiotic sensing paradigm
consumes very little extra energy. In particular, it saves an amount of energy that is proportional
to the probability of occupation.
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• In a small-scale sensing system, the hybrid sensing paradigm would be the best choice to ensure
a high success probability. However, if the application requires only a few smartphones to sense
the same event simultaneously and the success probability is less prioritized, the symbiotic
sensing paradigm is apromising alternative to save energy, especially when the probability of
occupation is relatively high.

• In a large-scale sensing system consisting of multiple sensing applications, the symbiotic sensing
paradigm is advantageous compared to other paradigms since it performs similarly or even better
in terms of probability of success, whilst consuming very little extra energy for its own sensing
task by sharing sensing resources.

• The advantage of the symbiotic sensing paradigm over the opportunistic sensing paradigm
can be optimized by controlling the number of smartphones that need to install the sensing
application. Depending on how many smartphones need to sense the same event simultaneously,
the application should be deployed on a limited number of smartphones to mitigate the trade-off
between energy consumption and probability of success.

6.2. Privacy

In general, mobile sensing involves collecting, storing, processing and fusing a huge volume of
data related to daily human activities because data originates from sensors of the smartphones carried
by people. In fact, smartphones can readily function as sophisticated sensor platforms, albeit not built
specifically for sensing as dedicated sensing devices. Data collected by smartphones can be used to
reveal contextual information of users (e.g., activities, locations, social interaction, health conditions,
and behaviors). Therefore, sensed data itself needs to be encrypted and protected from untrusted
viewers. The identity of the user, especially participants in the participatory sensing systems, needs to
be highly secured or anonymous. Can a participant trust the sensing systems not to track their location,
activities when sensing tasks execute or when they submit the reports?

Besides the aforementioned privacy issues that can happen to all kinds of sensing paradigm,
sharing sensed data and derived information in symbiotic sensing has its own privacy challenges.
Perhaps the most obvious concern is the security of shared data and information, especially contextual
information inferred by host applications. The fact is that the information collected by a host
application may be leaked through sharing with the symbiotic sensing application, although the host
itself has security implemented. Another concern is the integrity of sensing applications. A sensing
application that shares data needs to trust each other. If not, the symbiotic sensing paradigm cannot
be implemented. It is necessary to obtain an agreement between the host and the sensing application
(e.g., kinds of data can be shared, codes to decrypt data, or security for communication channels).

6.3. Implementation

To the best of our knowledge, the feasibility of sharing sensing resource among applications
varies from operating system to operating system, and from smartphone to smartphone. For instance,
Android operating systems do not allow two or more applications to simultaneously access the
microphone stream since the audio recording method (MediaRecorder) is synchronized. Therefore,
we implemented a symbiotic sensing service for the Android operating systems, which is a preliminary
example to facilitate the implementation of symbiotic sensing in real systems. We select Android
because of its proliferation over other operating systems. The symbiotic sensing service is named
SENSILO (sensing silo). We publicly share this sensing service to the research community to use in
large scale sensing systems. The source codes can be downloaded at [85].

Figure 9 shows the software architecture of the SENSILO service. Assume that there are k
different sensing applications installed on m smartphones. These applications are assumed to have
a number of overlapping sensing tasks, which should be done collaboratively through the Sensing Task
Management component. In order to function without users’ awareness, these sensing tasks should be
performed only if the sensing condition matches with the application design. The sensing condition is
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comprised of the user preferences, sampling condition, and smartphone-context condition. The user
preferences are set by the user to control the user experience and privacy, for instance, which kind
of sensors can be accessed and shared by the sensing application or when heavy computing tasks
can be executed. The sampling condition determines if the requiring sensor is currently occupied by
native applications and can be shared with sensing applications through the Cross-Resource Service.
Given contextual data provided by the Cross-Resource Service, smartphone context can also detect
whether it is suitable for performing sensing tasks. Note that the sensing tasks can be shared among
applications installed on different smartphones via a wireless communication such as WiFi, Bluetooth,
and mobile Internet.

Wireless

Communication
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Application 1 Application 2 Application k

MIC ACC GPSCAM WIFI

Cross-Resource Service

Sensing Task Management

Sensing Condition Detection

User Preference
Settings

Smartphone-
Context Detection
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Figure 9. SENSILO software architecture.

Figure 10 demonstrates some screenshots of the SENSILO service. In particular, SENSILO is of
bound service to save sensing energy, which typically lives only while it serves a sensing application
and does not run in the background continuously. In other words, when there is no sensing application
opening, SENSILO kills itself. Once there is a sensing application request, SENSILO will turn on
again to provide the cross-sampling service. In addition, SENSILO is capable of handling multiple
requests simultaneously. To do so, we implement Android Interface Definition Language (AIDL) to
perform interprocess communication (IPC), the interface for the service to communicate with its clients
(sensing applications).

User preferences can be set through a graphical user interface as shown in Figure 10. The user
can set the desired sampling rates, sensor types, sensor loggers, feature types, etc. For energy saving,
we also implement the adaptive sampling method based on context change detection, which is
presented in [86]. More details of SENSILO can be found at [85].
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Figure 10. Screenshots of SENSILO settings and preference.

7. Conclusions

We have presented symbiotic sensing, a biology-inspired sensing paradigm for implementing
energy-saving urban sensing systems based on smartphones. Since the number of smartphone
applications has increased significantly while the sensing resources on smartphones are limited,
the symbiotic sensing approach addresses the problem of sharing the resources as well as outcomes
among the applications, similarly to the mutual relationships among living creatures in the natural
world. We also proposed evaluation models to quantitatively compare the new sensing paradigm
to existing ones. Through the quantitative evaluation of the models using statistical parameters and
datasets from real-world sensing systems, we showed that symbiotic sensing can mitigate the energy
consumption problem existing in other sensing paradigms. We also analyzed the pros and cons of
smartphone-based systems using different paradigms. Although the application diversity should be
considered, the symbiotic sensing paradigm is energy-efficient and scalable, showing the potential to be
a better choice than others when designing large-scale systems, with an enormous number of available
smartphones and applications. Moreover, the evaluation models presented in this work are useful
to evaluate the potential of mobile sensing systems before deploying on a large scale. Implementing
the evaluation models with specific applications will provide more conclusive evidences into that
symbiotic sensing is a suitable energy-efficient approach for large-scale mobile sensing systems.
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