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Abstract: Intensified charge-coupled device (ICCD) images are captured by ICCD sensors in
extremely low-light conditions. They often contains spatially clustered noises and general filtering
methods do not work well. We find that the scale of the clustered noise in ICCD sensing images
is often much smaller than that of the true structural information. Then the clustered noise can be
identified by properly down-sampling and then up-sampling the ICCD sensing image and comparing
it to the noisy image. Based on this finding, we present a denoising algorithm to remove the randomly
clustered noise in ICCD images. First, we over-segment the ICCD image into a set of flat patches,
and each patch contains very little structural information. Second, we classify the patches into noisy
patches and noise-free patches based on the hypergraph cut method. Then the noise-free patches are
easily recovered by the general block-matching and 3D filtering (BM3D) algorithm, since they often
do not contain the clustered noise. The noisy patches are recovered by subtracting the identified
clustered noise from the noisy patches. After that, we could get the whole recovered ICCD image.
Finally, the quality of the recovered ICCD image is further improved by diminishing the remaining
sparse noise with robust principal component analysis. Experiments are conducted on a set of ICCD
images and compared with four existing denoising algorithms, which shows that the proposed
algorithm removes well the randomly clustered noise and preserves the true textural information in
the ICCD sensing images.

Keywords: ICCD image sensor; randomly clustered noise; hypergraph cut; principal component
analysis; image denoising

1. Introduction

Intensified charge-coupled device (ICCD) images are captured by ICCD sensors in extremely
low-light conditions [1]. The principle of ICCD sensors is summarized as follows. First, electrons
obtained by photoelectric conversion are injected into many microchannel tubes with voltage. Then,
each electron crashes into the wall of a tube to generate more electrons. After that, all the electrons are
ejected from the microchannel tubes to the fluorescent screen. Finally, a general CCD sensor is used
to capture the image on the screen. In this way, the ICCD sensor could capture images in low-light
environment. An introduction of a real ICCD image sensor was given in [2].

Although ICCD sensors have imaging abilities in extremely low-light environments, they may
increase the noise of the image significantly due to the randomly generated electrons. Therefore,
the noise in ICCD sensing images is more complicated than that in natural images. It generally
has the following two characteristics: (a) Different from the independent and identically distributed
(i.i.d.) noise in natural images, the noise in ICCD images is spatially clustered due to the use of
microchannel tubes, which damages the structure information of the image and induces unexpected
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structure information. (b) Unlike general noise with a fixed pattern, e.g., natural images with raindrop
or moire patterns, the noise in ICCD images appears in a randomly clustered pattern. An example
of ICCD images is shown in Figure 1. It can be seen that the ICCD image induces unexpected
structure information and its pattern appears random, which consequently destroys the true structure
information of the image. A deep analysis of the random clustered noise has been given in [2],
by comparing it with that of natural images. Indeed, this problem exists not only in ICCD images,
but also in other possible scenarios, such as images captured in front of a frosted window.
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Figure 1. An image captured by an ICCD sensor and its noise pattern (enhanced by histogram equalization).

In this paper, we focus on removing the randomly clustered noise in ICCD sensing images, which
are captured by the ICCD sensor [2]. The noise removal problem has been well studied for i.i.d. noise
and fixed pattern noise in the past decades [3]. However, the existing algorithms for i.i.d. noise
generally do not work well for ICCD images, because the large scale and intensity of the clustered
noise may be wrongly treated as true structure information with these algorithms. Existing algorithms
for pattern noise are generally suitable for noise with fixed patterns only, such as water droplets or
raindrops in natural images [4–8]. Other fixed pattern noise removal problems were also addressed
by various solutions in the past. For example, moire pattern noise removal was studied in [9–11].
An algorithm for textural pattern noise removal was proposed in [12], based on a nonlocal means
filter [13]. The pattern noise in document analysis systems such as stroke-like patterns and background
patterns was studied in [14,15]. The researchers in [16] modeled and removed the fixed pattern
noise in photonic mixture devices. The researchers in [17] proposed a framework for a video jointly
corrupted by random noise and spatially correlated fixed-pattern noise. Recently, the researchers
in [18] discussed the noise removal of a newly emerging pattern, i.e., the canvas patterns in digital
acquisitions of paintings. One unified solution for these fixed pattern noises is self-learning-based
signal decomposition [6–8]. In this solution, the image is first decomposed into a low-frequency
component and a high-frequency component, and a dictionary is learned from the high-frequency
component. Then, the feature of the noise pattern is extracted from the dictionary elements. After that,
the dictionary is classified into a noise-free sub-dictionary and noise sub-dictionary by classifiers or
clustering [19]. The noise-free sub-dictionary is used to reconstruct the high frequency component
by sparse representation. Finally, the image is restored by combining the low-frequency component
and the reconstructed high-frequency component. However, all these existing algorithms were
designed for fixed pattern noises, e.g., fixed shape or characteristic noise. Thus, they may not be
suitable for the randomly clustered noise in ICCD images. In [2], we studied this problem based on
sparse representation. However, it often loses some textural information of the ICCD image in the
smoothing process.
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In this paper, we attempt to remove the randomly clustered noise in the ICCD images that are
captured by ICCD sensors, while preserving their textural information. We found that the scale of
the clustered noise (e.g., the noise in region A in Figure 1) is often much smaller than that of the real
structural information (e.g., the edge in region B in Figure 1) in ICCD images. Based on this finding, we
propose to down-sample the ICCD image based on the scale of the noise and then up-sample it. In this
way, the clustered noise in the ICCD image can be estimated by calculating the residuals between
the up-sampled image and the noisy one. Then, the ICCD image can be classified into noisy patches
and noise-free patches based on the significance of the clustered noise. To this end, we over-segment
the ICCD image into non-overlapped patches and each patch does not include obvious structural
information, for which we adopt the watershed algorithm [20]. To identify noisy patches accurately,
we take the segmented patches as vertices and construct the hypergraph [21] to model the relationship
between the patches, then the patches are classified into noisy patches and noise-free patches with the
hypergraph cut algorithm [21].

Based on the patch classification process, we filter the noisy patches and noise-free patches
separately. For the noise-free patches, they do not include significant clustered noise. They can be
easily recovered with general image filtering methods for natural images. For the noisy patches,
the clustered noise can be recovered by subtracting the mean value of the residuals in each patch
from the noisy one. Then the recovered ICCD image can be obtained with all these recovered patches.
In the experiment, we find that the recovered ICCD image still includes some sparsely clustered noise.
Thus, we further post-process the recovered ICCD image by diminishing its noise based on a robust
principal component analysis. The proposed noise removal algorithm is evaluated on an ICCD image
dataset and compared with four existing denoising algorithms, which demonstrates that the proposed
algorithm effectively removes the randomly clustered noise in the ICCD image and preserves the
textural information.

The rest of the paper is organized as follows. In Section 2 we introduce related models that are
required in developing the proposed algorithm. In Section 3, we introduce the framework of the
proposed algorithm. In Section 4, we present the algorithm in detail. The experiments are described in
Section 5 and the conclusion is made in Section 6.

2. Related Models

In this section, we briefly review three related models that were used in developing the proposed
algorithm, including the hypergraph and hypergraph cut [21], the spectral clustering [22,23] and the
robust principal component analysis [24].

2.1. Hypergraph and Hypergraph Cut

The hypergraph is a mathematical model generalized from the normal graph. It uses a subset of
vertices as an edge that is called a hyperedge (denoted e). One hyperedge can connect more than two
vertices. Let V be the set of vertices, E be the set of subsets of V that meet ∪e∈E =V. Then G = (V, E, ω)

is called a hypergraph with vertex set V and edge set E, and each hyperedge e is assigned a weight
ω(e). For a vertex v ∈ V, its vertex degree is defined as d(v) = ∑{e∈E|v∈e} ω(e). For a hyperedge e ∈ E,
its hyperedge degree is defined as δ(e) =|e|.

Based on the defined hypergraph, the hypergraph cut problem is described as follows. For a vertex
subset S ⊂ V, denoting Sc as the complement of S, a cut of the hypergraph G = (V, E, ω) is
a division that divides V into S and Sc. If an edge e contains both elements in S and Sc, this
edge will be cut. We define the hyperedge boundary of S as the set of cut hyperedges, i.e.,
∂S ≡ {e ∈ E|e ∩ S 6= ∅, e ∩ Sc 6= ∅}. The volume of S is defined as volS ≡ ∑v∈S d(v) and the volume
of ∂S is defined as:

vol∂S ≡ ∑
e∈S

ω(e)
|e ∩ S||e ∩ Sc|

δ(e)
(1)
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Then the cut of the hypergraph ∂S can be obtained by solving the following optimization problem:

∂S = argmin
∅ 6=S⊂V

vol∂S
(

1
volS

+
1

volSc

)
(2)

Similar to the normalized cut, the minimization problem in Equation (2) is a non-deterministic
polynomial problem, which can be relaxed into a real-valued optimization problem [22]. Then it can
be solved with the spectral analysis algorithm in [21].

2.2. Spectral Clustering

Given a similarity matrix A, where A(i, j) represents the similarity between sample i and
sample j, the Laplacian matrix is defined as L = D−1/2(D − A)D−1/2, where D is the diagonal
matrix D(i, i) = ∑j A(i, j). Then unsupervised data clustering can be obtained by decomposing the
eigenvalues of the Laplacian matrices L. One popular way to get the clustering result is to use the
k-means method on the first several eigenvectors associated with the smallest non-zero eigenvalues.
A common construction of the similarity matrix A is:

A(i, j) = exp(−dis(i, j)) (3)

where dis(i, j) is defined as the distance between vertex i and vertex j. Then different similarity matrices
can be obtained by constructing different dis(i, j).

2.3. Robust Principal Component Analysis

We consider a data matrix X, in which its rows or columns contain similar structural information
as well as sparse noise. Then the matrix X can be decomposed into two matrices: one is the low
rank matrix (denoted A) that represents the true structural information, the other is the sparse matrix
(denoted E) that represents the noise. The decomposition of X can be achieved by solving the following
optimization problem:

min
A,E

rank(A) + λ‖E‖0 s.t. X = A + E (4)

where ||·||0 is the l0 norm, and λ is a non-negative constant value. Since minimizing the rank and l0

norms is non-convex and non-smooth, Equation (4) is generally transformed into the following relaxed
convex optimization problem:

min
A,E
‖A‖∗ + λ‖E‖1 s.t. X = A + E (5)

where ||·||∗ is the kernel norm and ||·||1 is the l1 norm. The convex optimization problem in Equation (5)
is called robust principal component analysis (RPCA) [24], which is an important model of low rank
representation. There are many ways to solve the RPCA, such as augmented Lagrange multiplier
(ALM) [25], accelerated proximal gradient [26], and dual method [26].

3. Framework of the Proposed Denoising Algorithm

The framework of the proposed denoising algorithm is shown in Figure 2. First, the ICCD image
is over-segmented by the watershed algorithm [20], which could roughly segment the ICCD image into
a set of flat patches. Then the ICCD image is properly down-sampled and up-sampled to extract the
residuals of each patch. It is used to classify the patches into noise patches and noise-free patches based
on the hypergraph cut model. After that, the noise patches and noise-free patches are filtered separately
to obtain the whole recovered image. Finally, the recovered ICCD image is further post-processed with
RPCA to remove the remaining sparse clustered noise in the recovered ICCD image. The details of the
proposed algorithm are described in Section 4.
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Figure 2. The framework of the proposed denoising algorithm for ICCD images.

4. The Denoising Algorithm for ICCD Sensing Images

In this section, we present the proposed denoising algorithm in detail, including five steps, i.e.,
the over-segmentation with the watershed algorithm, the down-sampling and up-sampling for residual
estimation, construction of the hyperedges and their weights, the patch classification and recovery,
and the post-processing with RPCA.

4.1. Over-Segmentation with the Watershed Algorithm

First of all, we over-segmented the ICCD image into non-overlapped flat patches, where each patch
does not include obvious structural information. To this end, the ICCD image should be segmented
according to the textural edges of the image, for which we adopted the watershed algorithm. The result
of the segmentation on an ICCD image is shown in Figure 3.
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4.2. Down-Sampling and Up-Sampling for Residual Estimation

In Section 4.1, the ICCD image is segmented into non-overlapped flat patches. Considering that
the scale of the clustered noise is often smaller than that of the true structural information in the
ICCD image, we down-sampled the ICCD image at a pre-defined scale to obtain a low-resolution
ICCD image. It mainly includes the true structural information. Then we could get a recovered ICCD
image by filtering the low-resolution ICCD image with a general filter and up-sampling it. In the
experiment, we found that the scale of the clustered noise varies in the ICCD image as well as the
size of the patches. Down-sampling and up-sampling with an overly large scale value may result in
serious distortion of the restored image. Thus, rather than adopting a fixed scale in the down-sampling
process, we pre-defined the scale value for each patch separately as follows.

First, we defined a main direction vector for each patch by searching the two pixels that have the
longest line in each patch. In the experiment, to improve the robustness of this process, we search
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the 5% longest lines in the patch and define the main direction vector by averaging all these vectors.
The length of the main direction vector is defined as the length of the patch. Similarly, we find the line
that is perpendicular to the main direction and define its length as the width of the patch. We define
the patch scale as follows:

Scale =
width
length

· width (6)

Then, we classify patches into several classes according to their scale values, and take the
corresponding scale as the sampling scale of the patches in each class in the down-sampling and
up-sampling process, rather than adopting the fixed scale values for them. The process of the
down-sampling and up-sampling is concluded as follows.

(a) Calculate the scale of each patch, and then classify them into several classes according to their
scale values with the k-means method [27].

(b) For each class, determine the mean of patch scales as the sampling scale in the down-sampling process.
(c) Denoise the image after each down-sampling with the general block-matching and 3D filtering

(BM3D) [28] algorithm;
(d) Up-sample each low-resolution image to the original size to obtain a recovered ICCD image.

After getting the recovered image, the residuals of each patch can be obtained by comparing the
patches in the recovered image and the noisy ICCD image as follows:

RD =
1
N

N

∑
l=1

(
x(l)R − x(l)O

)2
(7)

where N is the number of pixels in the current patch, x(l)R and x(l)O are the gray value of the l-th pixel
in the restored image and noisy image for the current patch. Generally, a patch with clustered noise
is given a larger residual value and a patch without clustered noise is given a smaller residual value.
Thus, the residual value can be used to classify the patches into noisy patches and noise-free patches,
which will be introduced in the next two sections.

4.3. Construction of Hyperedges and Their Weights

We classified the segmented patches into noisy patches and noise-free patches based on the
estimated residuals in Section 4.2. Considering that the noisy patches of neighboring areas have similar
gray values, we can take the gray value and position information into account to help identify the
noisy patches more accurately together with the residual information. Unfortunately, the relationship
between the patches becomes complex due to the coupling of different information (i.e., the gray value
and position information). To address this problem, we used the hypergraph to model the relationship
between the segmented patches. First of all, we took the segmented patches as vertices and constructed
hypergraphs to model the relationship between the patches. The vertices that have similar attributes
are connected by a hyperedge. We adopt the spectral clustering method to construct hyperedges,
and each hyperedge is assigned a weight according to the distance between the vertices. Then the
complex relationship between patches is described by all the hyperedges, and the binary classification
problem can be converted to a graph cut problem. The detailed process is described as follows.

A. Construction of a Hyperedge Based on Spectral Clustering

We first constructed the distance of two patches in Equation (3) with their residual values as:

disR(i, j) =
∣∣∣RDi − RDj

∣∣/σR (8)

where RDi and RDj are the RD value of the i-th and the j-th patch, respectively, and σR is the standard
deviation of

{∣∣RDi − RDj
∣∣∣∣i, j ∈ V

}
. The obtained distance values disR(i, j) in Equation (8) are further



Sensors 2017, 17, 2778 7 of 19

normalized to [0, 1]. Then the similarity matrix A in Equation (3) can be constructed with disR(i, j).
Then the patches can be divided into m different classes based on the spectral clustering method,
and the m classes correspond to a set of constructed hyperedges. The parameter m will be determined
by the experiment in Section 5.1. The obtained hyperedges do not constitute a hypergraph since they
are still disconnected. We repeated the clustering method n times to obtain multiple sets of constructed
hyperedges. The parameter n will be determined by the experiment in Section 5.1. All the hyperedges
can be used to construct a hypergraph.

To improve the robustness of the hypergraph, we additionally added other information from
the patches into the hypergraph besides the residual values. Considering that neighboring patches
generally have similar gray values, we adopted the position and gray-scale information of the patches
to further construct three similarity matrices AG, AP, AM, with their distances defined as:

disG(i, j) = (1− α)disR(i, j) + α
∣∣∣∣∣∣gi − gj

∣∣∣∣∣∣
2
/σG (9)

disP(i, j) = (1− α)disR(i, j) + α[(xi − xj)
2 + (yi − yj)

2]
1/2

/σP (10)

disM(i, j) = disG(i, j) + disP(i, j)− disR(i, j) (11)

where α is a constant parameter, gi and gj are the gray histogram of the i-th and the j-th patches,

respectively, ||·||0 is the l2 norm, and σG is the standard deviation of
{∣∣∣∣∣∣gi − gj

∣∣∣∣∣∣2∣∣∣i, j ∈ V
}

; xi, yi and

xj, yj are the center coordinates of the i-th and the j-th patches, respectively, σP is the standard deviation

of {[(xi − xj)
2 + (yi − yj)

2]
1/2
|i, j ∈ V}. Similar to Equation (8), the distance values in Equations (9)–(11)

are further normalized to [0, 1]. The parameters α will be determined together with m and n by the
experiment in Section 5.1.

B. Calculation of the Hyperedge Weight

After the construction of hyperedges, we need to assign weights to each hyperedge. The weight
of a hypergraph should have the following characteristics. The larger the weight value, the higher the
degree of similarity in the hyperedge, and the lower the degree of similarity to the vertices in other
hyperedges. We define the weight of a hyperedge as follows:

ω(e) = c · ∑
v∈e,u/∈e

dis(v, u)/ ∑
v,v′∈e

dis
(
v, v′

)
(12)

where dis(·, ·) is calculated in Equations (8), (9), (10) or (11) for the four similarity matrices A, AP, AG,
and AM, respectively, and c is the normalization factor such that ∑e∈E ω(e) = 1.

4.4. Patch Classification and Recovery

Based on the constructed hypergraph in Section 4.3, we can classify the patches into noisy patches
and noise-free patches based on the hypergraph cut method in Section 2.1.

Then we recovered the noisy patches and noise-free patches, separately. Each noise-free patch
can be easily recovered by filtering the patch with a general filter, since no clustered noise exists in
the patch. We generally adopt the BM3D algorithm [28] for this purpose. Each noisy patch can be
recovered by subtracting the associated residual value from the noisy patch. We formalize the recovery
process as follows:

xI = (1 + coe f · RD)xO (13)

where xI , xO are the gray values of the pixels in the recovered patch and the noisy patch, respectively.
The variable coe f is defined as the inverse of the maximum gray value in the noisy patch as
coe f = (max{xO})−1, where {xO} is the set of gray values of the pixels in a noisy patch. Then we
further used the BM3D algorithm on the recovered patch. With all the recovered noisy patches and
noise-free patches, we were able to obtain the whole recovered ICCD image.
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4.5. Post-Processing by RPCA

In the experiment, we found that sparse clustered noise still existed in the recovered ICCD
image. Thus, we further post-processed the image with the RPCA described in Section 2.3. Firstly,
we constructed the data matrix X as follows. We decomposed the image into overlapping blocks of
size 64 × 64 with a step of 16 × 16, and then classified the image blocks into groups with spectral
clustering. Each group of blocks forms a low rank matrix, where the gray value of pixels in an image
block corresponds to a column in matrix X. Then the low rank matrix A can be obtained by solving
the problem in (5) and the image blocks can be recovered from matrix A. Finally, the recovered ICCD
image can be obtained by averaging the overlapped block parts. Secondly, according to the ALM
algorithm in (5) and [25], we can obtain the corresponding recovery matrix A of each group, then
the j-th column of matrix A corresponds to the j-th restored image block in the group. Finally, since
the process of image decomposition allows overlapping image blocks, we take the average of the
overlapping parts to get the whole restored image.

The parameter λ in the optimization problem in (5) plays an important role in determining matrix
A. Specifically, the smaller the parameter λ, the smoother the recovered image, and more details of the
image will be eliminated. The larger the parameter λ, the more details will be preserved. However,
it cannot well eliminate the sparse noise in the image. Thus, rather than fixing the parameter λ

value, we adaptively adjusted it according to the histogram variance of oriented gradient (HVOG)
value [2] of each group. In this way, it can keep the structure information and eliminate the noise well.
The parameter λ for each group of blocks is defined as:

λ = exp(−1/γ0 · HVOG) (14)

where HVOG is the average value of the normalized HVOG value of the blocks in each group, and γ0

is a constant parameter γ0 = 10.

5. Experiments and Analysis

In this section, we verify the performance of the proposed method on a dataset of real ICCD
images, which were captured by an ICCD camera [2] in extremely low-level light conditions. It is
worth noting that since the ground truth of the real ICCD images is not available, we mainly evaluate
the subjective performance of the proposed algorithm in the following. We first determine the relevant
parameters in constructing a hypergraph by experiment in Section 5.1, and verify the effectiveness
of the hypergraph cut in the filtering process in Section 5.2 by experiment. After that, we verify
the performance of the proposed denoising algorithm on a set of real ICCD images and compare it
with four existing denoising algorithms in Section 5.3. We also test the effectiveness of the RPCA for
denoising in the proposed algorithm in Section 5.4.

5.1. Parameter Determination in Constructing the Hypergraph

We determined the parameters in constructing the hypergraph on a set of ICCD images with
simulated noise [2]. We performed the hypergraph cut with different parameters in the proposed
algorithm to obtain the average objective quality (PSNR) values for the dataset. Table 1 shows part of
the objective results at different parameter values, where n is the number of times of clustering, m is
the number of clusters at each time, α is the weight parameter in Equations (9)–(11), and PSNR is the
average PSNR value of the processed dataset. It can be seen that the values of the parameters n, m and
α have a slight impact on the results for the results in Table 1. This verifies the high robustness of the
hypergraph. We determine the parameters as n = 3, m = 2, α = 0.5 based on Table 1, at which the PSNR
result is maximum.
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Table 1. The average objective results at different parameter values in the hypergraph cut.

n m α PSNR (db) n m α PSNR (db)

2 2 0.1 73.19995 3 2 0.1 73.21281
2 2 0.2 73.18212 3 2 0.2 72.95117
2 2 0.3 73.11725 3 2 0.3 73.19301
2 2 0.4 73.19670 3 2 0.4 73.28845
2 2 0.5 73.11630 3 2 0.5 73.42306
2 3 0.1 73.28173 3 3 0.1 73.04053
2 3 0.2 73.18228 3 3 0.2 73.20538
2 3 0.3 73.32812 3 3 0.3 72.88833
2 3 0.4 73.22885 3 3 0.4 73.32938
2 3 0.5 73.14801 3 3 0.5 73.19522
2 4 0.1 73.04365 3 4 0.1 73.13615
2 4 0.2 73.11540 3 4 0.2 73.19505
2 4 0.3 73.34357 3 4 0.3 72.81382
2 4 0.4 73.12557 3 4 0.4 73.14337
2 4 0.5 73.20798 3 4 0.5 72.86815
2 5 0.1 73.11540 3 5 0.1 73.19301
2 5 0.2 73.17220 3 5 0.2 73.22224
2 5 0.3 73.03383 3 5 0.3 72.78663
2 5 0.4 73.18219 3 5 0.4 73.15062
2 5 0.5 73.21231 3 5 0.5 73.17858
4 2 0.1 73.20403 5 2 0.1 73.17788
4 2 0.2 73.17530 5 2 0.2 73.19318
4 2 0.3 73.03849 5 2 0.3 73.13893
4 2 0.4 73.21268 5 2 0.4 73.03510
4 2 0.5 72.79888 5 2 0.5 73.13128
4 3 0.1 73.19837 5 3 0.1 73.14298
4 3 0.2 73.02988 5 3 0.2 73.14298
4 3 0.3 73.20614 5 3 0.3 73.07012
4 3 0.4 73.21402 5 3 0.4 73.20198
4 3 0.5 73.11114 5 3 0.5 73.13739
4 4 0.1 73.34665 5 4 0.1 73.19715
4 4 0.2 73.23437 5 4 0.2 73.08766
4 4 0.3 73.17264 5 4 0.3 73.03212
4 4 0.4 73.17855 5 4 0.4 73.11872
4 4 0.5 73.15255 5 4 0.5 73.0394
4 5 0.1 73.16033 5 5 0.1 73.16033
4 5 0.2 73.22001 5 5 0.2 73.19837
4 5 0.3 73.19912 5 5 0.3 73.14524
4 5 0.4 73.30515 5 5 0.4 73.00673
4 5 0.5 73.13857 5 5 0.5 73.24143

5.2. Verify the Effectiveness of the Hypergraph Cut

The hypergraph cut method is used for patch classification in the filtering algorithm. In order
to test its effectiveness, we replace it with a general classification method, i.e., spectral clustering,
and compare the performance of the two filtering algorithms on the example in Figure 4. Figure 4a
shows the filtering result based on the spectral clustering and Figure 4b shows the result based on the
hypergraph cut. It can be seen that the spectral-clustering-based filtering method does not remove
the clustered noise well. This is mainly because the regions with clustered noise are not fully and
correctly recognized in the patch classification process. By comparison, the hypergraph-cut-based
filtering method performs better.



Sensors 2017, 17, 2778 10 of 19

Sensors 2017, 17, 2778  10 of 19 

 

 
(a) 

 
(b) 

Figure 4. Verify the effectiveness of the hypergraph cut. (a) the filtering result based on spectral 

clustering; (b) the filtering result based on the hypergraph cut. 

5.3. Verify the Performance of the Proposed Denoising Algorithm 

We then tested the performance of the proposed ICCD image denoising algorithm on a set of 

real ICCD images. To our knowledge, in the past there have been few denoising algorithms that have 

considered randomly clustered noise, except for [2]. Thus, we mainly compare with the algorithm in 

[2] and three general denoising algorithms of natural images, including BM3D [28], the K-Singular-

value-decomposition (K-SVD) based denoising method [29] and the Bayes least squares-Gaussian 

scale mixtures (BLS-GSM) denoising algorithm [30]. Since the ground truth of the real ICCD images 

is not available, we mainly show the subjective results of proposed method. 

Part of the results are shown in Figures 5–7. It can be seen that both the proposed algorithm and 

the algorithm in [2] could effectively remove the randomly clustered noise. By comparison, the 

general filtering methods BM3D and BLS-GSM do not work well for randomly clustered noise. More 

seriously, the clustered noise in the ICCD images is even enhanced with these methods. This is 

because the clustered noise is often wrongly treated as true structural information with these 

methods. The K-SVD-based denoising method could partly remove the clustered noise in the ICCD 

images. However, it may induce significant distortion in the structure regions. We further compare 

the performance of the proposed algorithm with that of [2]. It can be seen that the images filtered 

with [2] are often much smoother, however, some textural details are lost in the filtered images. By 

comparison, the proposed algorithm can retain detailed information, e.g., the leaf pattern of the trees 

in Figure 6. 

Figure 4. Verify the effectiveness of the hypergraph cut. (a) the filtering result based on spectral
clustering; (b) the filtering result based on the hypergraph cut.

5.3. Verify the Performance of the Proposed Denoising Algorithm

We then tested the performance of the proposed ICCD image denoising algorithm on a set
of real ICCD images. To our knowledge, in the past there have been few denoising algorithms
that have considered randomly clustered noise, except for [2]. Thus, we mainly compare with the
algorithm in [2] and three general denoising algorithms of natural images, including BM3D [28],
the K-Singular-value-decomposition (K-SVD) based denoising method [29] and the Bayes least
squares-Gaussian scale mixtures (BLS-GSM) denoising algorithm [30]. Since the ground truth of
the real ICCD images is not available, we mainly show the subjective results of proposed method.

Part of the results are shown in Figures 5–7. It can be seen that both the proposed algorithm
and the algorithm in [2] could effectively remove the randomly clustered noise. By comparison,
the general filtering methods BM3D and BLS-GSM do not work well for randomly clustered noise.
More seriously, the clustered noise in the ICCD images is even enhanced with these methods. This is
because the clustered noise is often wrongly treated as true structural information with these methods.
The K-SVD-based denoising method could partly remove the clustered noise in the ICCD images.
However, it may induce significant distortion in the structure regions. We further compare the
performance of the proposed algorithm with that of [2]. It can be seen that the images filtered with [2]
are often much smoother, however, some textural details are lost in the filtered images. By comparison,
the proposed algorithm can retain detailed information, e.g., the leaf pattern of the trees in Figure 6.
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5.4. Verify the Effectiveness of the RPCA in the Denoising Process

We further verified the effectiveness of the RPCA in Section 4.5 in the filtering process by
comparing the results of the filtering algorithm with different parameters λ in the RPCA. Some results
are shown in Figure 8, where Figure 8a shows the result with the parameter λ = 0.1. Figure 8b
shows the result with λ = 0.9. Figure 8c is the result of the RPCA with the adaptive parameters
in Section 4.5. It can be seen from the results that the smaller the parameter λ, the smoother the
result and the more textural details are eliminated in the filtered image. On the contrary, the larger
the parameter λ, the more textural details are retained. However, the sparse noise cannot be well
eliminated. By comparison, the described RPCA with an adaptive λ value makes a good balance for
this problem, which can be seen from the results in Figure 8c.
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Figure 8. Verify the effectiveness of the RPCA in the filtering process. (a) the results of the
RPCA with λ = 0.1; (b) the results of the RPCA with λ = 0.9; (c) the results of the RPCA with the
adaptive parameters.
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5.5. Time Complexity of the Proposed Algorithm

In this section, we present the time complexity of the proposed algorithm (with or without
the RPCA) and compare it with that of the algorithm in [2]. The size of the tested images was
fixed as 1545 × 840, and the algorithms were implemented on a platform of i5-2400 CPU, 16G-RAM,
and Windows 10 OS (DELL, Shanghai, China), and the algorithms were carried out on MATLAB 2014b.
The average results are recorded in Table 2. It can be seen that the complexity of the proposed algorithm
mainly comes from the RPCA process in Section 4.5. When the RPCA is inactivated, the proposed
algorithm is 10 times faster than the algorithm in [2]. Even though the RPCA is activated, the proposed
algorithm still saves a runtime of over 30% compared with that of [2].

Table 2. The average runtime of the algorithms (min).

Average Runtime

The algorithm in [2] 86.3
The proposed algorithm without the RPCA 5.4

The proposed algorithm with the RPCA 57.2

6. Conclusions

In this paper, we designed a filtering algorithm to remove the clustered noise in ICCD images
and preserve the true structure information. The experimental results verified the effectiveness of the
proposed algorithm by comparing it with four existing denoising algorithms.
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