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Abstract: Assessing ageing infrastructure is a critical challenge for civil engineers due to the
difficulty in the estimation and integration of uncertainties in structural models. Field measurements
are increasingly used to improve knowledge of the real behavior of a structure; this activity
is called structural identification. Error-domain model falsification (EDMF) is an easy-to-use
model-based structural-identification methodology which robustly accommodates systematic
uncertainties originating from sources such as boundary conditions, numerical modelling and
model fidelity, as well as aleatory uncertainties from sources such as measurement error and
material parameter-value estimations. In most practical applications of structural identification,
sensors are placed using engineering judgment and experience. However, since sensor placement
is fundamental to the success of structural identification, a more rational and systematic method is
justified. This study presents a measurement system design methodology to identify the best sensor
locations and sensor types using information from static-load tests. More specifically, three static-load
tests were studied for the sensor system design using three types of sensors for a performance
evaluation of a full-scale bridge in Singapore. Several sensor placement strategies are compared
using joint entropy as an information-gain metric. A modified version of the hierarchical algorithm
for sensor placement is proposed to take into account mutual information between load tests. It is
shown that a carefully-configured measurement strategy that includes multiple sensor types and
several load tests maximizes information gain.

Keywords: structural identification; measurement systems; sensors; model falsification; joint entropy;
uncertainties; load tests

1. Introduction

While infrastructure is ageing, available economic and environmental resources are decreasing.
Therefore, an optimal infrastructure management strategy is needed. Due to the justifiably conservative
nature of design and construction of large civil structures, most structures have a significant amount
of reserve capacity. Unfortunately, this reserve is largely unquantified, resulting in sub-optimal
asset-management decisions. For example, knowledge of load capacity of bridges can be exploited
to extend lifetimes of existing structures, optimize retrofit designs and prioritize inspection and
maintenance activities.

Field-measurements, collected during load testing and through ambient vibration monitoring,
have been extensively used in the last decades to identify bridge characteristics [1]. Interpretation of
the data provided by sensors is critical to identify accurate structural models and subsequently, to
estimate bridge reserve capacity. Such interpretation is a type of inverse engineering where causes
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(behavior models and their inputs) are determined from effects (measurements). This type of inference
is fundamentally ambiguous; many causes may explain the same effect, especially when modelling
uncertainties are important at sensor locations. The difficulties associated with the inverse problem of
structural identification have been recognized by [2,3] amongst many others.

The aim of model-based structural identification is to use field measurements to improve
knowledge of the real behavior of structures. Several data-interpretation techniques exist to perform
this task, such as residual minimization [4] and Bayesian updating [5,6]. Such traditional model
calibration methodologies cannot be justified for large civil structures [7]. They often result in biased
identification due to important systematic uncertainties that modify correlation values between
measurement points. To overcome challenges associated with inverse problems, a multi-model
approach was proposed by [8,9]. In this method, model-updating results consist of a set of candidate
models that explain the measurements taken from a structure.

A probabilistic extension, called error-domain model falsification (EDMF) was presented by [10].
In this methodology, a population of model instances are generated according to prior knowledge
and engineering judgement. Threshold bounds are determined probabilistically using the Monte
Carlo method and a target confidence level. Then, they are used to falsify model instances that
significantly differ from measured values. Systematic uncertainties are transparently included and the
use of uniform probability distributions increases robustness to unknown uncertainty correlations [10].
This methodology has been successfully applied to other fields such as wind simulation around
buildings [11], leak detection in water-supply networks [12] and performance following earthquake
damage [13].

Model updating outcomes depend on the choice of sensor types and locations. However,
most of the practical applications of structural identification involve placement of sensors based on
engineering judgement and experience. More rational studies on optimal sensor locations for structural
identification have been carried out using information theory to improve model-parameter estimation.
Various approaches have been used: maximizing the determinant of Fisher information matrix [14,15]
and either minimizing the information entropy in posterior model-parameter distribution [16,17]
or maximizing information entropy in multiple-model predictions [18,19]. Although entropy-based
approaches have shown to be powerful to find the optimal sensor configuration, few studies have
included systematic modelling uncertainties and information that is shared amongst sensors.

The effect of spatially-correlated prediction errors were included by [20] to correct the information
entropy of model-parameter posterior distribution, which was used as the objective function in
the sensor placement methodology. The authors have shown that the minimum distance between
sensors is controlled by the spatial correlation length of the prediction errors. By accounting for it, the
redundancy of information of neighboring sensors can be avoided. In addition, they observed that an
assumption of uncorrelated prediction errors in models may lead to sub-optimal sensor configurations.
Limitations associated with potential redundancy of information using individual-sensor entropy
metric was underlined by [21]. The importance of the mutual information between sensors in optimal
configuration of multi-type of sensors was shown by [22].

Another approach, presented by [23] and extended by [24], used simulated measurements
to provide probabilistic estimations of the expected number of candidate models obtained with
a sensor configuration. The aim was to find the sensor configuration that minimizes the expected
number of candidate models. Simulated measurements are generated based on the model instances
adding a random value taken from the combined uncertainties. Sensor locations were evaluated using
respectively 95% and 50% quantiles of the expected candidate-model-set size. However, the procedure
is computationally costly [25], because it requires the execution of the falsification procedure for a
large number of simulated measurements and sensor locations.

The problem of finding the optimal sensor configuration is usually formulated as a
discrete problem. As the number of possible sensor configurations is very large, an exhaustive search
for the best configuration is exponentially complex with respect to the number of sensors. Some studies
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proposed global-search optimization algorithms to determine optimal solutions [19]. However, most
authors preferred to reduce the computational effort using greedy optimization algorithms [26].

Entropy calculations based on sequential optimization strategies have involved inefficient search
methods, assumed constant uncertainty levels at all sensor locations and most researchers have
disregarded the mutual information between sensor locations. A methodology involving a hierarchical
algorithm to examine placement alternatives efficiently and incorporating spatial distributions of
modelling uncertainties was introduced by [21]. The authors also proposed to maximize the joint
entropy between sensor locations to account for mutual information. This methodology was able
to improve model predictions at unmeasured locations compared with a methodology based on
individual entropy maximization. This sensor placement algorithm was successfully applied to
sensors for wind-around-building predictions [27]. Sensor configurations using a multi-criteria
decision-making approach and various information-gain metrics was evaluated by [28], including the
prediction range and type I and type II errors.

As highlighted by [20], the optimal sensor placement for model-parameter estimation depends
on the loading. Previous work has focused only on the information gained by adding a sensor to the
sensor configuration and not by performing additional load tests using the same sensor configuration.
In work on model falsification, the next sensor to add in the sensor configuration was associated with a
pre-defined load test [23,24]. In these studies of sensor placement for structural identification, mutual
information between multiple load tests is not considered within the sensor placement methodology.

This study presents a measurement-system design methodology to identify the best sensor
locations and sensor types using information from several static load tests. First, the EDMF
methodology for structural identification is presented. Then, the hierarchical strategy for sensor
placement is adapted and extensions to the sensor placement algorithm are proposed. Optimal sensor
configurations for independent static-load tests are computed. Then, two modifications of the sensor
placement algorithm which take into account information for multiple static load tests are proposed.
Finally, sensor placement strategies are illustrated and evaluated on a full-scale bridge.

2. Materials and Methods

2.1. Background—Error-Domain Model Falsfication

Presented by [10], error-domain model falsification (EDMF) is a structural identification methodology.
Within model parameter sets, multiple model instances are generated and falsified if their predictions
differ significantly from field measurements. First, an initial-model instance population is generated
from engineering judgment and prior knowledge. Model instances are instantiations of a model class,
in which several combinations of primary parameter values θk = [θ 1, θ2, . . . , θn]

T are assigned in
order to generate an initial set of model instances Ω. Then, model instance predictions are compared
with field measurements of the structural response in order to identify candidate models among the
initial set of the model instance population. Modelling and measurement uncertainties are combined to
determine threshold boundaries [9]. Threshold boundaries are defined using the combined distribution
of uncertainties and a target reliability of identification. Model instances are falsified if the residual
value between predictions and measurements exceeds the boundaries at one or more sensor locations.

For each measurement location, i ∈
{

1, . . . , ny
}

, model predictions and measurements are linked
to the true behavior using Equation (1). Ri corresponds to the real responses of a structure (unknown)
and ŷi to the measured value at location i. Using finite element analysis (FEA), predictions gk(i, Θk) of
the model class Gk is evaluated at location i. Θk is the set of instances of the parameter vector θk, Ui,gk

and Ui,ŷ correspond to model-prediction uncertainties and measurement uncertainties, respectively:

gk(i, Θk) + Ui,gk = Ri = ŷi + Ui,ŷ ∀i ∈
{

1, . . . , ny
}

(1)



Sensors 2017, 17, 2904 4 of 23

Equation (1) may be rearranged to Equation (2), where Ui,c is the difference between the modelling
and measurement uncertainties. The left-hand side of Equation (2) represents the difference between a
model prediction and a measurement:

gk(i, Θk)− ŷi = Ui,c = Ui,ŷ − Ui,gk (2)

The selection of candidate models representing realistic sets of model-parameter values, involves
falsifying all model instances for which predictions cannot explain measurement data, given combined
uncertainties and a target reliability of identification φ. The set of candidate models obtained after
falsification is defined using Equation (3), where Ω′′

k is the candidate model set (CMS) made up
of initial model instances, which have not been falsified at one or more measurement locations.
[ui,low, ui,high] are the upper and lower threshold bounds. They represent the shortest intervals,
including a probability of identification φ1/ny , through the probability density function (PDF) of
combined uncertainties fUi(ui) at each measurement location:

Ω′′
k =

{
θk ∈ Ωk|∀i = 1, . . . , ny ui,low ≤ gk(i, Θk)− ŷi ≤ ui,high

}
(3)

The Šidák correction [29] is used to maintain a constant level of confidence when multiple sensor
measurements are compared with model instance predictions (Equation (4)):

∀i = 1, . . . , ny : φ1/ny =
∫ ui,high

ui,low

fUi (ui)dui ∀i ∈
{

1, . . . , ny
}

(4)

All model instances that belong to the CMS, Θk ∈ Ω′′
k , are labeled as candidate models. Since so

little information is usually available to describe the form of modelling-uncertainty distributions,
every candidate model is equally likely to be the correct model [30]. Thus, they are assigned an equal
probability as expressed in Equation (5):

Pr
(
Θk ∈ Ω′′

k
)
=

1∫
θk ∈ Ω′′

k dθk
(5)

Falsified model instances, which correspond to model instances that do not belong to the CMS,
are assigned a null probability (Equation (6)):

Pr
(
Θk /∈ Ω′′

k
)
= 0 (6)

Consequently, Θ′′k is the set of random variables describing the parameter values of the candidate
model instances given measurement data. Its PDF is defined using Equation (7):

fΘ′′k
=

{ 1∫
θk ∈ Ω′′k dθk

, i f Θk ∈ Ω′′
k

0, otherwise
(7)

If all initial model instances generated are falsified, the entire model class is falsified, then Ω′′
k = ∅.

Thus, no models are compatible with observations given model and measurement uncertainties.
Possible reasons are an incorrect model-class definition, incorrect uncertainty estimates, or wrong
initial parameter values [31]. This particular case highlights one of the main advantages of EDMF
compared with traditional structural-identification approaches. In this situation, the results of EDMF
leads to a re-evaluation of starting assumptions and, often, a new model class is generated.

Concerning the identifiability of the methodology, a key feature of EMDF is the following: if only
a subset of sensors is considered and a small influence of the Šidák correction on thresholds is assumed,
the candidate-model-set (CMS) value range will be wider than using all sensors due to the smaller
decrease of parameter bounds compared with using all sensors. The resultant CMS using all sensors
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will still be part of the larger CMS obtained with a subset of sensors, which will lead to conservative
conclusions in terms of type-I error (falsely rejecting a candidate model).

2.2. Sensor Placement Strategy

Assessing a full-scale infrastructure, such as estimating the reserve capacity of a bridge, requires
the estimation of various unknown physical properties and boundary conditions. The aim of field
measurements is to enhance knowledge of model parameters and improve structural assessments.
The choice of sensor locations is fundamental for structural identification. A sensor placement strategy
is usually developed to identify optimal sensor configurations prior to measuring when limited
knowledge of the model parameter values is available.

A model-based sensor placement strategy requires several steps. First, a numerical model, such
as a finite element model of a bridge, is built to obtain quantitative predictions of measurable variables,
such as deflection, strain, or inclination at each possible sensor location. As the numerical model
always requires geometrical and mathematical simplifications, a significant degree of non-parametric
uncertainty is involved, which needs to be evaluated. Then, sensitivity analysis is employed to
evaluate the effects of variation in model-parameter values on model predictions. A small number of
parameters, which have the highest impact on predictions, are then selected. Several possible load
tests are designed and multiple model instances are generated using a sampling technique to obtain a
discrete population of possible model-parameter values within plausible ranges. For each load test,
model instance predictions are computed and each instance is part of the initial model set. The initial
model set is the dataset used in the sensor placement strategy.

In this section, several sensor placement strategies are presented. First, two objective functions
for sensor placement—single-sensor information entropy and joint entropy—are presented. Then,
originally developed for the prediction of wind around buildings, the initial version of the hierarchical
algorithm is introduced. As this sensor placement algorithm was designed for wind assessment,
two modifications are proposed for taking into account information from several static load tests.

2.2.1. Sensor Placement Objective Function

Information Entropy

The information obtained from prediction data is a major criterion for evaluating possible
sensor locations. This can be evaluated using entropy from information theory (also known as
Shannon’s entropy or information entropy). The information entropy H(yi) is a measure of disorder in
information content (Equation (8)), where yi is an output variable, such as the deflection at a sensor

location i, P
(

yi,j

)
is the probability of the jth interval of a variable’s distribution with j ∈ {1, . . . , NI,i},

and NI,i is the maximum number of intervals at the location i:

H(yi) = −
NI,i

∑
j=1

P
(
yi,j
)

log2 P
(
yi,j
)

(8)

At a possible sensor location, the evaluation of the information entropy requires creation of
subsets of model instance predictions. The construction of subsets of model instances at a location
i is presented in Figure 1 with the number of model instances as the vertical axis and the value of
predictions as the horizontal axis. N intervals (Iw,i) are generated between the minimum and the
maximum prediction of model instances at a possible sensor location. Wi,j represents the width of the
interval and is equal to the sum of measurement (Ui,ŷ) and modelling (Ui,g) uncertainties (at 95%) at
this location. The width of the intervals is constant for a sensor location i.
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At each sensor location, the information entropy is computed from Equation (8) through first
counting the number of model instances mi,j in a subset, for which predictions fall within each interval

and then calculating the probability of the interval as P
(

yi,j

)
= mi,j/ ∑ mi,j. A location with a high

information entropy value of model predictions is considered as a good location [18]. The uniform
distribution is the maximum entropy distribution on a given range of model instance prediction values.

Model instances in a subset cannot be distinguished from each other using an in-situ measurement
falling in the middle of the interval during the falsification process. Thus, model instances in the same
subset might not be discriminated using this sensor location. Another location is needed to further
subdivide these subsets.

Joint Entropy

The joint entropy is a more recent sensor placement objective function that has been proposed for
system identification by [21]. The joint entropy is an information entropy measure associated with a
set of locations, while assessing the mutual information of the locations. For a set of two sensors, it is
defined in Equation (9), where k ∈ {1, . . . , NI,i+1} and NI,i+1 is the maximum number of intervals at
the i + 1 location and i + 1 ∈ {1, . . . , ns} with ns the number of potential sensor locations:

H(yi,i+1) = −
NI,i+1

∑
k=1

NI,i

∑
j=1

P
(
yi,j, yi+1,k

)
log2 P

(
yi,j, yi+1,k

)
(9)

The joint entropy is less than or equal to the sum of the individual entropies of the locations in
the set (Equation (10)), where I is the mutual information between sensor i and i + 1:

H(yi,i+1) = H(yi) + H(yi+1)− I(yi,i+1) (10)

2.2.2. Hierarchical Algorithm

A hierarchical algorithm for sensor placement using the concept of joint entropy was introduced
in [21]. The hierarchical algorithm is a sequential algorithm (greedy search) in which model instances
are organized in a tree structure. At the root is the initial model set, and branches contain subsets of
model instance predictions. Branches from a node represent separations of the parent model set into
smaller subsets that can potentially be divided using measurements from the new sensor added to
the configuration. This allows calculations of joint entropy of sensor configurations while avoiding
exponential complexity, reducing the computational effort.
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The pseudo-code of the original hierarchical algorithm is presented in Figure 2. This algorithm
can accommodate a single load test only. The first sensor (i = 1) is selected with the information
entropy objective function. However, for i > 1, the location with the maximum joint entropy of the
configuration is selected. This sensor placement algorithm takes into account mutual information
between sensors because of the joint entropy objective function. It was shown to perform better than
traditional sequential algorithms with forward or backward strategies [21].Sensors 2017, 17, 2904  7 of 23 
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Figure 2. Pseudo-code for the original hierarchical algorithm for a single load test (adapted from [21]).

A schematic of the tree structure of the hierarchical algorithm is presented in Figure 3. At the
top of the figure is the initial set of model instance predictions at possible sensor locations. At each
possible sensor location, a histogram of predictions of model instances in the initial set is generated,
following Figure 1. Histograms are composed of subset of model instances depicted in distinctive bars.
In Figure 3, clear spaces between the distinctive bars are added for clarity only. In most practical
cases, model prediction values are continuous and, thus, the subset bars of the histograms would
be touching.

Once histograms of model predictions are generated at each possible location, the location with
the largest information entropy value is selected and Sensor 1 is added to the sensor configuration.
To select the second sensor, information from the remaining sensors is used to further divide each
subset of model instances of Sensor 1. The configuration of Sensor 1 and Sensor 2 with the largest joint
entropy is selected and Sensor 2 is added to the sensor configuration. The process is repeated until all
possible sensor locations are selected.

This process is repeated at every iteration by adding a sensor to the sensor configuration, forming
a hierarchy of model subsets. At each stage of the sensor placement, a location is added to the
configuration sensor optimum that has the highest potential in dividing the existing subsets of model
instances into smaller subsets. The maximum number of iterations required is independent of the
number of combinations of sensor locations and is equal to the number of possible subdivisions;
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the upper bound of this quantity is equal to the maximum number of model instances among all
subsets of Sensor 1.
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Figure 3. Schematic of the hierarchical algorithm for sensor placement where histograms at possible
sensor locations are composed of subset of model instances depicted in distinctive bars.
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2.2.3. Modification of Hierarchical Algorithm for Multiple Load Tests

The original version of the hierarchical algorithm (Figures 2 and 3) accommodates only a single
load test. To consider information from various load tests, two modifications of the algorithm are
presented in this section. The first modification includes only minor changes in the code to enable the
hierarchical algorithm to select best sensor locations considering only the load test that maximizes
their information content. The second modification includes significant changes in the code to enable
the hierarchical algorithm to select the best sensor location considering all load tests.

First Modification—Minor Changes to the Original Hierarchical Algorithm

The first modification enables the algorithm to select best sensor locations considering only the
load test that maximizes their information content. The pseudo-code for the hierarchical algorithm
for multiple load tests is presented in Figure 4. Differences with the pseudo-code of the hierarchical
algorithm for a single load test (Figure 2) are underlined. The tree structure remains unchanged.
The sensor selection is based on the joint entropy of a location and a load test. Therefore, it allows the
algorithm to select the best load test among a set of various load tests for each sensor location. However,
the algorithm does not consider information provided by the other load tests at one sensor location.
This approach to consider multiple load tests was used by [23,24] using a backward sequential
algorithm instead of the hierarchical algorithm. As this modification is minor, this version of the
hierarchical algorithm is called original hierarchical algorithm for multiple load tests.
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Second Modification—Major Changes to the Hierarchical Algorithm

The first modification of the algorithm selects the sensor location associated with the load test
that maximizes its information content. However, this location may not perform well for other load
tests and another location may perform better when considering information from all load tests.
Therefore, a modification to the hierarchical algorithm considering information provided by all load
tests is justified.

In the original hierarchical algorithm, the joint entropy is an information entropy measure
associated with a set of locations, while assessing the mutual information between locations. With the
version proposed in this study, it is possible to calculate the joint entropy at a single location when
multiple load tests are considered, through assessing the mutual information between load tests. In the
proposed modification of the hierarchical algorithm, the assessment of mutual information between
sensors remains applicable if multiple sensor locations are considered.

For a sensor location and a set of two load tests, it is defined in Equation (11), where j ∈
{

1, . . . , NI,il

}
,

and NI,il is the maximum number of intervals at the location i associate with a load test l,
k ∈

{
1, . . . , NI,il+1

}
and NI,il+1 is the maximum number of intervals at the location i associated with

another load test and l + 1 ∈ {1, . . . , nLT} with nLT the number of potential load tests:

H
(

yil ,il+1

)
= −

NI,il+1

∑
k=1

NI,il

∑
j=1

P
(

yil ,j, yil+1,k

)
log2 P

(
yil ,j, yil+1,k

)
(11)

The joint entropy is less than or equal to the sum of the individual entropies of the sensor location
with individual load test in the set, hence, Equation (10) is modified as follows:

H
(

yil ,il+1

)
= H

(
yil
)
+ H

(
yil+1

)
− I
(

yil ,il+1

)
(12)

where I is the mutual information between a sensor associate with the load test l and the same sensor
associated with the load test l + 1.

The pseudo-code of the new hierarchical algorithm is presented in Figure 5. Differences with the
pseudo-code of the hierarchical algorithm for a single load test (Figure 2) are underlined. A new loop
is added to distribute model instance predictions into sub-intervals defined using the additional load
tests. In the fifth point, the algorithm distributes previous subsets of model instances, obtained with
the first load test, using model instance predictions obtained with a new load test. Consequently, the
algorithm evaluates the mutual information between load tests at the same sensor location. As this
modification includes major changes to the original hierarchical algorithm, this sensor placement
algorithm is called the new hierarchical algorithm for multiple load tests.
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3. Results

3.1. Case Study

A full-scale case study was performed on a 32-year-old bridge in Singapore. The principal
characteristics of the bridge are presented in Figure 6. The pre-stressed concrete bridge is composed of
four beams carrying three unidirectional traffic lanes over a simply-supported span of 32 m.

The sensor configuration consisted of two inclinometers (Ii) on the parapet, four deflection targets (Pi),
and eight strain gauges (Si) on the main girders (Figure 6A,B). A laser tracker was positioned on
the road below the bridge and used to measure deflections. Seven of the eight strain gauges were
installed on the bottom face of the girder in the direction of the principal stress at mid-span or quarter
span of the bridge. The aim was to measure the stress in the main girders. The last strain gauge (S6),
was installed horizontally on the web, close to the expected neutral-axis location, at mid-span of the
most loaded girder. The aim was to define the location of the neutral axis. The sensor configuration
was chosen based on engineering judgment and practical considerations. In total, fourteen possible
sensor locations were investigated for three types of sensors.
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Figure 6. Bridge geometry showing the sensor configuration; (A) Top view; (B) Bottom view;
(C) Cross-section; (D) Elevation.

Five primary parameters were identified as having the most influence on measurements:
the Young’s modulus of site-cast concrete of the deck Econ, the Young’s modulus of the precast concrete
of the beams Epre, the Young’s modulus of the concrete of the barrier Ebar, the rotational stiffness of
the bearing devices Krot, and the vertical stiffness of the bearing devices Klon. Their plausible ranges
of values are estimated using engineering heuristics and are presented in Table 1. To reduce model
simplification uncertainties, non-structural elements, such as the asphalt pavement, are included in
the finite-element solver. 1000 initial model instances were generated using Latin Hypercube sampling
(LHS) within this five-parameter space.

Upper and lower bounds of model-class uncertainties and measurement uncertainties are
presented in Table 2. All uncertainties are considered with a uniform distribution and are estimated
based on engineering judgment, sensor-supplier information, and heuristics. The Monte-Carlo
(MC) approach is used to combine modelling and measurements to a single combined-uncertainty
distribution, through randomly selecting a value from each distribution. This process is usually
repeated 1,000,000 times to generate the combined distribution. The number of repetitions is fixed so
that thresholds do not change significantly if this number is increased.

Three static load tests were performed on the bridge and the truck configurations are presented in
Figure 7. Load tests are composed of trucks of approximately 32 tons within three axles. The repartition
of the load is 1/5; 2/5; 2/5 starting from the front axle. The first load test (LT1) is composed of six
trucks symmetrically disposed on the bridge. The aim is to maximize the deflection and strain in the
precast beams. The second and third load tests (respectively, LT2 and LT3) are non-symmetrical load
tests, where four trucks are successively disposed only on one side of the bridge. The aim of these load
tests is to maximize the inclination at the bridge supports.

Table 1. Primary parameters considered and their initial intervals.

Econ (GPa) Epre (GPa) Ebar (GPa) Krot log(Nmm/rad) Klon log(N/mm)

20–35 25–50 3–40 9–13 8–11
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Table 2. Modelling and measurement uncertainties.

Uncertainty Source
Displacements—(P) Rotations—(I) Strains—(S)

Min Max Min Max Min Max

Model simplifications (%) −5 13 −5 13 −5 13
Mesh refinement (%) −1 1 −1 1 −1 1
Spatial variability (%) - - - - −5 5

Additional uncertainty (%) −1 1 −1 1 −1 1
Sensor precision −0.05 mm 0.05 mm −1 µrad 1 µrad −2 µε 2 µε

Repeatability −0.15 mm 0.15 mm −4 µrad 4 µrad −4 µε 4 µε
Sensor orientation (%) - - - - 0 6
Sensor installation (%) - - −5 5 0 5
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3.2. Load Test Comparison in Terms of Information Gain

In this section, each load test is considered independently. First the information entropy of each
sensor is independently compared for each load test. Then, the sensor ranking from the original
hierarchical algorithm is compared in terms of the sensor configuration and joint entropy values.

3.2.1. Information Entropy of Sensors

For each load test, the information entropy at each sensor location is presented in Figure 8.
The vertical axis presents the information entropy value and the horizontal axis presents the
sensor locations shown on Figure 6. To compute the information entropy, two components are the
determining factors. Firstly, the distribution of model instance predictions influences the information
entropy value. This distribution mostly depends on the sensor location, bridge characteristics, and the
choice of primary parameters for structural identification. Secondly, the definition of measurement and
modeling uncertainties influencing the width of intervals, and thus the value of information entropy.

Globally, the inclinometers have the largest information entropy, regardless of the load test. Then,
the deflection targets have larger entropy values than strain gauges. As each type of sensor has
specific characteristics, the modeling and measurement uncertainties differ (Table 2) and explain the
difference of information entropy values between sensor types. The inclinometer was proportionally
more precise (sensor precision) than the strain gauge and the deflection target, which explains the
highest information entropy of inclinometers compared to other sensor types. Strain gauges have
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larger uncertainty values associated with sensor orientation, sensor installation, and spatial variability
compared to the deflection target and, thus, have smaller information entropy values.

Concerning the deflection target, the load test 1 (LT1) has larger information entropy for all
sensor locations than load test 2 (LT2) and load test 3 (LT3). LT2 and LT3 have very similar results.
For the strain gauges, the LT1 has slightly larger information entropy for all sensor locations than
LT2 and LT3. LT3 has slightly smaller entropy than LT1 for the strain gauges located just below the
trucks (S2 to S4). Regarding the inclinometers, LT2 and LT3 have the largest information entropy for
inclinometers I1 and I2, respectively. As LT1 has smaller entropy than LT2 and LT3, it shows that the
inclinometers are more powerful using a load test with trucks close to the support than at midspan,
even if a smaller number of trucks is involved. Except for the inclinometers, sensor locations of LT1
have larger information entropy due to the larger signal-to-noise ratio of this load test.

For LT1, the difference of information entropy between sensors of the same type at various
locations is small. This shows that for a symmetrical load test, such as LT1, the information entropy
of the sensor is more related to the sensor type than the sensor location, due to the difference in
uncertainty values between sensor types.

In order to understand the factors influencing the difference of information entropy values,
two locations will be explained as examples: P4 between LT1, LT2, and LT3 and S4, S5, S5 for LT3.
Concerning P4, it is observed that the normalized spread of predictions—defined as the difference
between the maximum and minimum of predictions divided by the average value of predictions—is
much larger for LT1 compared to LT2 and LT3. This means that the 1000 model instances are
distributed more uniformly over the intervals and, thus, the information entropy value is larger
for LT1. Additionally, even if LT2 and LT3 have a similar truck disposition, the axle-load locations
differ slightly and could explain the difference between LT2 and LT3 at P4 location. Concerning strain
gauges for LT3, it is observed that predictions are much lower for S5 compared to S4 and S6. This is
explained by the location of the sensor: horizontally oriented on the web close to the neutral axis of
the girder instead of on the bottom face. As the sensor precision and sensor repeatability (Table 2)
are defined in absolute values, the number of intervals for this specific location is smaller. Hence, the
information entropy value is smaller compared with sensor locations S4 and S6.

Sensors 2017, 17, 2904  14 of 23 

 

highest information entropy of inclinometers compared to other sensor types. Strain gauges have 

larger uncertainty values associated with sensor orientation, sensor installation, and spatial 

variability compared to the deflection target and, thus, have smaller information entropy values. 

Concerning the deflection target, the load test 1 (LT1) has larger information entropy for all 

sensor locations than load test 2 (LT2) and load test 3 (LT3). LT2 and LT3 have very similar results. 

For the strain gauges, the LT1 has slightly larger information entropy for all sensor locations than 

LT2 and LT3. LT3 has slightly smaller entropy than LT1 for the strain gauges located just below the 

trucks (S2 to S4). Regarding the inclinometers, LT2 and LT3 have the largest information entropy for 

inclinometers I1 and I2, respectively. As LT1 has smaller entropy than LT2 and LT3, it shows that the 

inclinometers are more powerful using a load test with trucks close to the support than at midspan, 

even if a smaller number of trucks is involved. Except for the inclinometers, sensor locations of LT1 

have larger information entropy due to the larger signal-to-noise ratio of this load test. 

For LT1, the difference of information entropy between sensors of the same type at various 

locations is small. This shows that for a symmetrical load test, such as LT1, the information entropy 

of the sensor is more related to the sensor type than the sensor location, due to the difference in 

uncertainty values between sensor types. 

In order to understand the factors influencing the difference of information entropy values, two 

locations will be explained as examples: P4 between LT1, LT2, and LT3 and S4, S5, S5 for LT3. 

Concerning P4, it is observed that the normalized spread of predictions—defined as the difference 

between the maximum and minimum of predictions divided by the average value of predictions – is 

much larger for LT1 compared to LT2 and LT3. This means that the 1000 model instances are 

distributed more uniformly over the intervals and, thus, the information entropy value is larger for 

LT1. Additionally, even if LT2 and LT3 have a similar truck disposition, the axle-load locations differ 

slightly and could explain the difference between LT2 and LT3 at P4 location. Concerning strain 

gauges for LT3, it is observed that predictions are much lower for S5 compared to S4 and S6. This is 

explained by the location of the sensor: horizontally oriented on the web close to the neutral axis of 

the girder instead of on the bottom face. As the sensor precision and sensor repeatability (Table 2) are 

defined in absolute values, the number of intervals for this specific location is smaller. Hence, the 

information entropy value is smaller compared with sensor locations S4 and S6. 

 

Figure 8. Sensor information entropy at each sensor location for each load test. 

3.2.2. Sensor Ranking 

The selection of sensors is presented in Figure 9 as a histogram with the sensor rank in the 

vertical axis and the sensor identification in the horizontal axis. Results of each load test are presented 

P1 P2 P3 P4 S1 S2 S3 S4 S5 S6 S7 S8 I1 I2

Sensors

0

0.5

1

1.5

2

2.5

3

3.5

4

In
fo

rm
at

io
n

 e
n
tr

o
p

y

Load test 1

Load test 2

Load test 3

Figure 8. Sensor information entropy at each sensor location for each load test.

3.2.2. Sensor Ranking

The selection of sensors is presented in Figure 9 as a histogram with the sensor rank in the vertical
axis and the sensor identification in the horizontal axis. Results of each load test are presented with
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distinctive bars. Sensors were selected using the original hierarchical algorithm for the single load test
(Figure 2).

The order of sensor selection, as well as the type of sensor, differs between the three load tests.
For all load tests, an inclinometer is selected as the first sensor due to the large information entropy of
this sensor type (Figure 8). Additionally, for all load tests, the hierarchical sensor placement algorithm
selects sensors of three different types for the first four sensors, showing that each type of sensors
provides unique information.

For LT2 and LT3, the inclinometers are selected for the first and second position. As the main
difference between these load tests is the inverse position of the trucks on the bridge, this shows that
the optimal sensor placement directly depends on the design of the load tests. Since the order of
sensor selection differs between the load tests, a methodology for sensor placement taking into account
multiple load tests is justified.
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Figure 9. Sensor ranking for three load tests.

3.2.3. Joint Entropy of Sensor Configurations

Sensor configurations from various load test configurations are compared using the joint
entropy metric. The joint entropy is the objective function of the sensor placement algorithms used.
It represents the ability of a sensor configuration to discriminate model instance predictions. The joint
entropy of the sensor configuration for each load test is presented in Figure 10 as a function of the
number of sensors.

LT2 has the largest joint entropy for any number of sensors in the sensor configuration, showing
that LT2 is the most effective load test in terms of maximizing joint entropy. For a small number of
sensors (Ns < 8), LT2 and LT3 present similar results and perform better than LT1, which has the
smallest joint entropy value, because the inclinometers are more powerful in these load tests.

The joint entropy of LT3 differed from LT2, for the last eight sensors in the configuration, and
the joint entropy values dropped below those of LT1 after the eleventh sensor. For a large number
of sensors in the configuration (Ns > 10), the joint entropy is similar for all load tests. It is therefore
concluded that for a large number of sensors the LT1 performs as well as the other load tests because
the strain gauges and deflection targets are more effective (Figure 8). Thus, if only a single load test
must be performed and a large number of sensors is available, the choice between LT1, LT2, and LT3
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will not significantly influence the results in maximizing the joint entropy values. Nevertheless, even if
the joint entropy estimates are similar, the information gained from each load test may differ.Sensors 2017, 17, 2904  16 of 23 
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3.3. Sensor placement-Strategy Implementation with Consideration of Information from Multiple Static
Load Tests

In this section, optimal sensor placements from the two modified hierarchical algorithms for
multiple load tests are presented. The sensor ranking of each algorithm is presented and sensor
configurations are compared using joint entropy as a metric of information gain.

3.3.1. Original Hierarchical Algorithm for Multiple Load Tests

As mentioned above, this sensor placement algorithm selects a sensor, which is associated to a
load test. It does not take into account mutual information between load tests, but can still choose the
best load test for each sensor. The sensor ranking of the original hierarchical algorithm for multiple
load tests is presented in Figure 11. The selection of sensors is presented as a histogram with the sensor
rank in the vertical axis and the sensor identification in the horizontal axis. For each sensor, the load
test selected by the sensor placement algorithm is presented as a distinctive bar. As for the single load
test consideration, the sensor placement algorithm selects sensors of three different types within the
fourth best sensors, confirming that each sensor types provides a unique information.

The two first sensors selected are the inclinometers associated with LT2. The next four sensors
selected are strain gauges and deflection targets associated with LT1. The third load test is only
considered for the selection of the seventh (P3) and tenth (S3) sensors. In total, five sensors are
associated with LT2, seven with LT1, and only two with LT3. As the hierarchical algorithm selects
sensors associated with different load tests, it shows that each load test provides unique information.
However, LT3 may not provide any substantial additional information as it is only selected at the
seventh and tenth sensor.

Figure 12 presents a comparison of sensor configurations in terms of joint entropy as a function of
the number of sensors using the original hierarchical algorithm for multiple load tests. Three load test
configurations are considered: load test 2; load test 1 and load test 2; ad all three load tests. The LT2
was selected for comparison since it provided the largest joint entropy for any number of sensors in
the sensor configuration (Figure 10).

When two or three load tests are considered, the joint entropy is larger than considering LT2 alone,
showing that each load test provides unique information. However, the difference of joint entropy
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values between sensor configurations involving three and two load tests is negligible. Using the
traditional version of the hierarchical algorithm and considering LT1 and LT2 together provides more
information than a single load test. Adding LT3 does not provide significant information compared to
LT1 and LT2. Therefore, using this sensor placement strategy, it could be concluded that LT3 should
not be carried out.
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Figure 11. Sensor ranking for the original hierarchical algorithm using three load tests without
considering their mutual information.
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successively the original algorithm for LT2; LT1 and LT2; and all three load tests.

3.3.2. New Hierarchical Algorithm for Multiple Load Tests

The sensor ranks of the new hierarchical algorithm using information from the three load tests is
compared with the sensor ranks of the original hierarchical algorithm considering only LT2, as well as
for multiple load tests, including three load tests (Figures 9 and 11). The sensor rank is presented in
Figure 13 on the vertical axis and the sensor identification on the horizontal axis. The new hierarchical
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algorithm also selects sensors of three different types after adding the fourth best sensor, although the
locations of these sensors changed.

The sensor ranking of the new hierarchical algorithm differs already from the first sensor selected,
compared with the two versions of the original hierarchical algorithm (Figures 9 and 11). The three
sensor placement algorithms select different inclinometer locations: I1 for the new hierarchal algorithm
and I2 for the two versions of the original hierarchical algorithm. In the second sensor selection,
all sensor placement algorithms select the remaining inclinometers (I2 and I1 respectively). For the third
sensor selections, sensor placement algorithms select a strain gauge: S5 for the original hierarchical
algorithm for multiple load tests, S6 for the original hierarchical algorithm for single load test, and S7
for the new hierarchical algorithm for multiple load tests. For the fourth sensor selection, a deflection
target, P3 for the original hierarchical algorithm for the single load test and the new hierarchical
algorithm for multiple load tests, and P4 for the original hierarchical algorithm for multiple load
tests are selected. From the fifth sensor onwards, the sensor type selected by sensor placement
algorithms differs.

As sensor rankings differ between the original hierarchical algorithm for single load test and
the original hierarchical algorithm for multiple load tests, taking into account information from
multiple load tests leads to an alternative optimal sensor configuration. Additionally, it shows that
sensor rankings differ between the original hierarchical algorithm for multiple load tests and the new
hierarchical algorithm for multiple load tests. Taking into account mutual information between load
tests leads to an alternative optimal sensor configuration. As optimal sensor configurations differ,
a comparison using an information-gain metric, such as the joint entropy metric, is justified.

P1 P2 P3 P4 S1 S2 S3 S4 S5 S6 S7 S8 I1 I2
Sensor
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1

Se
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LT2 Only
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Figure 13. Sensor ranking for the original hierarchical using LT2 independently; the original hierarchical
algorithm and the new hierarchical algorithm involving the three load tests.

The joint entropy of various load test designs and sensor placement algorithms is presented in
Figure 14 as a function of the number of sensors. Results from load test 2 alone using the original
hierarchical algorithm are shown for comparison purposes. Various load test designs involving two or
three load tests are compared using the new hierarchical algorithm.

Combinations of two or three load tests, using the new hierarchical algorithm, have a significantly
larger joint entropy than using only a single load test or a strategy that does not take into account
information from all load tests. For any number of sensors, the new hierarchical algorithm provides
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significantly larger joint entropy values for three load tests than any combinations of two load tests.
Therefore, it is shown that the three load tests give unique information. This result is in contradiction
with the conclusion from Figure 12, which may lead to a wrong conclusion regarding the utility of a
load test.

The three combinations of two load tests present similar results until the sixth sensor is selected.
Then, the combination of LT2 and LT3 has a slightly smaller joint entropy, indicating that combinations
with LT1 provide more information. Therefore, if only a combination of two load tests has to be
considered, LT1 should be included.
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3.4. Optimal Strategy to Maximize the Information Gain from a Sensor Configuration within a Multiple-Load
test Consideration

In the previous sections, the new hierarchical algorithm uses three load tests requiring three
measurements for each sensor. However, when the load tests are considered independently in the
sensor placement strategy, only one measurement is needed for each sensor. Therefore, to compare
these sensor placement strategies in terms of joint entropy, Figure 14 is modified by replacing
the number of sensors with the number of measurements (Equation (13)). NM is the number of
measurements, NS is the number of sensors, and NLT is the number of load tests used in the sensor
placement strategy. The aim is to find the sensor configuration from sensor placement strategies with
the largest joint entropy with respect to the number of measurements:

NM = NS × NLT (13)

The joint entropy for several sensor placement methodologies involving various load tests is
compared with respect to the number of measurements. Results are presented in Figure 15, where,
on the right, there is a zoom-in of the region involving a small number of measurements (NM < 13).
For each sensor placement methodology, the number of measurements for the same number of
sensors differ. The original hierarchical algorithm, considering only LT2, uses one measurement for
each sensor added to the configuration, while the new hierarchical algorithm uses three measurements.
The sequential process of the original hierarchical algorithm for sensor placement implies the selection
of the second and third load tests at different steps of the sensor placement iteration (Figure 11).
Therefore, the number of measurements per sensor added to the configuration depends on the step of
the sensor-selection process. During the first two sensor selections, the space between markings is equal



Sensors 2017, 17, 2904 20 of 23

to one, because only one load test is currently considered. Then, between the third and sixth sensor
selections, the space between markings is equal to two, as two load tests are presently considered.
This means that two measurements are added per additional sensor to the sensor configuration.
Eventually, from the seventh sensor selection, the spacing between markings is equal to three, as three
load tests are considered.

The new hierarchical algorithm with the three load tests performs the best for any number of
measurements, whereas for two of the three load tests the algorithm performs better than the other
sensor placement strategies for any number of measurements. All sensor placement strategies present
similar results for a small number of measurements (NM < 4); adding a new sensor or a new load test
provides almost the same amount of information. However, for a larger number of measurements,
a strategy using information from multiple load tests and various sensor types performs better,
compared with adding new sensors to the configuration. Thus, a strategy accounting for various
sensor types and load test configurations performs best in terms of information gain.
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Figure 15. Joint entropy as a function of the number of measurements for various sensor placement
methodologies involving various number of load tests (A). (B) Zoom-in of the figure on the left.

4. Discussion

In this section, a comparison of the sensor ranking using the various sensor placement strategies
in this study is presented and the limitations are discussed. A sensor placement strategy based on the
joint entropy is able to identify the sensor configuration which will be the most beneficial to identify
the parameters of a system, which is, in this case, a bridge. Outcomes of structural identification, such
as reserve capacity estimation, are highly dependent on the quality of field measurements. The use
of a sensor placement methodology may, thus, ensure that the maximum of information will be
gained during load testing. Additionally, an advantage of both the original and the new hierarchical
algorithms is the monotonic and bounded properties of the joint entropy objective function. Thus,
a stop criterion, for instance, an increase of joint entropy between two sensor configurations smaller
than a threshold, could be introduced to identify an optimal number of sensors. By decreasing the
number of sensors, the cost of monitoring could often be reduced, guaranteeing that the information
gain is not compromised.

Table 3 displays a summary of the sensor ranking from the various sensor placement strategies
proposed in this study. Except for the case of the first load test (LT1), all sensor placement strategies
select sensor types in the same order: two inclinometers, then a strain gauge and a deflection target.
However, the selection of sensor locations differs, indicating that this aspect is very sensitive to the
choice of sensor placement strategy. If multiple static load tests are planned, a sensor placement strategy,
which does not take into account information from multiple load tests, may lead to a sub-optimal
sensor configuration. Additionally, the original hierarchical algorithm suggests that LT3 does not
provide additional information compared with LT1 and LT2 (Figure 12), while the new hierarchical
algorithm suggests that LT3 provides unique information (Figure 14). This contradiction shows that
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the uniqueness of information is difficult to estimate when the mutual information among multiple
load tests is not evaluated, and this may lead to the wrong decision on, for example, whether or not to
add a new test to load testing plans.

Both the original and the new hierarchical algorithms ranks highly all sensor types, even if
individual information entropy values are small (Figure 8). This means that each sensor type
provides unique information. For a given number of measurements, placing multiple sensor types,
associated with several load tests, is, thus, the best strategy to maximize information gain during a
field measurement campaign.

Table 3. Summary of sensor ranking from the various sensor placement strategies.

Sensor placement Strategy Sensor Ranking

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Load test 1 only—Hierarchical algorithm I2 P1 S5 I1 P4 S7 S1 P2 S2 S8 P3 S6 S4 S3
Load test 2 only—Hierarchical algorithm I2 I1 S6 P3 P4 S5 S8 P1 P2 S4 S7 S3 S2 S1
Load test 3 only—Hierarchical algorithm I1 I2 S4 P3 S8 P4 P1 S7 P2 S5 S3 S2 S6 S1
LT1 & LT2 & LT3—Original hierarchical I2 I1 S5 P4 P1 S7 P3 P2 S1 S3 S4 S8 S2 S6
LT1 & LT2—Original hierarchical I2 I1 S5 P4 S7 P1 P3 S1 S2 S4 P2 S6 S3 S8
LT1 & LT2 & LT3—New hierarchical I1 I2 S7 P3 S5 P4 P1 P2 S8 S3 S2 S6 S4 S1
LT1 & LT2—New hierarchical I1 I2 S7 P4 S5 P2 P1 S8 P3 S4 S2 S6 S1 S3
LT1 & LT3—New hierarchical I1 I2 S7 P3 S5 P4 P1 S8 P2 S4 S2 S6 S1 S3
LT2 & LT3—New hierarchical I1 I2 S4 P3 P4 P1 P2 S8 S5 S6 S3 S7 S2 S1

The following limitations of the work are recognized: The greedy algorithm used in the three
sensor placement strategies does not necessarily lead to a global optimum. Moreover, the sampling
technique and the estimation of modelling uncertainties at sensor locations influence the results.
Finally, only fourteen locations were investigated, due to practical considerations which restricted the
sensor installation to some parts of the bridge. Research is underway to assess the impact of these
aspects on the results.

Another important restriction of any model-based sensor placement methodology is that the
success of the study depends on the quality of the numerical model used to obtain predictions.
Therefore, it is primordial to build a reliable model to get trustful predictions at possible
sensor locations. Model assumptions should be verified during visual inspection, before load testing
the bridge. Additionally, test configurations, such as possible load tests and available sensor types and
numbers, should be defined sufficiently in advance of computing the model instance predictions and
running the sensor placement algorithm to obtain the optimal sensor configuration.

5. Conclusions

A rational sensor placement methodology can increase the performance of the structural
identification methodology by enhancing the model instance discrimination. Specific conclusions are
as follows:

• Optimal sensor configuration strategies should include static-load test characteristics.
• When there are multiple load tests, a sensor placement strategy should take this into account

for optimal sensor configuration. Failure to do so may lead to the wrong conclusions in terms
of information gain, for example, when deciding whether or not to add a new test to the load
testing plans.

• A strategy including the combination sensor types and load test configurations increases the
information gain compared to strategies that do not account for such interaction.

Future work will focus on the combination of static and dynamic load tests for sensor
configuration, as strain-gauge sensors were used in both tests. Additionally, a multi-criteria
decision-making approach will be developed to include cost, information gain criteria, and sensor
installation costs in the determination of optimal sensor configurations for a range of case studies.
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