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Abstract: Travel times in congested urban road networks are highly stochastic. Provision of travel time
distribution information, including both mean and variance, can be very useful for travelers to make
reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous
data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from
point and interval detectors. In the proposed method, link travel time distributions are first estimated
from point detector observations. The travel time distributions of links without point detectors
are imputed based on their spatial correlations with links that have point detectors. The estimated
link travel time distributions are then fused with path travel time distributions obtained from the
interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution,
an optimization technique is further introduced to update link travel time distributions and their spatial
correlations. A case study was performed using real-world data from Hong Kong and showed that the
proposed method obtained accurate and robust estimations of link and path travel time distributions
in congested road networks.
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1. Introduction

Accurate and robust estimation of travel time distribution, including mean and variance,
is a crucial requirement for advanced traveler information systems (ATIS). Provision of travel time
distribution information through ATIS enables travelers to make reliable path choice decisions,
ensuring a higher chance of on-time arrival [1–3]. The provided distribution information also allows
operators to evaluate network performance and reliability, and identify bottlenecks for proactively
deploying effective controls to improve overall traffic conditions [4,5].

Recent advances in information and communication technologies (ICTs) have produced a variety
of spatiotemporal big data for travel time estimation [6]. Existing data collection techniques could
be classified into point detection, interval detection, and floating car systems [7,8]. Point detectors
(such as loop detectors and video image detectors) are generally deployed at specific road segment
locations, to collect vehicle point speeds. Interval detectors consist of a pair of devices deployed in road
networks to directly calculate travel times between the device pair. Typical interval detectors include
automatic vehicle identification (AVI), Bluetooth, and license plate recognition devices. In contrast
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to the above fixed detectors, floating car systems use a fleet of probe vehicles, typically taxi cabs,
equipped with global positioning system (GPS) devices. The probe vehicle locations and speeds
are collected at given time intervals to estimate network traffic conditions [9]. These data collection
techniques have generated complementary heterogeneous data sources with distinct data quality and
network coverage.

Accurate and robust estimation of travel time distributions from heterogeneous data sources is
somewhat challenging in congested road networks. Firstly, although rich traffic observations from
multiple data sources are beneficial, data quality variability from different data sources presents
a serious impediment to robust estimation of travel time distributions. Data quality variability may
raise from a variety of reasons, such as detector failures, measurement errors, sample size variations,
etc. [10–13]. Therefore, traffic observations from different sources can be inconsistent and even
conflicting. Thus, robust data fusion techniques are urgently required, relatively insensitive to data
quality of heterogeneous data sources.

Secondly, traffic data from multiple data sources has enhanced data availability for major roads in
a network, but the limited coverage across the whole network poses a significant challenge to accurate
travel time distribution estimates. Traffic data from point detectors cover all vehicles at deployed
locations and have a very good temporal sampling, but their spatial coverage is restricted to the
(relatively few) deployed locations. Floating car and interval detector data have relatively better spatial
coverage on major roads, but sparse data issues remain for many arterial roads [14,15]. Therefore,
effective techniques to impute spatially missing data are also required.

This paper proposes an effective method to estimate travel time distributions from heterogeneous
data sources with missing data. The remainder of this paper is organized as follows. Section 2
reviews the literature on the travel time distribution estimation methods. Section 3 briefly introduces
Dempster-Shafer (D-S) evidence theory to provide the necessary background. Section 4 presents the
proposed heterogeneous data fusion method. Section 5 reports a case study using real-world data
from Hong Kong. Section 6 provides conclusions and recommendations for further research.

2. Literature Review

Travel time estimations have been intensively studied for over three decades. Early studies
proposed various methods to estimate deterministic travel times, e.g., mean travel time, using a single
data source [16–20]. A complete survey of these methods is beyond the scope of this paper; interested
readers can refer to comprehensive reviews by Mori et al. and Vlahogianni et al. [8,21].

In the last decade, many research efforts have focused on data fusion techniques to enhance
accuracy and robustness of deterministic travel time estimation using multiple data sources. Current
data fusion techniques can be broadly classified into statistical, artificial cognition, and probabilistic-based
techniques [22]. Statistical based techniques, such as simple convex combination algorithms, use statistical
information of data quality to determine weights for different data sources [16,23]. They are relatively
widely used due to their simple implementation. However, they are not well suited to fuse different
data sources, which are inconsistent and even conflicting. Artificial cognition based techniques
combine multiple data sources using artificial intelligence techniques, such as neural networks or
genetic algorithms [11]. They can tackle complex data fusion problems, but require large datasets
for training, which are generally infeasible for many real-world applications. Probabilistic based
techniques typically employ Bayesian and/or D-S evidence theory to provide mathematical reasoning
rules for fusing inaccurate and inconsistent data from multiple sources [24–26]. The D-S evidence theory
can be regarded as a generalization of Bayesian theory without the requirement of prior knowledge.
Nevertheless, most existing studies using D-S evidence theory are restricted to estimation of traffic
states (i.e., very congested, congested, medium, smooth or very smooth) rather than precise numerical
values of travel times [27–29].

Since no single data source covers the whole network, research efforts have also investigated
missing data imputing techniques to enhance data completeness. Missing data imputation can
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be broadly classified as prediction and spatial interpolation based techniques. Prediction-based
techniques adopt travel time prediction models, such as K-nearest neighbors, kernel regression,
and autoregressive integrated moving average, to forecast the missed data from historical data [30–32].
Spatial interpolation techniques impute missing data of a link by using established statistical
relationships between the link and its adjacent links [14–16,33]. For all techniques in both categories,
incorporation of travel time correlations is well recognized as an effective way to improve imputation
performance [32]. However, most missing data imputing techniques assume fixed travel time
correlations, which are inadequate to represent the dynamic nature of traffic conditions.

The above studies focused on estimating only deterministic travel times, while ignoring travel time
variances. Recent attention has investigated methods to estimate travel time distributions (including
means and variances) using a single data source. Dion and Rakha [34] proposed an exponential
smoothing filter to estimate travel time distributions using interval detector data. Jenelius and
Koutsopoulos [35] developed a maximum likelihood approach to estimate travel time distributions
using floating car data. Rahmani et al. [36] used the same data type and proposed a nonparametric
approach to estimate travel time distributions. Hans et al. [37] used point detector data and proposed
a kinematic wave approach for estimating travel time distributions at signalized intersections. Accurate
estimation of travel time distributions is more challenging, because more data with higher quality
are required to estimate reliable mean and variance information. Including multiple data sources is
obviously beneficial for accurate and robust estimations of travel time distributions, but to the best of
our knowledge, few studies have been done for estimating travel time distributions by fusing multiple
data sources.

To fill this gap, the current study proposes a heterogeneous data fusion method for estimating
travel time distributions, fusing interval and point detector data. In the proposed method, link travel
time distributions are first estimated from point detector observations. The spatially missing data
issue of point detectors is addressed. Travel time distributions of links without point detectors are
imputed based on their spatial correlations with links with point detectors. Estimated link travel time
distributions from point detector data are then fused with path travel time distributions obtained
from interval detectors. To fuse these two path distributions, a D-S distribution fusion algorithm is
proposed, built on D-S evidence theory. An optimization technique is further introduced to update link
travel time distributions and their spatial correlations according to the fused travel time distribution.

3. Brief Introduction of the D-S Evidence Theory

The D-S evidence theory was initially developed by Dempster [38], and later extended and
refined by Shafer [39]. This theory can be regarded as a generalization of Bayesian inference to tackle
uncertainty reasoning based on incomplete information [40,41]. In contrast to Bayesian inference,
D-S evidence theory does not assign priori probabilities to unknown propositions or states [42].
Probabilities are assigned only when supporting evidence is available [43]. This provides a flexible
framework for decision making by combining cumulative evidence, and has broad applications in
many areas, such as expert systems [40,44], artificial intelligence [45,46], false diagnosis [47,48], target
recognition [49–51], decision-making [52], information fusion [53], etc.

Let Ω = {S1, . . . , Sn} be a collectively exhaustive and mutually exclusive set of states, which is also
called the frame of discernment. This frame of discernment contains every possible state of a system.
A basic probability assignment (BPA) (also called a belief structure) is a function m : 2Ω → [0, 1] ,
satisfying m(φ) = 0 and ∑∀A⊂Ω m(A) = 1, where A is a subset of Ω; and 2Ω = {A|A ∈ Ω} is the
power set of Ω consisting of all the subsets of Ω. The assigned probability m(A) measures the belief
exactly assigned to A. All the assigned probabilities sum to unity and there is no belief in the empty
set φ. For notational consistency, boldfaced letters represent vectors or matrixes throughout the paper.
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Multiple independent evidence can be fused using the traditional Dempster’s combination
rule [43–48,51,52]. With BPAs of two independent evidences, m1 and m2, the combination rule is
defined as:

m f us(C) = m1 ⊕m2 =
∑

A∩B=C 6=φ,∀A,B⊂Ω
m1(A)×m2(B)

1−η

m f us(φ) = 0
(1)

where η is the conflict factor, which ranges from 0 to 1 and represents the degree of total conflict
between evidences m1 and m2. 1/(1− η) is the normalization factor which ensures the sum of BPAs
can be unit. η is given by:

η = ∑
A∩B=φ,∀A,B⊂Ω

m1(A)×m2(B) (2)

Dempster’s combination rule, Equation (1), provides effective reasoning rules for fusing low
and moderate conflict evidences. However, in case of high or complete conflict evidences (i.e.,
η value approach to 1), traditional D-S evidence theory may lead to unreasonable synthesis results.
To reduce the degree of evidence conflict, an effective method is to modify the evidence. A common
technique [54,55] is to introduce an unknown state, Θ, into the frame of discernment as Ω′ = {Ω, Θ},
where Θ represents the unknown part of the evidence.

As an alternative, several researchers argued that high conflict are mainly caused by unreliable
evidences; and thereby they proposed methods to identify and correct the unreliable evidences before
the combination [48,51,56]. Overall, the D-S evidence theory provides mathematical reasoning rules
for fusing inaccurate and incomplete data from multiple sources. In Section 4.2.2, the D-S evidence
theory is employed to fuse travel time distributions from different data sources, which may be high
conflict or even complete conflict.

4. Travel Time Distributions Estimated by Fusing Heterogeneous Data Sources

4.1. Problem Statement

Let G = (N, E) be a directed network consisting of a set of nodes, N, and a set of links, E.
A link aij ∈ E is defined to be the road section between two adjacent nodes with ni ∈ N and
nj ∈ N. Travel time of the link is a random variable, Tij, with mean and standard deviation (STD)
tij and σij, respectively. The vector of mean travel times for all links is t = [. . . , tij, . . .]T, and the
variance-covariance matrix between all links is K. The matrix K is the variance-covariance matrix of
link travel times. In the variance-covariance matrix K, elements along the diagonal are the variance of
link travel times, and off-diagonal elements are the travel time covariance between two links.

Let pod be a path between starting and ending nodes, no and nd, respectively, consisting of λ

consecutive links. Let xod
ij be a link path incidence variable, where xod

ij = 1 means that link aij is on pod

and xod
ij = 0 otherwise. Let X = [. . . , xod

ij , . . .]
T

be the vector of link path incidence variables. The path

travel time distribution, Tod, can be calculated by summing link travel times along the path,

Tod = ∑
∀aij∈E

Tijxod
ij (3)

Let tod and σod be the mean and variance of the path travel time distribution, respectively, then:

tod =XTt (4)

σod =
√

XTKX (5)

To obtain travel time distribution information, many detectors of different types may be deployed
in the network, as shown in Figure 1 for a simple network with interval and point detectors. A pair
of interval detectors, e.g., AVI devices, are installed at no and nd of pod to record the set of vehicles
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passing them. The path travel time of each recorded vehicle can be obtained by the time difference
from entering to leaving the path, and path travel time distribution can be directly estimated from
this data, denoted as Tod

int. However, the detailed travel time distributions of all links along the path
are unknown and the interval detector data covers only a portion of vehicles with relatively poor
temporal sampling.
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Point detectors, e.g., loop detectors, are generally deployed for a subset of network links in
real applications, e.g., ar

o1 and ar
23 in Figure 1, whereas other links, e.g., ae

12, ae
34, and ae

4d, are without
detectors. Thus, only travel time distributions of links with point detectors, e.g., Tr

o1 and Tr
23, can be

directly estimated, while travel time distributions of links without point detectors are unknown, e.g.,
Te

12, Te
34, and Te

4d. Nevertheless, the point detector data tend to have good temporal sampling, since
these detectors generally can collect the speeds of all vehicles passing through them.

Obviously, interval and point detector data have distinct spatial and temporal characteristics.
Fusing heterogeneous data from both interval and point detectors could be beneficial for estimating
travel time distributions for the path and all links either with or without point detectors.

4.2. Proposed Heterogeneous Data Fusion Method

This section presents the proposed heterogeneous data fusion method to estimate travel time
distributions for the path and all links either with or without point detectors. Empirical studies
have found that travel times can be well represented by either normal, gamma, or lognormal
distributions [10,39]. Therefore, to simplify the problem and present the essential concept, it is
assumed that all link and path travel time distributions follow the normal distribution [57,58]. Using
this normality assumption, the proposed method is to estimate the mean and STD of travel time
distributions of the path and all links.

Figure 2 shows that the framework of the proposed heterogeneous data fusion method consists of
three steps, described in detail in the following sections. The first step, called data preprocessing, is to
estimate path travel time distributions from interval and point detector data, respectively. The second
step, called distribution fusion, is to fuse the estimated path travel time distributions by using D-S
evidence theory. The last step, called posterior update, is to update link travel time distributions and
their travel time correlations based on the fused distribution.
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4.2.1. Data Preprocessing Step

This step estimates path travel time distributions from interval and point detector data,
independently. The path travel time distribution, Tod

int, can be directly estimated from interval detector
data. Since interval detectors only record a set of vehicles equipped with electronic tags, the limited
sample size becomes a critical issue in the estimation, especially for low market penetration applications.
Outlier observations can also significantly affect path travel time distribution accuracy, e.g., some
vehicles may make stops or detours along the path, leading to atypical travel time observations.
To estimate path travel time distribution from interval detector data, the data filtering algorithm
proposed by Dion and Rakha [34] was adopted in this study. This data filtering algorithm utilizes
a series of low pass filters to remove outlier observations outside a dynamically varying validity
window. Such algorithms can perform well in both stable and unstable traffic conditions at low levels
of market penetration; and have been successfully applied in the real-time traveler information system
(RTIS) in Hong Kong [14]. Thus, an accurate and robust estimation of mean, tod

int and STD, σod
int of path

travel time distribution can be obtained from interval detector data.
As discussed above, path travel time distribution cannot be directly estimated through point

detector data, because only a few links are deployed with point detectors. To estimate the path travel
time distributions, links are divided into links with and without point detectors, so that the vector of
mean travel time comprises two parts tpoi = [tr

poi, te
poi]

T, where tr
poi and te

poi are mean travel times for
links with and without point detectors, respectively, at time interval `. The variance-covariance matrix

can be divided into four sub-matrixes, Kpoi =

[
Krr

poi Ker
poi

Kre
poi Kee

poi

]
, where Krr

poi is the variance-covariance

matrix for links with point detectors; Kee
poi is the variance-covariance matrix for links without

point detectors; Ker
poi is the covariance matrix between links without and with point detectors;

and Kre
poi = (Ker

poi)
T is the covariance matrix between links with and without point detectors. Let vr

poi
and ve

poi be vectors of travel time variances for links with and without point detectors, respectively.
They are elements along the diagonal of Krr

poi and Kee
poi, respectively.

For a link ai
r with a point detector, its mean, ti

r, and STD, σi
r, of the link travel time distribution can

be obtained from the collected data at the current time interval `, i.e., tr
poi and Krr

poi can be determined
from the point detector data. However, mean travel times for links without point detectors, te

poi, should
be indirectly estimated. Following Tam and Lam [14], te

poi is estimated using spatial correlations
between links with and without point detectors:

te
poi = te,`−1

upd + Ker,`−1
upd (Krr

poi)
−1(tr

poi − tr,`−1
upd ) (6)

where tr,`−1
upd and te,`−1

upd are mean travel times for the links with and without point detectors estimated

at the previous time interval `− 1, respectively; Ker,`−1
upd is the covariance matrix between links without

and with point detectors estimated at the previous time interval `− 1; and (Krr
poi)

−1 is the inverse
of Krr

poi.
Similar to Equation (6), ve

poi in this study was also indirectly estimated using the spatial
correlations between links with and without point detectors:

ve
poi = ve,`−1

upd + Ker,`−1
upd (Krr

poi)
−1(vr

poi − vr,`−1
upd ) (7)

where vr,`−1
upd and ve,`−1

upd are travel time variances of the links with and without point detectors
at the previous time interval ` − 1, respectively. Therefore, elements along the diagonal of
Kee

poi and all elements of Krr
poi are estimated in the current time interval `. It is assumed that

(kee
poi)ij

= (kee,`−1
upd )

ij
, ∀i 6= j and Ker

poi = Ker,`−1
upd , which means that off-diagonal elements of Kee

poi

and all elements of Ker
poi are the same as corresponding elements at the previous interval, `− 1. These

two matrixes, Kee
poi and Ker

poi, will be updated in the posterior update step in Section 4.2.3.
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After tpoi = [tr
poi, te

poi]
T and Kpoi =

[
Krr

poi Ker
poi

Kre
poi Kee

poi

]
are determined, the mean, tod

poi, and STD,

σod
poi, of the path travel time distribution, can be calculated. The vector of link path incidence variables

is divided into two groups as X = [Xr
poi, Xe

poi]
T, where Xr

poi and Xe
poi are link path incidence variables

for links with and without point detectors, respectively. Then, Equations (4)–(7) for calculating tod
poi and

σod
poi can be expressed as:

tod
poi =(Xr

poi)
Ttr

poi + (Xe
poi)

Tte
poi (8)

σod
poi =

√
(Xr

poi)
TKrr

poiX
r
poi + (Xe

poi)
TKee

poiX
e
poi + 2(Xe

poi)
TKer

poiX
r
poi (9)

Substituting Equation (6) into Equation (8), the mean travel time can be expressed as:

tod
poi =(Xr

poi)
Ttr

poi + (Xe
poi)

Tte,`−1
upd + (Xe

poi)
TKer,`−1

upd (Krr
poi)

−1(tr
poi − tr,`−1

upd ) (10)

Therefore, the path travel time distribution, Tod
poi, can be determined from point detector data.

4.2.2. Distribution Fusion Step

This step fuses two path travel time distributions, Tod
int and Tod

poi, estimated from interval and
point detectors, respectively. A fusion algorithm is proposed built on the D-S evidence theory. In this
study, the frame of discernment, Ω, is defined as a set of mutually exclusive travel time ranges,
{S1, . . . , Si, . . . , Sn}, where each travel time range, Si = [li, ui], is defined by a lower bound li and
upper bound ui.The mean travel time for range Si can be expressed as:

E(Si) =
ui + li

2
(11)

Path travel time distributions estimated by interval and point detectors can be regarded as
two independent sets of evidence. Based on the defined travel time ranges, these two path travel
time distributions are discretized to obtain corresponding discrete distributions, i.e., histograms,
as illustrated in Figure 3a. The resultant discrete distributions, mint and mpoi, are respectively modelled
as BPAs for Tod

int and Tod
poi. Then, m∗(Si) (either mint(Si) or mpoi(Si)) represents the corresponding

probability of travel time range Si, and can be expressed as:

m∗(Si) =
∫ ui

li
f∗(x)dx (12)

where f∗(x) is the probability density function of Tod
∗ (either Tod

int or Tod
poi). When path travel time

distributions follow normal distributions, m∗(Si) can be expressed as:

m∗(Si) = Φsnd(
ui − trs

∗
σrs∗

)−Φsnd(
li − trs

∗
σrs∗

) (13)

where Φsnd(·) represents the cumulative distribution function (CDF) of the standard normal
distribution. In the literature, Hart’s formula [59] is a good numerical approximation approach
to calculate Φsnd(·):

Φsnd(x) ∼=
1
2
− 1

x
√

2π

{
e−x2/2 − [

πx2

2
+

(1 + 0.282455x2)
1/2

1 + 0.212024x2 e−x2/2]

}
(14)

Clearly, BPAs, m∗, satisfies m∗(φ) = 0 and ∑∀Si⊂Ω m∗(Si) = 1.
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Figure 3 illustrates three typical situations of evidence conflict, representing the relationships
between interval detector and point detector. Two path travel time are discretized into five travel
time ranges as (5, 8), (8, 11), (11, 14), (14, 17) and (17, 20) which constitute the frame of discernment
Ω = {S1, S2, S3, S4, S5}. The corresponding BPAs of two path travel time distributions are shown in
Table 1. Figure 3a shows Case 1 that the two evidences have high belief level and low conflict degree,
with a large portion of histogram coverage. Figure 3b shows Case 2 that two evidences have low belief
level and high conflict degree, with only a small portion of histogram coverage. Figure 3c shows Case
3 that the two evidences are completely conflicted without histogram coverage.

Table 1. Simple example of distribution fusion using Dempster’s combination rule.

Travel
Time

Ranges

Case 1 Case 2 Case 3

mint(·) mpoi(·) mfus(·) mint(·) mpoi(·) mfus(·) mint(·) mpoi(·) mfus(·)

S1 0.1 0 0 0.3 0 0 0.4 0 -
S2 0.2 0.3 0.2143 0.6 0 0 0.6 0 -
S3 0.4 0.4 0.5714 0.1 0.1 1 0 0 -
S4 0.2 0.3 0.2143 0 0.6 0 0 0.7 -
S5 0.1 0 0 0 0.3 0 0 0.3 -

Table 1 shows the results of evidence fusion by using Dempster’s combination rule, Equation (1).
As shown, this combination rule can provide a good estimation of path travel time distribution

for Case 1 with a low conflict factor, η = 1−
5
∑

i=1
mint(Si)×mpoi(Si) = 1− (0.2× 0.3 + 0.4× 0.4 +

0.2× 0.3) = 0.72. The fused BPA is calculated from m f us(Si) = mint(Si) × mpoi(Si)/(1− η) (e.g.,
m f us(S3) = 0.4× 0.4/(1− 0.72) = 0.5714). After distribution fusion, travel time ranges, S2, S3 and S4,
supported by both evidence sets, are strengthened in a reasonable way.

However, for Cases 2 with high conflict factor, η = 1 − (0.1 × 0.1) = 0.99, the Dempster’s
combination rule can lead to an incorrect fusion result, m f us(S3) = (0.1× 0.1)/(1− 0.99) = 1, given
both evidence sets afford little support to S3. This situation is known as Zadeh’s paradox in the
literature. Further, Dempster’s combination rule cannot be used for Case 3 of the completely conflict
situation. In this case, mint(·) and mpoi cannot be fused, because η = 1 so all m f us(Si) become infinite.

To reduce the degree of data conflict, the generalized combination rule, Equation (2), is adopted in
this study, by introducing the unknown state into the frame of discernment, Ω = {S1, . . . , Si, . . . , Sn, Θ}.
Subsequently, to construct BPA m∗ (either mint or mpoi), a pre-defined small probability αΘ = m∗(Θ),
(e.g., αΘ = 0.05), is set for the unknown state Θ. Then, the path travel time distribution between
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tod
∗ + Φ−1

snd(αΘ/2)σod
∗ and tod

∗ + Φ−1
snd(1− αΘ/2)σod

∗ is discretized to obtain m∗(Si), where Φ−1
snd(·) is the

inverse CDF of the standard normal distribution (e.g., Φ−1
snd(0.025) = −1.96 and Φ−1

snd(0.975) = 1.96).
High and complete conflict situations are usually due to various data quality from the different

detectors. To differentiate data sources with varying quality, an information quality parameter [48]
is adopted in this study to assign higher weighting to data sources with better information quality.
Let wint and wpoi be the information quality weights for the path travel time distribution from interval
and point detectors respectively. In this study, wint and wpoi are expressed as a function of sample size
and travel time variance:

wint =
1− (1− βint)

Nint

(σod
int)

2 (15)

wpoi =
1− (1− βpoi)

Npoi

(σod
poi)

2 (16)

where Nint is the sample size collected by interval detectors; Npoi is the average sample size for all
point detectors along the path; βint and βpoi are sensitivity parameters for interval and point detectors,
respectively, which should be calibrated independently. Other types of information quality function
could also be used in practice.

Applying different weightings wint and wpoi, the BPA m∗ (either mint or mpoi) is adjusted using
following formula [48]:

m∗ =

 m∗(Si) =
w∗

wmax
·m∗(Si), ∀Si ⊆ Ω

m∗(Θ) = 1−
n
∑

i=1
m∗(Si)

(17)

where wmax = max(wint, wpoi) is the larger between wint and wpoi. Substituting the adjusted BPAs
into Equations (1) and (2), the fused BPA, m f us, can be determined following the generalized
combination rule:

m f us =


m f us(Si) =

mint(Si)×mpoi(Si)+mint(Si)×mpoi(Θ)+mint(Θ)×mpoi(Si)
1−η , ∀Si ⊆ Ω

m(Θ) =
mint(Θ)×mpoi(Θ)

1−η

η = 1−mint(Θ)×mpoi(Θ)−
n
∑

i=1
[mint(Si)×mpoi(Si) + mint(Θ)×mpoi(Si) + mpoi(Θ)×mint(Si)

(18)

Table 2 illustrates the distribution fusion built on the generalized combination rule using the same
example as in Table 1. In this example, mint(Θ) = mpoi(Θ) = 0.05 are set; and two BPAs, mint and
mpoi are modified to reflect this setting. Information quality parameters wint = 0.8 and wpoi = 0.6
are used for interval and point detectors, respectively. All BPAs, mpoi, for these cases are adjusted to

mpoi(Si) = mpoi(Si)× 0.6/0.8, ∀Si ⊂ Ω; and mpoi(Θ) = 1−
5
∑

i=1
mpoi(Si) = 1− 0.95× 0.6/0.8 = 0.288.

The generalized combination rule, Equation (16), was adopted for fusing path travel time distribution.

Table 2. Simple example of distribution fusion using the generalized combination rule.

Travel
Time

Ranges

Case 1 Case 2 Case 3

mint(·) mpoi(·) mfus(·) mint(·) mpoi(·) mfus(·) mint(·) mpoi(·) mfus(·)

S1 0.075 0 0.0410 0.275 0 0.2415 0.375 0 0.3337
S2 0.2 0.275 0.2075 0.6 0 0.5270 0.575 0 0.5116
S3 0.4 0.4 0.4756 0.075 0.075 0.0874 0 0 0.0000
S4 0.2 0.275 0.2075 0 0.6 0.0687 0 0.675 0.0783
S5 0.075 0 0.0410 0 0.275 0.0315 0 0.275 0.0319
Θ 0.05 0.05 0.0273 0.05 0.05 0.0439 0.05 0.05 0.0445
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Table 2 shows that the generalized combination rule provides a reasonable outcome for Case 1 (i.e., low
conflict situation). More importantly, this generalized combination rule can well address the distribution fuse
problem for Case 2 (i.e., the high conflict situation). Introducing Θ significantly reduced the conflict factor η

to 0.6614. The probability of S3, which has little support from both evidence sets, is only slightly strengthened
as m f us(S3) = (0.075× 0.056 + 0.075× 0.288 + 0.05× 0.056)/(1− 0.6614) = 0.0874. The probabilities
of other travel time ranges, S1, S2, S4, and S5, are reduced, but a higher weighting is given to the
data source with better data quality (i.e. mint). The generalized combination rule also addressed the
distribution fusion for Case 3 (i.e., complete conflict situation), which cannot be fused using Dempster’s
combination rule.

From the fused BPA, m f us, the corresponding mean and STD, can be expressed as:

θ =
1

1−m f us(Θ)
(19)

tod
f us =

n

∑
i=1

θ ·m f us · (Si) · E(Si) (20)

σod
f us =

√
n

∑
i=1

(E(Si)− tod
f us)

2 · θ ·m f us · (Si) (21)

where θ is the adjustment parameter to assign the probability of the unknown state to each travel time
range. Thus, the proposed D-S distribution fusion algorithm can estimate path travel time distributions
by fusing two path travel time distributions from interval and point detector data, even in the cases of
extreme conflict between the data sets.

4.2.3. Posterior Update Step

This step updates the link travel time distributions and their spatial correlations based on the
fused path travel time distribution. An optimization technique is proposed to update the travel time

means (i.e., tpoi = [tr
poi, te

poi]
T) and variance-covariance matrix (i.e., Kpoi =

[
Krr

poi Ker
poi

Kre
poi Kee

poi

]
) estimated

in the data preprocessing step.

Let tupd = [tr
upd, te

upd]
T and Kupd =

[
Krr

upd Ker
upd

Kre
upd Kee

upd

]
be the updated travel time means and

covariance matrix, respectively where (kee
upd)ij

is the element at row i and column j of Kee
upd. This

study uses tr
upd = tr

poi and Krr
upd = Krr

poi, because tr
poi and Krr

poi are directly obtained from point
detector data and assumed to be accurate. Therefore, to update the link travel time covariance matrix,
only Kee

upd and Ker
upd sub-matrixes need to be updated, since Kre

upd = (Ker
upd)

T holds. Accordingly,
the optimization problem of updating the spatial correlations is formulated as the following nonlinear
programming problem:

M1 min

(
∑
∀i

∑
∀j

(
(kee

upd)ij
− (kee

poi)ij

)2
+ ∑
∀i

∑
∀j

2
(
(ker

upd)ij
− (ker

poi)ij

)2
)

(22)

Subject to:

tod
f us =(Xr

poi)
Ttr

upd + (Xe
poi)

Tte,`−1
upd + (Xe

poi)
TKer

upd(K
rr
poi)

−1(tr
poi − tr,`−1

upd ) (23)

(σod
f us)

2
=(Xr

poi)
TKrr

poiX
r
poi + (Xe

poi)
TKee

updXe
poi + 2(Xe

poi)
TKer

updXr
poi (24)

The nonlinear programming M1 has a convex objective function and two linear constraints.
To ensure Kupd is stable over time, objective function (22) minimizes the total difference of
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updating elements in both Kee
upd and Ker

upd sub-matrixes. Constraints (23) and (24), derived from
Equations (9) and (10), ensure that the summation of means and variances of corresponding link travel
time distributions are equal to that of the fused path travel time distribution, i.e., tod

f us and (σod
f us)

2
. This

M1 problem is a typical quadratic programming problem. A unique solution can be determined using
several efficient algorithms, such as the quadprog function in MatLab.

Once Kupd is determined, the vector of travel time means for links without point detectors,
te
upd are updated as:

te
upd = te,`−1

upd + Ker
upd(K

rr
poi)

−1(tr
poi − tr,`−1

upd ) (25)

The updated tupd and Kupd are used for estimating travel time distributions of links without
point detectors in the subsequent time interval. The detailed steps of the Algorithm 1 are summarized
as follows.

Algorithm 1

Step 1. Data preprocessing stage:
Estimate Tod

int from interval detector data at current interval `.
Estimate tr

poi and Krr
poi for links with point detectors at current interval `.

Deduce te
poi and ve

poi for links without point detectors using Equations (6) and (7).

Estimate Tod
poi using Equations (9) and (10).

Step 2. Distribution fusion stage:
Estimate Tod

f us by fusing Tod
int and based on Equations (11)–(21).

Step 3. Posterior update stage:
Update Kupd using Equations (22)–(24); and update tupd using Equation (25).
Set K`−1

upd = Kupd, and t`−1
upd = tupd.

Go to Step 1 for next time interval.

5. Numerical Experiments

Performance of the proposed heterogeneous data fusion method was investigated using
real-world data from Hong Kong, as shown in Figure 4. A path from Aberdeen tunnel in Hong Kong
Island to the Cross Harbor tunnel (CHT) in Kowloon urban area was selected for this case study.
CHT is the most congested of the three tunnels connecting Kowloon urban area and Hong Kong
Island. The total travel distance of the chosen path was 3.7 km with free-flow travel time 3.6 min.
There were 11 links in the chosen path, with only two, Links 1 and 5, equipped with Autoscope video
image detectors (VIDs), which is a popular type of point detector. Two AVI devices were installed
at the beginning and end of the chosen path for automatic toll collection. Market penetration of AVI
systems was approximately 40%. Real-time AVI data were also utilized for the implementation of RTIS
(real-time traveler information systems) in Hong Kong [14]. Detailed information of this AVI system
was provided in Tam and Lam [14].

Traffic data from both interval and point detectors were collected during (07:00–23:00) of a typical
weekday: Wednesday, 20 August 2014. An offline link travel time covariance matrix was obtained
from RTIS [14] as the initial Kfus. To evaluate the performance of the proposed heterogeneous data
fusion method, a manual license plate matching survey was performed. Video recording equipment
was set at the starting and end nodes of the chosen path to record the license plate readings of vehicles.
The vehicles recorded at the starting and end nodes were manually matched. Path travel times of
matched vehicles were computed as ground truth for accuracy validation.
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5.1. Evaluation Metrics

Two widely accepted metrics, mean absolute percentage error (MAPE) and root mean square error
(RMSE), were adopted to evaluate the accuracy of the estimated mean of path travel time distributions:

MAPEt =
100%

n
·

n

∑
`=1

∣∣∣tod
f us − tod

obs

∣∣∣
tod
obs

(26)

RMSEt =

√
1
n
·

n

∑
`=1

(tod
f us − tod

obs)
2 (27)

where n is the number of time intervals during the period of interest, and tod
obs is the ground truth

observed mean travel time obtained from the field survey at time interval `. Smaller MAPEt and
RMSEt indicate higher accuracy of the estimated mean travel time.

The MAPE and RMSE concepts were extended to evaluate the accuracy of the estimate STD of the
path travel time as:

MAPEσ =
100%

n
·

n

∑
`=1

∣∣∣σod
f us − σod

obs

∣∣∣
σod

obs
(28)

RMSEσ =

√
1
n
·

n

∑
`=1

(σod
f us − σod

obs)
2 (29)

where σod
obs represents the ground truth observed travel time STD obtained from the field survey at

time interval `.
For many transportation applications, it is meaningful to construct a travel time interval at a given

confidence level from the estimated travel time distribution [60,61]. The travel time interval accuracy
represents the integrated accuracy of both the estimated mean and STD. Two metrics were adopted
to evaluate these accuracies: probability outside the predicted (estimated) time interval (POPI) and
probability outside the observed time interval (POOI) [62]. The POPI measures the percentage of
observed data outside the estimated travel time interval, while the POOI measures the percentage of
estimated distribution outside the observed travel time interval.
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Let l f us = Φ−1
f us(α/2) and u f us = Φ−1

f us(1− α/2) be the lower and upper bounds of the estimated

travel time interval, respectively, at confidence level 1− α, where Φ−1
f us(·) is the inverse CDF of the

estimated path travel time distribution. Then:

POPI =
100%

n
·

n

∑
`=1

(1−
Φobs(u f us)−Φobs(l f us)

1− α
) (30)

where Φobs(·) is the CDF of the observed travel time distributions. The POPI value ranges from 0 to 1.
The smaller POPI indicates capture of larger proportion of observed data, i.e., higher accuracy of the
estimated travel time interval. As noted by Shi et al. [62], this POPI metric is very useful, but tends to
exhibit bias for situations of wide travel time intervals due to large STD errors.

As an alternative, POOI metric is the percentage of estimated distribution outside the observed
travel time interval. Let lobs = Φ−1

obs(α/2) and uobs = Φ−1
obs(1− α/2) denote the lower and upper

bounds of the observed travel time interval, respectively, at confidence level 1− α, where Φ−1
obs(·) is

the inverse CDF of the observed path travel time distribution, and Φ f us(·) denotes the CDF of the
estimated travel time distribution. Then:

POOI =
100%

n
·

n

∑
`=1

(1−
Φ f us(uobs)−Φ f us(lobs)

1− α
) (31)

POOI also ranges [0, 1], and larger POOI indicates lower estimated travel time interval accuracy,
because a larger proportion is outside the observed travel time interval. Therefore, the POPI and POOI
matrices are complementary to evaluate the estimated path travel time distribution accuracy.

5.2. Experimental Results

This section reports experimental results of the case study using the proposed heterogeneous
data fusion method. Travel time distributions for the chosen path and links were estimated every
2 min. The probability of the unknown state for both interval and point detectors was set as
αΘ = mint(Θ) = mpos(Θ) = 0.05, and sensitivity parameters in Equations (15) and (16) were
set as βint = 0.2 and βpoi = 0.8, according to the sensitive analysis results obtained from Dion and
Rakha [34]. Setting βpoi = 4βint assigns a higher level of information quality to the interval detector
than point detector data, given the same sample sizes.

Figure 5 shows two path travel time distributions, Tod
int and Tod

poi, estimated from interval and
point detectors, respectively, in the data preprocessing step. Travel time intervals were constructed
for the 95% confidence level, i.e., αΘ = 0.05, for both interval and point detectors, shown in blue
and red, respectively. Observed data from the field survey, shown in green dots, were only used
for accuracy validation. As shown in the figure, two estimated travel time intervals from different
data sources can cover most observed data well during the period of interest. The two estimated
travel time distributions show high consistency during off-peak periods (21:00–23:00 and 7:00–7:30),
slight inconsistency during inter-peak periods (10:00–16:00), and high inconsistency during peak
periods (7:30–10:00 and 16:00–21:00). In general, Tod

int tended to have higher accuracy than Tod
poi. This

was expected, since Tod
int was estimated from interval detector data, whereas Tod

poi was estimated from
point detector data through spatial interpolation. Such a result also justified the chosen sensitivity
parameters, reflecting the higher level of information quality for the interval detector data.

Figure 6 shows the resultant path travel time distribution after fusing the two path travel time
distributions from Figure 5. A confidence level of 80%, i.e., α = 0.2, was used to construct the travel
time interval and calculate POPI and POOI metrics. The proposed heterogeneous data fusion method
provided an accurate and robust estimation of mean travel time, tod

f us, throughout the period of interest,
with MAPEt = 7.1%. However, the relative large MAPEσ = 17.9% showed that the proposed method
overestimated path travel time distribution STD, σod

f us, for the period of interest. This highlights
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the challenge of accurately estimating σod
f us in congested road networks. One major reason may be

the difficulty of estimating σod
obs of the population using biased samples with various data quality.

Fortunately, the slight STD over estimation could be beneficial to most travelers with risk-averse
attitudes regarding travel time uncertainty. POPI = 15.7%, somewhat better than the target (20%),
which indicates that a high proportion (84.3%) of observation data was well covered by the estimated
path travel time interval. It can also be seen from the figure that the estimated interval was not too
wide, given the relative large STD error. POOI = 25.6%, which was somewhat larger than the target
(20%). Thus, overall the POPI and POOI metrics verified that the proposed heterogeneous data fusion
method could obtain accurate and robust estimations of the path travel time interval (i.e., path travel
time distribution) by fusing heterogeneous interval and point detector data.
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5.3. Comparison of Data Fusion and Single Data Source Results

In this section, the effectiveness of the proposed heterogeneous data fusion method was
investigated by comparing data fusion results with those estimated from single data source.
The estimated path travel time distribution (i.e., Tod

int) from single interval detector data was shown in
Figure 5 in blue. The estimated path travel time distribution from single point detector data (denoted
by T̃od

poi) was shown in Figure 7 in blue, which was different from the Tod
poi estimation shown in Figure 5.

It should be noted that T̃od
poi was generated using fixed offline spatial correlations obtained from

RTIS, and Tod
poi was generated by the proposed heterogeneous data fusion method using the updated

spatial correlations.
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Figure 7 shows travel time intervals of T̃od
poi and Tod

poi in blue and red colors for comparison.
The 80% confidence level was used for construing travel time intervals and calculating POPI and
POOI metrics. As illustrated, by using updated spatial correlations, the accuracy of the path travel time
distribution estimated from point detector data was significantly improved. The MAPEt, MAPEσ,
POPI, and POOI metrics were reduced by 46.4% (i.e., 1–24.9%/46.5%), 78.9%, 21.1%, and 22.1%,
respectively. This validates the effectiveness of the proposed optimization technique for updating
travel time spatial correlations. Such a result also highlights the necessity for considering the dynamic
nature of travel time spatial correlations in congested road networks, and implies that current spatial
interpolation techniques [14,15] built on fixed spatial correlations may lead to considerable errors
when imputing missing data.

Table 3 summarizes the evaluation metrics for all path travel time distributions estimated from
point detector, T̃od

poi; interval detector, Tod
int; and fused data, Tod

f us. Amongst these three distributions, the

accuracy of T̃od
poi was the poorest, with MAPEt = 46.5% and MAPEσ = 61.6%. The POPI = 85.9%

indicates that a large proportion (85.9%) of observations falling outside the travel time interval of
T̃od

poi. The POOI = 92.0% shows that almost whole travel time range of T̃od
poi was out of the observed

time interval. The accuracy of Tod
int was somewhat superior, with MAPEt = 17.1%, MAPEσ = 76.9%,

POPI = 26.4% and POOI = 48.9%. As shown, Tod
f us, using the proposed data fusion method, was the
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best for all evaluation metrics. By fusing interval and point detector data, the MAPEt, MAPEσ, POPI
and POOI metrics were respectively reduced by 58.5% (i.e., 1–7.1%/17.1%), 76.7%, 40.5%, and 47.6%,
when compared to that of Tod

int. Thus, the proposed heterogeneous data fusion method can significantly
improve the accuracy of path travel time distribution estimations from interval and point detectors.

Table 3. The accuracy of data fusion results and single data source results.

Data Source
Estimated Mean Estimated STD

POPI POOI
MAPE RMSE (min) MAPE RMSE (min)

Point detectors 46.5% 2.32 61.6% 0.75 85.9% 92.0%
Interval detectors 17.1% 1.42 76.9% 1.01 26.4% 48.9%

Data fusion 7.1% 0.85 17.9% 0.35 15.7% 25.6%

Fusion of interval and point detector data can improve the accuracy of travel time distributions
for links without point detectors. When only point detector data were used, travel time distributions
for links without point detectors were indirectly estimated through the fixed spatial correlations.
Fusing interval and point detector data provided better estimations of link travel time distributions
from the updated spatial correlations. Figure 8 compares individual link travel time distributions
estimated from point detector data and the proposed data fusion method. Ground truth data for
these link travel time distributions were not available for quantitative analysis of estimation accuracy.
Nevertheless, link travel time distributions estimated from the proposed heterogeneous data fusion
method better capture dynamic traffic conditions, with more distinct peaks occurring during the
morning and evening peak periods. The much superior accuracy of path travel time distribution
estimation (see Table 3) also justifies this visual observation, because the path travel time distribution
is the summation of corresponding link travel time distributions along the path.Sensors 2017, 17, 2822  17 of 22 
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5.4. Comparison of Different Distribution Fusion Algorithms

This section investigates the effectiveness of the proposed D-S distribution fusion algorithm
built on the D-S evidence theory. To further evaluate and benchmark the proposed algorithm,
a linear combination fusion algorithm built on the linear combination approach was also implemented.
The linear combination approach (or simple convex combination approach) has been widely used as
a simple and effective technique to fuse two independent estimations of mean travel times [11],

tod
f us =

wint
wint + wpoi

tod
int +

wpoi

wint + wpoi
tod

poi (32)

where wint and wpoi are the data quality of interval and point detectors, respectively, as defined in
Equations (15) and (16). This study extended the linear combination approach to fuse two independent
STD estimations, as:

σod
f us =

wint
wint + wpoi

σod
int +

wpoi

wint + wpoi
σod

poi (33)

Assuming normal distributions, this extended linear combination fusion algorithm can be used to
fuse path travel time distributions from interval and point detectors.

In this study, the same set of input data was used to validate the results of the proposed D-S
distribution fusion and the linear combination fusion algorithms. Path travel time distributions
of interval and point detectors obtained in the data preprocessing step, shown in Figure 5, were
employed as the input data. Figure 9 reports the fused path travel time distributions using these two
algorithms. As shown, the proposed D-S distribution fusion algorithm produces better of path travel
time distribution estimates than the linear combination fusion algorithm. The proposed algorithm can
significantly reduce MAPEt, MAPEσ, POPI, and POOI metrics by 58.6%, 15.3%, 37.2%, and 38.0%,
respectively, compared to the linear combination fusion algorithm. This result indicates that the D-S
evidence theory is effective for fusing inaccurate and inconsistent distribution data from multiple
sources under various information conflict situations, including highly consistent, slightly inconsistent,
and highly inconsistent situations.
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6. Conclusions and Future Research

Provision of travel time distribution information is a crucial requirement for travelers to make
reliable path choice decisions incorporating travel time uncertainties. With advances in information
and communication technologies, interval detectors (such as automatic vehicle identification devices)
and point detectors (such as loop detectors) are being increasingly deployed in road networks. These
interval and point detectors generate heterogeneous data sources with distinct characteristics of data
quality and network coverage. Fusing these heterogeneous data can be beneficial for robust and
accurate estimation of travel time distribution information.

This paper proposed a heterogeneous data fusion method to estimate travel time distributions,
fusing heterogeneous data from point and interval detectors. The proposed method consisted of
three steps. The first step, i.e., data preprocessing, was to respectively estimate path travel time
distributions from interval and point detector data. The spatially missing data issue of point detectors
was addressed. The travel time distributions of links without point detectors were imputed based on
their spatial correlations with links that had point detectors. The second step, i.e., distribution fusion,
was to fuse these two path travel time distributions estimated from interval and point detectors. A D-S
distribution fusion algorithm built on the Dempster-Shafer evidence theory was proposed to fuse path
travel time distributions from different data sources with various information qualities. The third
step, i.e., posterior update, was to update link travel time distributions and their spatial correlations.
The problem of updating spatial correlations was formulated and solved as a quadratic programming
problem with a convex objective function and two linear constraints.

To validate the accuracy of the proposed heterogeneous data fusion method, a case study was
performed using real-world data from RTIS in Hong Kong. The results validated that the proposed
method can obtain robust and accurate estimations of path travel time distributions in congested
road networks. Compared with either interval or point detectors alone, the proposed data fusion
method can significantly reduce estimation errors for path travel time distributions with respect to
MAPEt, MAPEσ, POPI, and POOI metrics. The proposed D-S distribution fusion algorithm was
also compared to a linear combination algorithm for the same case study, and it showed that the
proposed D-S distribution fusion algorithm can generate a robust and accurate fusion of travel time
distributions over the whole period of interest, including highly consistent, slightly inconsistent,
and highly inconsistent situations for the different data sources. Furthermore, the results of the case
study indicated that the proposed optimization technique can effectively update travel time spatial
correlations under dynamic traffic conditions, and incorporation of updated spatial correlations greatly
enhanced estimation accuracy of travel time distributions of the path and all links without point
detectors. Therefore, the proposed D-S distribution algorithm was validated to be effective for fusing
travel time distributions from different data sources under various information conflict situations,
including highly consistent, slightly inconsistent, and highly inconsistent situations.

There are several worthwhile directions for future research. First, travel times in this study
were assumed to follow normal distributions. However, several previous studies have found that
travel times in congested road networks could be better represented by asymmetric distributions
with strong positive skew, e.g., lognormal, gamma, or Burr distributions [10,57]. The proposed
heterogeneous data fusion method can be easily extended to other types of distributions with two
parameters, e.g., lognormal or gamma, by replacing Equation (14) with corresponding methods to
calculate the cumulative distribution function. Second, the spatial interpolation proposed by Tam
and Lam [14] was adopted in this study for imputing the travel time distributions of links without
point detectors. However, other effective spatial interpolation techniques have been proposed, such
as Kriging [15]. Integrating these alternative spatial interpolation techniques into the proposed
heterogeneous data fusion method warrants further study. Third, the proposed data fusion method
only considered heterogeneous data from point and interval detectors. How to extend the proposed
method to incorporate floating car data needs further investigation. Fourth, the case study only
involved a specific path. Extension of the proposed method to fuse travel time distributions of multiple
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paths between a pair of nodes is an interesting topic for further investigation. Last but not the least,
travel time distributions were estimated in this study for the current time interval. Extension of the
proposed data fusion method to the problem of short term travel time distribution prediction is another
interesting topic for further study.
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