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Abstract: A practical probabilistic data association filter is proposed for tracking multiple targets in
clutter. The number of joint data association events increases combinatorially with the number of
measurements and the number of targets, which may become computationally impractical for even
small numbers of closely located targets in real target-tracking applications in heavily cluttered
environments. In this paper, a Markov chain model is proposed to generate a set of feasible
joint events (FJEs) for multiple target tracking that is used to approximate the multi-target data
association probabilities and the probabilities of target existence of joint integrated probabilistic data
association (JIPDA). A Markov chain with the transition probabilities obtained from the integrated
probabilistic data association (IPDA) for single-target tracking is designed to generate a random
sequence composed of the predetermined number of FJEs without incurring additional computational
cost. The FJEs generated are adjusted for the multi-target tracking environment. A computationally
tractable set of these random sequences is utilized to evaluate the track-to-measurement association
probabilities such that the computational burden is substantially reduced compared to the JIPDA
algorithm. By a series of simulations, the track confirmation rates and target retention statistics of the
proposed algorithm are compared with the other existing algorithms including JIPDA to show the
effectiveness of the proposed algorithm.
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1. Introduction

Multi-target tracking [1–5] is an important task of radar, sonar, acoustic, electro-optical,
and infrared systems and various other tracking applications. The measurements obtained by sensors
may be originated from real targets and clutter. In a multi-target environment, each target is detected
with a certain probability of detection, the number of targets is unknown, and a random number of
false alarms or clutter measurements are generated at the random locations in the surveillance region.
Under these situations, true as well as false tracks are initiated, and a track quality measure is needed
for false track discrimination (FTD) and track maintenance.

A well-known algorithm for multi-target tracking in cluttered environments is joint probabilistic
data association (JPDA) [6,7], which extends probabilistic data association (PDA) for single-target
tracking in clutter with a known number of targets in a cluttered environment to multi-target
tracking environments. The JPDA algorithm is used to compute the track-to-measurement association
probabilities for all the feasible joint events (FJEs), and the complexity of the calculation grows
combinatorially with the number of targets and the number of measurements. In addition, these JPDA
and PDA approaches do not have measures for discriminating false or true tracks. FTD involves
confirming the tracks that follow true targets and terminating false tracks. The probability of target
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existence (PTE) is used as a track quality measure for FTD in integrated probabilistic data association
(IPDA) [8,9].

For multi-target tracking in clutter with FTD, joint integrated PDA (JIPDA) [10] and joint ITS
(JITS) [11] with PTE have been proposed for autonomous target tracking. JIPDA and JITS enumerate all
the FJEs as JPDA and evaluate the data association probabilities and the PTE of each track. They become
impractical for even a small number of closely located targets in heavily cluttered environments due
to intractable number of all the FJEs for the tracking environments. To alleviate the computational
burden of the multi-target data association algorithms, linear multi-target IPDA (LMIPDA) [12],
linear multi-target ITS [12], and iterative JIPDA (iJIPDA) [13,14] along with efficient implementations
have recently been proposed. Several deterministic approximation approaches such as suboptimal
JPDA have been proposed in [15,16]. The multiple hypothesis tracking (MHT) filters [17,18] employ
multi-scan data association schemes to maintain a set of measurement history hypotheses with high
track scores. There are many versions of the MHT filter. Most of them can be grouped into two classes:
the track-oriented MHT [18] and the measurement-oriented MHT [17]. The original random finite
set (RFS) approach [2,3] to multi-target filtering does not require track-to-measurement association.
However, it lacks track management functions for target tracking such as labeling and track scoring
that are important in practice. Recently the RFS approaches become more practical as they are equipped
with tools for track scoring, labeling and data association [19]. Markov chain Monte Carlo (MCMC)
data association [20] is a stochastic method recently proposed for solving data association problems
in multi-target tracking. It uses the Metropolis-Hastings algorithm to generate the FJEs. The MH
algorithm is known to be an MCMC method, in which the parameters of interest or samples follow a
proposed distribution to determine moving to another state or staying at the current state according to
an acceptance probability. The move to a new FJE is determined by the acceptance probability which is
based on the ratio of the probabilities of old and new events. As shown in the simulation experiments
of [20], this MCMC data association method should generate about 10,000 burn-in samples and large
MCMC samples are needed for calculation of the multi-target data association probabilities at every
scan. Regarding real-time applications, this method may not be practical even though it is flexible and
executable in polynomial time.

In this paper, we present a new data association algorithm that uses a Markov chain [21] to
approximate the probabilities of the FJEs of JIPDA. It is called a Markov chain–based JIPDA (MCJIPDA)
filter for multi-target tracking in cluttered environments. The MCJIPDA algorithm does not utilize
a Monte-Carlo technique and is different from the MCMC method of [20]. The proposed method
sequentially generates a Markov chain for each cluster target based on the transition probability matrix
of the Markov chain model developed from IPDA for single-target tracking, which can be calculated
without imposing additional computation load. The Markov chain sequences for all tracks are used
to evaluate the data association probabilities of the FJEs. The number of FJEs is predetermined and
the FJEs are generated from the transition probabilities based on IPDA for single target tracking at
first, and later they are adjusted for the multi-target tracking environment in clutter. It is shown by
simulation studies that a few hundred measurement states for each track generated by the proposed
Markov chain are enough to compute the posterior data association probabilities and to maintain
performance similar to that of JIPDA. This makes a big difference between the proposed algorithm
and the MCMC method of [20]. Simulation studies also show that the execution time is substantially
reduced compared to that of JIPDA.

The rest of this paper is organized as follows. Section 2 revisits JIPDA for a brief introduction.
The Markov chain data association algorithm for joint integrated target tracking is described in Section 3.
Section 4 shows the performance of the MCJIPDA via simulations, followed by the concluding remarks
in Section 5.
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2. Target Tracking with JIPDA

This section provides an overview of JIPDA with models of target dynamics and sensor
measurements. It also introduces a reformulation of the posterior probabilities of the FJEs for JIPDA to
aid understanding how the sequences of the Markov chain for each target can be used to represent the
FJEs. In this paper, we use superscript τ to denote a track, and a true target that track τ follows.

2.1. Mathematical Models

Consider a linear dynamic model of target τ described by

xτ
k+1 = Fxτ

k + νk, xτ
k ∈ Rnx (1)

where xτ
k is the target state vector at time k, F is the transition matrix, and νk is a zero-mean,

white Gaussian noise sequence with known variance Qk.
Let zτ

k = {zτ
k,i}

mτ
k

i=1
denote the set of validated measurements at time k for target τ, zτ

k,i denotes
the i th measurement of zτ

k , and mτ
k denotes the number of measurements received at scan k in the

validation gate of track τ that follows target τ. Each target can generate at most one detection per each
k with the probability of detection P τ

D .
Then, the set of measurements collected up to time k from the entire surveillance region is

denoted as
Zk = {zk, Zk−1} (2)

and zk contains the measurements of all the targets as well as the clutter measurements in the
surveillance region at scan k and its cardinality is denoted as mk. The number of clutter measurements
is assumed to follow a Poisson distribution, and they are uniformly distributed over the entire
surveillance region with the clutter measurement density ρk.

The measurement model from a sensor for target τ is given by

zτ
k,i = Hx τ

k + wk, zτ
k,i ∈ Rnz (3)

where H is the measurement matrix and wk is a white, zero-mean Gaussian measurement noise
sequence with known variance Rk.

2.2. JIPDA

Tracks may be initiated from target or clutter measurements. True tracks should be confirmed
fast and kept confirmed, while false tracks should be terminated effectively through a proper track
management method. JIPDA utilizes the PTE for track management.

The event that the target exists at time k is denoted by χk. Then, the PTE at time k conditioned on
Zk is denoted by P(χk

∣∣∣Zk) , and the probability that the target does not exist satisfies

P(χk|Zk) = 1− P(χk|Zk) (4)

The Markov chain-one model [8] for the propagation of the PTE for target τ is given by

P(χτ
k |Z

k−1) = ∆11P(χτ
k−1|Z

k−1) + ∆21P(χτ
k−1|Z

k−1) (5)

where the transition probabilities are defined as

∆11 = P(χτ
k
∣∣χτ

k−1) (6)

∆21 = P(χτ
k
∣∣χτ

k−1) (7)

The a posteriori probability density function (pdf) of the target state is given by
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p(x τ
k , χτ

k |Z
k) = p(x τ

k |χ
τ
k , Zk)P(χτ

k |Z
k) (8)

The estimated probability density function (pdf) of the target state is conditioned on χτ
k . This pdf

can be divided into the sum of the data association probabilities for the set of measurements by using
the total probability theorem, which is given by

p(x τ
k |χ

τ
k , Zk) =

mk

∑
i=0

p(x τ
k |χ

τ
k,i, χτ

k , Zk)βτ
i (9)

where χτ
k,i is the hypothesis that the ith measurement of zk is the measurement of target τ (for i = 0,

target τ is not detected) and the data association probability β τ
i can be expressed as

βτ
i = P(χτ

k,i|χ
τ
k , Zk) =

P(χτ
k,i, χτ

k |Z
k)

P(χτ
k |Zk)

(10)

A feasible joint event (FJE) is one possible mapping of the measurements to the tracks that follow
targets. For each joint event, it is assumed that each track can be assigned to zero or one of the
measurements which falls in the validation gate of the track, and each measurement can be allocated
to zero or one of the tracks in order to be a FJE. Therefore, the FJE condition implies that no two tracks
in a FJE share the same measurement.

Let κj and K denote the jth FJE and the number of all the FJEs for data association at time k,
respectively. Then, the sum of the a posteriori probabilities of all the FJEs satisfies

K

∑
j=1

P{κj|Zk} = 1 (11)

The data association probabilities of track τ are obtained by summing over all the probabilities of
FJEs that contain track τ and the measurement of interest. Denote by Ξ(τ, i) the set of FJEs in which
track τ is allocated to measurement i (0 means no measurement allocation), we have

P(χτ
k,0|Z

k) = ∑
e∈Ξ(τ,0)

P{κe|Zk} (12)

P(χτ
k,0, χτ

k |Z
k) =

(1− Pτ
DPτ

G)P(χτ
k |Z

k−1)

1− Pτ
DPτ

GP(χτ
k |Zk−1)

P(χτ
k,0|Z

k) (13)

P(χτ
k,i, χτ

k |Z
k) = ∑

e∈Ξ(τ,i)
P{κe|Zk} (14)

where Pτ
G is the gating probability of track τ.

The a posteriori PTE for track τ in JIPDA is obtained from the sum of the joint probabilities by

P(χτ
k |Z

k) =
mk

∑
i=0

p(χτ
k,i, χτ

k

∣∣∣Zk) (15)

Let pτ
k,i denote the truncated measurement likelihood function of track τ for measurement zτ

k,i ∈ zk
in the validation gate Vτ

k of track τ,

pτ
k,i =

{
1

Pτ
G

p(zτ
k,i|Z

k−1), zτ
k,i ∈ Vτ

k

0, zτ
k,i /∈ Vτ

k
(16)
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Now, the a posteriori probability of FJE κj in JIPDA [10] is defined. Denote by T j
0 and T j

1 the set of
tracks allocated with no measurements and the set of tracks allocated with one measurement for the
joint event j in Equation (11), respectively. The a posteriori probability of FJE κj is defined by

P{κj|Zk} = C−1 Π
τ∈T j

0

(1− Pτ
DPτ

GP{χτ
k |Z

k−1}) Π
τ∈T j

1

(Pτ
DPτ

G pτ
k,m(τ,j)ρ

−1
k P{χτ

k |Z
k−1}) (17)

where m(τ, j) is the index of the measurement allocated to track τ in FJE κj, pτ
k,m(τ,j) can be obtained by

replacing the subscript i with m(τ, j) in Equation (16), ρk is the clutter measurement density, and the
normalization constant C is calculated from Equation (11).

In fact, tracks are partitioned into clusters [10]. A cluster is a set of tracks and the measurements
these tracks select. In other words, the tracks not belonging to the cluster do not share any of the
cluster measurements. The purpose of clustering is to minimize the number of all the FJEs by limiting
the numbers of tracks and measurements inside a cluster.

The following is an example to illustrate the set of all the FJEs of JIPDA and the a posteriori
probability calculation for the set. Consider the two-dimensional multi-target tracking situation
depicted in Figure 1. There are two cluster tracks, labeled τ1 and τ2, and three measurements zk,1 to
zk,3 in the cluster. For this cluster, the total number of FJEs is 8.
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Figure 1. An example of a cluster for two tracks and three measurement.

Each track is assigned to zero or one measurement, and each measurement is allocated to zero or
one track. Two FJEs are different if at least one track-to-measurement assignment is different. All the
FJEs for the cluster shown in Figure 1 are listed in Table 1. Note that we use j to denote the j-th FJE
in Table 1.

Table 1. Joint event set of the cluster in Figure 1 (‘φ ’ means no allocation of measurements).

j τ1 (=1) τ2 (=2) P{kj|Zk}

1 φ φ C−1(1− P1
DP1

GP{χ1
k |Z

k−1})(1− P2
DP2

GP{χ2
k |Z

k−1})
2 φ zk,m(2,2) = zk,2 C−1(1− P1

DP1
GP{χ1

k |Z
k−1})(P2

DP2
G p2

k,2ρ−1
k P{χ2

k |Z
k−1})

3 φ zk,m(2,3) = zk,3 C−1(1− P1
DP1

GP{χ1
k |Z

k−1})(P2
DP2

G p2
k,3ρ−1

k P{χ2
k |Z

k−1})
4 zk,m(1,4) = zk,1 φ C−1(P1

DP1
G p1

k,1ρ−1
k P{χ1

k |Z
k−1})(1− P2

DP2
GP{χ2

k |Z
k−1})

5 zk,m(1,5) = zk,1 zk,m(2,5) = zk,2 C−1(P1
DP1

G p1
k,1ρ−1

k P{χ1
k |Z

k−1})(P2
DP2

G p2
k,2ρ−1

k P{χ2
k |Z

k−1})
6 zk,m(1,6) = zk,1 zk,m(2,6) = zk,3 C−1(P1

DP1
G p1

k,1ρ−1
k P{χ1

k |Z
k−1})(P2

DP2
G p2

k,3ρ−1
k P{χ2

k |Z
k−1})

7 zk,m(1,7) = zk,2 φ C−1(P1
DP1

G p1
k,2ρ−1

k P{χ1
k |Z

k−1})(1− P2
DP2

GP{χ2
k |Z

k−1})
8 zk,m(1,8) = zk,2 zk,m(2,8) = zk,3 C−1(P1

DP1
G p1

k,2ρ−1
k P{χ1

k |Z
k−1})(P2

DP2
G p2

k,3ρ−1
k P{χ2

k |Z
k−1})
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Let T denote the total number of tracks in a cluster. Let mC
k and mτ

k denote the total number of
measurements in the cluster and the number of measurements in the validation gate of track τ in the
cluster, respectively. The set of T tracks in the cluster, and the sets of mC

k and mτ
k measurements are

defined by

{τ} = {τ1, τ2, · · · , τT} (18)

{zτ
k} = {zk,m(τ,j), τ ∈ T j

1} (19)

{zC
k } = {zk,1, zk,2, · · · , zk,mC

k
} and {zτ

k} ⊂ {z
C
k } (20)

The number of unique assignments of mC
k measurements to T tracks, assuming that all tracks

select all measurements satisfies [10]

T!
T

∑
τ=0

1
τ!

(
mC

k
T − τ

)
≥ (mC

k + 1)T! i f mC
k ≥ T ≥ 1 (21)

mC
k !

mC
k

∑
m=0

1
m!

(
T

mC
k −m

)
≥ (T + 1)mC

k ! i f T ≥ mC
k ≥ 1 (22)

The number of all the FJEs depends only on the number of measurements, the number of tracks,
and the measurements.

Since T j
0 and T j

1 in Equation (17) are mutually exclusive and exhaustive in the set {τ} of
cluster tracks,

{τ} = T j
0∪T j

1 (23)

The tracks in T j
0 are assigned to non-detection and the tracks in T j

1 are assigned to one

of the cluster measurements that is not shared by other tracks in T j
1. The a posteriori

probability (1− Pτ
DPτ

GP
{

χτ
k

∣∣∣Zk−1
}
) is assigned to the tracks in T j

0 and the a posteriori probability

(Pτ
DPτ

G pτ,j
k ρ−1

k P{χτ
k

∣∣∣Zk−1}) is assigned to the tracks in T j
1.

Therefore, the a posteriori probability of FJE κj can be expressed by

P{κj|Zk} = C−1
τT

∏
τ=τ1

f τ
j (θ

τ
j = zk,m(τ,j)) (24)

f τ
j (θ

τ
j = zk,m(τ,j)) =

{
1− Pτ

DPτ
GP{χτ

k |Z
k−1}, zk,m(τ,j) = φ

Pτ
DPτ

G pτ
k,mρ−1

k P{χτ
k |Z

k−1}, zk,m(τ,j) ∈ {zτ
k}

(25)

where θ τ
j denotes the measurement state of measurement allocated to track τ in the FJE κj, and the

measurement state can be no detection or a member of
{

zτ
k
}

, as described in Equation (25).
If we denote that the number of all FJEs for {τ} and

{
zC

k
}

is K, then the following T × K matrix
of which the element represents the a posteriori probability of track τ, f τ

j (θ
τ
j = zk,m(τ,j)) of FJE κj.

The matrix is called the a posteriori probability matrix of FJEs (PMFJE) and is denoted by PJM such as

PJM =


f τ1
1 (θτ1

1 ) f τ1
2 (θτ1

2 ) · · · f τ1
K (θτ1

K )

f τ2
1 (θτ2

1 ) f τ2
2 (θτ2

2 ) · · · f τ2
K (θτ2

K )

· · · · · · · · · · · ·
f τT
1 (θτT

1 ) f τT
2 (θτT

2 ) · · · f τT
K (θτT

K )


T×K

(26)

where the rows represent tracks and the columns represent FJEs. The (i, j)th element of PJM represents
the a posteriori probability of track to measurement association for track and the measurement with
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state θ
τi
j for FJE κj. The a posteriori probability of FJE κj is calculated by multiplying all the elements in

the column j of PJM such as

P{κj|Zk} = C−1
T

∏
i=1

PJM
ij = C−1

T

∏
i=1

f τi
j (θτi

j ) (27)

where PJM
ij is an element in the ith row and the jth column of PJM. Each column j of PJM represents the

collection of elements in P
{

κj

∣∣∣Zk
}

of FJE κj. Any two measurement states θ
τl
j and θτn

j that are assigned
to track τl and τn, respectively, in FJE κj should be different according to the FJE condition described in
Section 2.1, i.e., θ

τl
j 6= θτn

j if l 6= n. The PMFJE for the cluster tracks shown in Figure 1 can be obtained
as follows:

PJM =

[
f τ1
1 (φ)

f τ2
1 (φ)

f τ1
2 (φ)

f τ2
2 (zk,2)

f τ1
3 (φ)

f τ2
3 (zk,3)

f τ1
4 (zk,1)

f τ2
4 (φ)

f τ1
5 (zk,1)

f τ2
5 (zk,2)

f τ1
6 (zk,1)

f τ2
6 (zk,3)

f τ1
7 (zk,2)

f τ2
7 (φ)

f τ1
8 (zk,2)

f τ2
8 (zk,3)

]
2×8

(28)

3. Markov Chain Based JIPDA (MCJIPDA)

The number of feasible joint events increases combinatorially with the number of measurements
and the number of tracks involved, as shown in Equations (21) and (22). For tracking closely located
multiple targets in heavily cluttered environments, K, the total number of all the FJEs, becomes too
large for the association probability computation to be feasibly handled. This is the main reason
why JPDA or JIPDA cannot be applied in real-time applications for these environments. Since the
computational resource involved in two consecutive scans can vary significantly depending on the
number of all the FJES for the tracking environment. It is hard to predict in advance. However, the
tracking algorithms must be executed in a predictable cycle for real-time applications. Therefore, the
algorithms with the reduced number FJEs are needed. The reduced size PMFJE should represent
the significant joint events for data association effectively while neglecting most of insignificant joint
events to approximate the data association probabilities and thus to maintain similar performance
to JIPDA.

An approximated version of PMFJE is determined by the Markov chain approach in this paper by
generating a T × N matrix, with N much smaller than K, using the Markov chain approach. In this
paper, the proposed Markov chain data association algorithm utilizes a Markov chain to generate the
FJEs. For the PMFJE, θ τ

j of f τ
j in every row of PJM for each track τ is generated sequentially according

to the Markov chain property.
A Markov chain is a sequential stochastic process. Assume that θn has state yn at step n satisfying

the Markov property

P(θn+1 = yn+1|θn = yn, θn−1 = yn−1, . . . θ1 = y1) = P(θn+1 = yn+1|θn = yn) (29)

then the probability of moving to the next state at step n+1 depends on the present state yn but not on
the past state history. By utilizing the Markov chain property of Equation (29), the state generation
becomes computationally efficient as one does not need to store the entire past state histories but only
the current states to generate the next states. A Markov chain process with the Metropolis-Hasting
algorithm is presents for generating FJEs in [20]. A Markov chain process with randomized transition
probabilities instead of deterministic values to improve modelling of stroke disease is proposed in [22].
This approach is known to be useful for decision making with real medical data.

A direct consequence of the Markov property is that the Markov chain can be generated
sequentially (θ1, θ2, · · · ). For a finite discrete state set, a Markov chain can be represented by
a transition probability matrix π of which the element denoted by πuv represents the transition
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probability from state u to state v in one step. The transition probability πuv of a homogeneous Markov
chain is given by

πuv = π(θn+1 = v|θn = u) (30)

and the transition probabilities satisfy

∑
v

πuv = 1 (31)

for every u. Note that u and v belong to the same measurement state set.
To obtain the reduced size FJEs for data association with the Markov chain in this paper, the states

of the Markov chain are defined as elements of the set φ ∪
{

zτi
k
}

for every track in {τ}. The move from
θ

τi
n−1 = u to θ

τi
n = v is accepted with the transition probability π

τi
uv, for j = 1, 2, . . . , T. A sequence{

θ
τi
n
}N

1 with N elements is generated from the set with the transition probability matrix developed
from IPDA for single target tracking in clutter. We call it a Markov chain measurement allocation
sequence (MCMAS). The MCMAS is applied for other tracks to form a FJE. Design of the Markov
chain with the transition probabilities developed from IPDA is illustrated in Section 4. If θ

τi+1
n = v 6= φ

is the same as θ
τi
n = v that is the measurement state selected by another track, then regenerate

θ
τi+1
n until it avoids v to ensure the FJE condition of multi-target tracking. The procedure can be

illustrated with an example shown in Figure 1, each MCMAS of length N = 5 for each track
is generated as following. For track τ1, the first MCMAS is generated from a measurement set{

0, zk,1, zk,2
}

where ‘0’ means no assignment case. By the same way, the second MCMAS of track
τ2 is generated from a measurement set

{
0, zk,2, zk,3

}
. For example, the first MCMAS in length 5

can be {θ 1
n }

5
n=1 = {zk,1, zk,1, 0, zk,2, zk,1}, which is generated from the Markov chain random process,

as shown in Figure 2. The second MCMAS can be obtained as
{

θ 2
n
}5

n=1 = {zk,2, zk,3, 0, zk,2, 0}.
The next is to check the measurement-to-track assignment from the MCMAS for the FJE condition
for κn, which is represented by

{
θ 1

n , θ 2
n
}

. In this case, κ1 =
{

zk,1, zk,2
}

, κ2 =
{

zk,1, zk,3
}

, κ3 = {0, 0},
κ4 =

{
zk,2, zk,2

}
and κ5 =

{
zk,1, 0

}
. Among them κ4 =

{
zk, 2, zk, 2

}
violates the FJE condition that

implies no two tracks share the same measurement. In the above example, θ 2
4 of track τ2 is the same as

θ 1
4 of track τ1, so θ 2

4 of track τ2 is regenerated to avoid θ 2
4 and to ensure the FJE condition. This can be

done by checking the assigned elements in the same column of PJM before moving to the next column.
The approximated PMFJE, PJM is completed by using the probability weight f τ

n (θ
τ
n = zk,m(τ,n))

defined in Equation (25), and the a posteriori probability of joint event κn is obtained by replacing index
j with the index n in Equation (27). The normalization constant for the approximated PJM is obtained

from
N
∑

n=1
P
{

κn

∣∣∣Zk
}
= 1.Sensors 2017, 17, 2865  9 of 18 
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1
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, 0
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 
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
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



 

 



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
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 (33) 
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[8] 

Figure 2. An example of a three-state Markov chain for track τ with two measurements.
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After the Markov chain track sequences, {θτ
n}

N
1 for T cluster tracks is obtained, the approximated

PMFJE PJM is completed. From the approximated PJM, the track to measurement association
probabilities β τ

o and β τ
i are obtained from Equation (10) and the a posteriori PTE for track τ in

{τ} is obtained from Equation (15).

4. Design of Transition Probabilities for MCJIPDA

The data association probabilities of IPDA are utilized for developing the transition probabilities
of the proposed Markov chain. Consider mτ

k validated measurements for a track τ among the cluster
tracks of a multi-target tracking situation. Denote by φ ∪

{
zτ

k
}
= {zk,0, zk,1, · · · , zk,mτ

k
} the joint set of

measurements in the validation gate, where zk,0 represents the case that no measurement is allocated
to track τ. The transition matrix πτ of track τ for the purpose of generating the sequence of length N
to represent the FJEs can be defined as

πτ
ξη = πτ

(
θτ

n+1 = zk,η

∣∣∣θτ
n = zk,ξ

)
(32)

where

πτ
ξξ =


1−Pτ

D Pτ
G P{χτ

k |Zk−1}
λk

, ξ = 0
Pτ

D Pτ
G pτ

k,ξ ρ−1
k P{χτ

k |Zk−1}
λk

, ξ = 1, 2, . . . mτ
k

(33)

which is based on the posterior probability of joint event in Equation (25). Besides, it is assumed that
the state of measurement assignment changes to another state at the next step with the transition
probability given by

πτ
ξη =


1

mτ
k

(
1− 1−Pτ

D Pτ
G P{χτ

k |Zk−1}
λk

)
, ξ = 0, ξ 6= η

1
mτ

k

(
1−

Pτ
D Pτ

G pτ
k,ξ ρ−1

k P{χτ
k |Zk−1}

λk

)
, ξ 6= 0, ξ 6= η

(34)

The measurement likelihood ratio λk in the diagonal terms of the transition matrix is given by [8]

λk = 1− Pτ
DPτ

GP{χτ
k |Z

k−1}+
mτ

k

∑
ξ=1

Pτ
DPτ

G pτ
k,ξρ−1

k P{χτ
k |Z

k−1} (35)

Furthermore, πτ
ξη is defined to sum to one for every ξ from the property of Markov chain

mτ
k

∑
η=0

πξη = 1 (36)

which implies that the non-diagonal elements in the same row of the transition matrix have the same
likelihood for transition. For example, the Markov chain for track τ with the set of measurements{

zτ
k
}
=
{

zk,1, zk,2
}

is depicted in Figure 2. In this example, the transition probability matrix becomes

π τ =

 πτ
00 πτ

01 πτ
02

πτ
10 πτ

11 πτ
12

πτ
20 πτ

21 πτ
22

 =


1−Pτ

D Pτ
G P{χτ

k |Zk−1}
λk

1
2 (1− πτ

00)
1
2 (1− πτ

00)

1
2 (1− πτ

11)
Pτ

D Pτ
G pτ

k,1ρ−1
k P{χτ

k |Zk−1}
λk

1
2 (1− πτ

11)

1
2 (1− πτ

22)
1
2 (1− πτ

22)
Pτ

D Pτ
G pτ

k,2ρ−1
k P{χτ

k |Zk−1}
λk

 (37)

If the (n−1)-th assignment of MCMAS for track τ is θτ
n−1 = zk,1, the n-th element of MCMAS

is generated according to the second row of the transition probability matrix in Equation (38) and a
uniform random number CUni f in the interval [0, 1]. If the random number satisfies 0 ≤ CUni f ≤ πτ

10,
then θτ

n = zk,0. If the random number satisfies πτ
10 < CUni f ≤ πτ

10 + πτ
11, then the measurement zk,1 is

assigned to θτ
n . Similarly, if πτ

10 + πτ
11 < CUni f ≤ 1, then θτ

n = zk,2.
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By utilizing the data association probabilities of IPDA for each track in the cluster as acceptance
probabilities of the measurement state generation in the form of transition probabilities of the Markov
chain, the proposed method does not need a Monte Carlo algorithm that may produce a large number
of burn-in samples.

The MCMAS of length N for track τ is the key to resolve the computational risks of JIPDA. It is
obvious that the FJEs of JIPDA are within the tractable range in the situations where targets are not
closely located in the surveillance region. However, the target-crossing situations, the FJEs increase
to prohibitively high numbers. Therefore, we propose an algorithm switch method according to the
number of FJEs. If the number of FJEs is less than the length of the MCMAS predetermined for the
Markov chain data association, the JIPDA algorithm is applied, and otherwise, the Markov chain data
association algorithm is used and plays an important role in reducing the computational load.

The proof of convergence of the target tracking performance of the proposed algorithm to that of
the JIPDA algorithm is left for future studies. However, the convergence is shown through a series of
simulations in Section 5.

5. Simulations

The two-dimensional surveillance region considered in the simulation study is shown in Figure 3.
The surveillance area is 1000 m long (x-axis) and 1000 m wide (y-axis), and the sensor scan time T = 1 s.
Eight targets move uniformly at a constant speed of 22.5 m/s during the time of 40 scans and cross each
other at about scan 20. The clutter measurements follow a Poisson distribution with clutter densities of
ρL/scan/m2 in the sparse clutter region and ρH/scan/m2 in the dense clutter region, which is 500 m
long and 500 m wide as indicated by the gray area in Figure 3. Three cases for performance comparison
with different detection probability PD and different clutter density are listed in Table 2.
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Figure 3. Target scenario for simulation. 

Table 2. Simulation cases. 

Case DP  Lρ  Hρ  

#1 0.9 510 
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threshold of 0.006.  

Figure 3. Target scenario for simulation.

Table 2. Simulation cases.

Case PD ρL ρH

#1 0.9 10−5 10−4

#2 0.8 10−5 10−4

#3 0.9 2× 10−5 2× 10−4
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The state vector xτ
k of target τ in Equation (1) consists of the two-dimensional position and velocity

in Cartesian coordinates with transition matrix

F =

[
F(T) 02×2

02×2 F(T)

]
, F(T) =

[
1 T
0 1

]
(38)

where 02×2 is a 2 × 2 null matrix. The variance of the process noise in Equation (1) is known to be

Qk = q

[
Q(T) 02×2

02×2 Q(T)

]
, Q(T) =

[
T4/4 T3/2
T3/2 T2

]
(39)

where q = 0.75 m2 /s4.
The measurement noise covariance matrix Rk for the sensor is

Rk =

[
25 0
0 25

]
m2 (40)

The propagation probabilities of Markov chain-one target existence in Equation (5) are given by

[∆11 ∆21] = [0.98 0] (41)

Each simulation experiment consists of 300 Monte Carlo runs. The tracks are initiated using two-point
differencing initialization [10] with an initial PTE of 0.01. The tracks are confirmed if the PTE exceeds
the confirmation threshold and they are eliminated if the PTE falls below the termination threshold
of 0.006.

Figure 4 shows the average number of all the FJEs of JIPDA for Case #1 at every scan, in which the
maximum mean number of FJEs is shown to be 44,209,586 at scan 20. The scenario of this simulation
corresponds to that in Figure 3. The x-axis indicates the scan number, and the y-axis represents the
mean number of FJEs in a logarithmic scale obtained from 300 Monte Carlo simulation runs, and the
length of the MCMAS (N = 200) is shown for comparison. The number of all the FJEs increases sharply
toward the target-crossing time.
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Figure 4. The average number of feasible joint events (FJEs) of joint integrated probabilistic data
association (JIPDA) for Case #1.

The track retention statistics to check the number of the confirmed true tracks after the target
crossing at scan 20 are obtained by counting the number and identifying the track label of the confirmed
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true tracks at scan 15 before the target crossing and at scan 35 after the target crossing. The following
statistics are accumulated:

• nCases: the total number of targets being followed by a confirmed track at scan 15;
• nOK: the number of “nCases” tracks that still follow their original tracks at scan 35;
• nSwitched: the number of “nCases” tracks that follow different targets at scan 35;
• nLost: the number of “nCases” tracks becoming false or terminated at scan 35;
• nMerge: the number of “nCases” tracks lost due to merging among “nCases tracks” at scan 35;
• nResult [CT]: the total number of targets being followed by a confirmed track at the last scan 40;
• CFT: the total number of confirmed false tracks during the entire simulation;
• CPU [sec]: the total CPU times for 300 Monte Carlo runs, in seconds, on a 3.6G Intel PC, running

Windows 7, and C++ programs.

To determine the MCMAS lengths, we simulate the same scenario for N = 200, N = 500 and
N = 1000 with the proposed MCJIPDA algorithm. The confirmed true track (CTT) rates are shown in
Figure 5 and track retention statistics are shown in Table 3. The CTT rate indicates that the number of
CTTs versus the number of targets at each scan of the Monte Carlo runs. As the length of MCMAS
increases, the performance of MCJIPDA becomes improved. However, the computational load also
increases as shown in Table 3. For the 3 MCMAS lengths, the CTT rates are almost same whereas
the other track retention statistics are different. Table 3 indicates that the track retention statistics of
N = 500 show improvement compared to those with N = 200. However, the target retention statics are
shown to be similar for N = 500 and N = 1000. To save the computational sources without deteriorating
the tracking performances, N = 500 is selected for MCJIPDA in the simulation studies.Sensors 2017, 17, 2865  13 of 18 
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Table 3. Statistics for different MC lengths.

Statistics
MC Length N = 200 N = 500 N = 1000

nCases 2378 2380 2379
nOK 1999 2035 2044

nSwitched 155 142 133
nLost 24 18 15

nMerged 200 185 187
nResults 2390 2385 2387

CFT 73 74 74
CPU [sec] 43.4 52.7 86.4

We compare the proposed MCJIPDA with IPDA, LMIPDA, JIPDA, and iJIPDA with level 2 in
terms of the FTD performance and the track retention statistics obtained from Monte Carlo runs.
The MCJIPDA algorithm is simulated by using Markov chain sequences with the length of 500 for
data association at every scan when the number of cluster tracks is more than 1. As mentioned in the
previous section, when the FJEs in the cluster tracks is less than N, JIPDA can be used instead of the
proposed MCJIPDA. Otherwise, the MCJIPDA generates the N-length FJEs for the cluster tracks.

The FTD is shown as the CTT rate in Figures 6–8. The number of confirmed false tracks (for the
scenarios with different parameters listed in Table 2) for each multi-target tracking algorithm should
be kept almost same for fair comparison. To achieve this, the initial PTEs of all the algorithms are set to
be the same, whereas the confirmation threshold of each algorithm is adjusted within the range from
0.995 to 0.9999 to produce approximately 71 to 75 confirmed false tracks. In this scenario, the complete
number of confirmed true tracks is 2400 for 300 Monte Carlo runs. As the maximum numbers of FJEs
of JIPDA in Case #2 and Case #3 are over 1011. The JIPDA algorithm cannot perform tracking in real
time. The simulation results of JIPDA are not shown for these two cases.Sensors 2017, 17, 2865  14 of 18 
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Figure 7. The confirmed true tracks rate for Case #2.

The simulation results and the CTT rates of Case #1 are shown in Figure 6 and Table 4. As shown
in Figure 6, the MCJIPDA has the best performance on the CTT rate after the target crossing.
The single-target tracker, IPDA, has poor performance in this multi-target tracking scenario. The
CTT rates of JIPDA and iJIPDA are almost same. In Table 4, though the MCJIPDA has a larger number
of nSwitched than the other trackers, it has much smaller number of nMerged. Besides, the nResults of
MCJIPDA and iJIPDA are bigger than that of IPDA, LMIPDA, and JIPDA.

Table 4. Track retention statistics for Case #1.

Measure Items IPDA LMIPDA JIPDA iJIPDA MCJIPDA

nCases 2121 2382 2370 2386 2380
nOK 979 1882 2039 2017 2035

nSwitched 135 105 60 64 142
nLost 7 3 5 7 18

nMerged 1000 392 266 298 185
nResult[CT] 2200 2363 2358 2386 2385
C/F Track 74 72 73 73 74
CPU[sec] 29.7 23.9 1120271 21.51 52.7
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The simulation results for Case #2 are shown in Figure 7 and Table 5. Compared to Figure 6,
the CTT rates of all the algorithms are sluggish and smaller in this reduced PD environment. As shown
in Figure 7, though increase of the CTT rate of MCJIPDA is slower than those of LMIPDA and iJIPDA
in the initial phase, the MCJIPDA has the best performance on the CTT rate after targets crossing.
The single-target tracker, IPDA, also shows poor performance in this multi-target tracking scenario.
In Table 5, though nSwitched of MCJIPDA is the biggest, but nMerged is the smallest among the
algorithms in comparison. Besides, nResults of MCJIPDA is the biggest.

Table 5. Track retention statistics for Case #2.

Measure Items IPDA LM-IPDA iJIPDA MCJIPDA

nCases 1608 2256 2293 2264
nOK 693 1629 1787 1762

nSwitched 129 159 121 214
nLost 7 5 6 38

nMerged 779 463 379 250
nResult[CT] 1906 2291 2331 2359
C/F Track 73 74 71 73
CPU[sec] 28.6 25.6 21.9 53.3

The simulation results for Case #3 are shown in Figure 8 and Table 6. The CTT rate for each
algorithm shows similar trend shown in Figures 6 and 7. Compared to Figure 6, the increase of the
clutter densities affects the performance of the CTT rate, which shows slower and smaller than Case #1
for each algorithm compared to Case #1 in general. As shown in Figure 8, the increase of the CTT rate
of MCJIPDA is slower than those of LMIPDA and iJIPDA, and MCJIPDA has the best performance on
the CTT rate after target crossing.

Table 6. Track retention statistics for Case #3.

Measure Items IPDA LM-IPDA iJIPDA MCJIPDA

nCases 2002 2355 2360 2354
nOK 921 1849 1963 1984

nSwitched 105 84 56 127
nLost 9 4 7 27

nMerged 967 418 334 216
nResult[CT] 1872 2309 2336 2374
C/F Track 73 71 75 73
CPU[sec] 58.6 62.5 54.2 127.6

In Figure 9, it is shown that how the computational cost varies with the number of targets and
the number of measurements. When the number of target varies from 1 to 8, the computational load
represented by CPU time is shown for IPDA, LMIPDA, iJIPDA, JIPDA, and MCJIPDA with the length
500 of MCMAS for the tracking environment of Case #1. IPDA, LMIPDA, iJIPDA, and MCJIPDA have
linearly increasing CPU time for the number of targets. JIPDA has exponentially increasing time as
the number of target increases. CPU times are measured on a 3.6G Intel PC running Windows 7 and
C++ programs. All the algorithms in comparison are programmed by the authors and implemented
without performance optimization and parallel computation.
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6. Conclusions

This paper presents a practical Markov chain data association algorithm for approximating the
probabilities of the FJEs of JIPDA, which would otherwise incur a prohibitively heavy computational
load for closely located multi-target tracking in clutter. The proposed MCJIPDA algorithm sequentially
generates the measurements by a Markov chain of events for each cluster target based on the transition
probabilities established from IPDA for single target tracking. The events are adjusted by event
regeneration to satisfy the feasible joint event condition for multi-target tracking. The length of
MCMAS for the MCJIPDA algorithm is selected through simulation studies by checking the tracking
performance as well as the computation time. In the simulation studies, the proposed MCJIPDA
algorithm is compared with the other existing data association methods for several simulation scenarios.
The simulation results show that the MCJIPDA with 500 selected events for joint data association is
comparable to JIPDA with respect to false track discrimination and target retention outcomes but with
substantially less computational load. This implies that the proposed MCJIPDA algorithm provides
a viable solution for multi-target tracking in clutter, especially for tracking closely located targets in
dense clutter.
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