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Abstract: In wireless sensor networks (WSNs), sensor nodes are deployed for collecting and analyzing
data. These nodes use limited energy batteries for easy deployment and low cost. The use of
limited energy batteries is closely related to the lifetime of the sensor nodes when using wireless
sensor networks. Efficient-energy management is important to extending the lifetime of the sensor
nodes. Most effort for improving power efficiency in tiny sensor nodes has focused mainly on
reducing the power consumed during data transmission. However, recent emergence of sensor
nodes equipped with multi-cores strongly requires attention to be given to the problem of reducing
power consumption in multi-cores. In this paper, we propose an energy efficient scheduling method
for sensor nodes supporting a uniform multi-cores. We extend the proposed T-Ler plane based
scheduling for global optimal scheduling of a uniform multi-cores and multi-processors to enable
power management using dynamic power management. In the proposed approach, processor
selection for a scheduling and mapping method between the tasks and processors is proposed to
efficiently utilize dynamic power management. Experiments show the effectiveness of the proposed
approach compared to other existing methods.
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1. Introduction

WSNs consist of a number of moblile sensor nodes which are tiny, multi-functional, and
low-power. Table 1 lists mobile sensing platforms with various sensors. It is widely used in
various applications to collect and process data, such as various types of physical and environment
information. Recently, sensor nodes in WSNs have evolved for multimedia streaming and image
processing. In response to these high performance demands, sensor nodes with multi-processors
have emerged. A multi-processor sensor node platform, mPlatform, which is capable of parallel
processing for computationally intensive signal processing, was proposed by Lymberopoulos et al. [1].
These platforms operate with limited batteries, as shown in Table 1. The use of a multi-cores in the
sensor node makes energy consumption more serious. Power management among sensor nodes is of
critical importance for several reasons: limited energy batteries and ensuring longevity [2–4], meeting
performance requirements [2,5,6], inefficiency arising because of over provisioning resources [2],
power challenges posed by CMOS scaling [2,7], and enabling green computing [2]. Recent advances
in CMOS technology have improved the density and speeds for on-chip transistors. These trends
limit the fraction of chips that can be used at maximum speeds within limited power. Therefore,
power challenges in CMOS have been addressed for processor performance. Transistor performance
scaling in the future may end if left unaddressed [8,9]. Battery-operated embedded systems are
sensitive to high power consumption, which leads to heating and reduced battery lifetime. Thus,
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energy-efficient management is essential in several embedded systems such as wearable devices.
Improving energy efficiency leads to scale performance without violating the power budget. In recent
advances, mobile computing devices with a multi-cores have been dynamically increased for
mobile convergence applications (e.g., video streaming and web browsing). Power management
in embedded systems contributes to achieve nearly 3% of the overall carbon footprint in green
computing [10]. Energy efficiency scheduling algorithms for the sensor node with multi-processors are
necessary. The scheduling algorithms must be able to keep battery lifetime longer while meeting the
time constraints.

Table 1. Mobile sensing platforms.

Platform Name Processor Type Sensor Type Battery Type

R-One [11] ARM Cortex-M3 Accelerometer, gyroscope,
bump, IR, ambient light

3.7 V lithium-ploymer battery
with 2000 mAh

E-puck [12] dsPIC 30F6014A IR, accelerometer, microphone Battery swappable and
rechargeable with 5 Wh

MarXBot [13] ARM11 IR, camera, accelerometer, gyroscope,
RFID, 2D force, microphone

Hot-swappable battery with
38 Wh

Foot-Bot [14] i.MX31 ARM11 IR, camera 3.7 V lithium-polymer battery
with 10-Ah

CITRIC [15] Xscale PXA-270 Camera, microphone Four AA batteries

WolfBot [16] ARM Cortex-A8
IR, camera, microphone,
ambient light, accelerometer,
magnetometer

7.4 V lithium-ion battery with
5200 mAh

The Asymmetric Multi-core Platform (AMP) is capable of parallelism with different performance
levels. The examples of AMP include mobile phones, tablets, and high-end mobile sensor nodes. These
devices are equipped with cores capable of handling tasks requiring high-performance processing.
Note that not all tasks need the high-performance processing and energy efficient schemes are adopted
even for the cores consuming low power. The problem of scheduling AMP for high-performance
mobile sensors is important in terms of performance and energy efficiency. The scheduler can switch
the high-performance cores to a low power state by assigning tasks to the low power cores when
processing the tasks requiring low loads. It is also possible that powerful cores are changed into simpler
cores to adapt the system to varying loads. ARM’s big.LITTLE architecture [17,18] is a representative
example. In ARM’s big.LITTLE architecture, there are three modes for task migration: cluster migration,
CPU migration, and global task scheduling. The scheduler improves energy efficiency by migrating
tasks between big and little cores. In this paper, we discuss real-time scheduling problems in the
context of AMP. We adopt a scheme using the T-Ler plane to develop energy-efficient scheduling
algorithms for real-time tasks on uniform multi-core systems.

The T-Ler plane extends the T-L plane using a T-L abstraction strategy to fit uniform multi-core
systems. The Voltage Frequency Scale (VFS) is exploited on energy-efficient scheduling algorithms
using the T-L plane. On the other hand, there are not many studies related to Dynamic Power
Management (DPM). Sensor network applications with varying loads depending on the situation can
take advantage of the energy by switching the state of unnecessarily used processors. Kim et al. [19,20]
proposed several T-L plane based energy-efficient algorithms using DPM for sensor nodes with
identical multi-processors. However, these algorithms are not suitable for uniform multi-processor
systems. In particular, it is hard to select the set of processors with the lowest power consumption
among the multiple sets of processors that have the same capacity. We propose a new algorithm suitable
for sensor node with uniform multi-processors, called Uniform-DPM. More specifically, we extend the
previous approaches [19,20] by considering the characteristics of uniform multi-processors in terms of
energy efficiency as follows:
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• At the beginning of each T-Ler plane, select the processors operating with a low frequency and
minimize the processing capacity as much as possible.

• Reduce the complexity of scheduling and fragments of idle time, and classify the processors and
tasks into processor sets and task sets at the beginning of the T-Ler plane, respectively.

• At each event in the T-Ler plane, utilize constrained migration to reduce the complexity of
scheduling and fragments of idle time.

The first extension is to reduce the power loss caused by uniform multi-processors that consist of
processors with difference processing capacities. The previous approach [20], as shown in Section 2,
focuses solely on minimizing the number of processors. It is not suitable for uniform multi-processors.
In the case of uniform multi-processors, the processors must be selected considering the processing
capacity and the frequency of each processor. The second extension is to classify processors and tasks
for limited scheduling, where tasks in a set are only scheduled to processors in the according processor
set. The third extension is to adjust the sets in each event and to assign tasks to the processors using
the limited scheduling. These prevent the unnecessary migration of tasks and enables the collection of
idle time on particular processors.

We organize this paper as follows. In Section 2, we introduce related works, including
the approaches previously based on T-L plane targeting uniform multi-processors. In Section 3,
we propose mechanisms to select processors and allocate tasks for energy-efficient scheduling in
uniform multi-processors. We extend the proposed events in identical multi-processors to ones in
uniform multi-processors. In Section 4, we perform experimental evaluations by comparing our
proposed algorithms with other algorithms. Lastly, we present the conclusions and future works in
Section 5.

2. Related works

2.1. Power Management Techniques

Due to the advancements in semiconductor process technologies, there have been more high-end
processors available that integrate more transistors. Recently, real-time embedded systems have
been increasingly adopting high-end processors. In addition, to improve the performance, real-time
embedded systems are also adopting multi-processors. However, this increases the processor power
consumption significantly. The power consumption of CMOS chips is as follows [21]:

Ptotal = Pstatic + Pdynamic. (1)

Pstatic is the static power consumption which is calculated as the sum of the leakage power and
short current power. Pdynamic is the dynamic power consumption by charging and discharging of the
output capacitance for processing time. It is not easy to reduce the static power consumption which
depends on various parameters in the semiconductor process. Therefore, we focus on reducing the
dynamic power consumption. Dynamic power is defined as:

Pdynamic = αCV2 f , (2)

where f is the frequency, α is the switching activity factor, V is the supply voltage, and C is the
capacitive load. DVFS is a method used to adjust the supply voltage and frequency of a CMOS chip by
utilizing the slack time that occurs when scheduling tasks. On the other hand, DPM is a method of
reducing energy consumption by switching to a low power state when slack time occurs. However,
if a sufficient slack time is not guaranteed over the break-even time, the energy overhead caused by
the state transition will cause loss. The break-even time BETsleep is determined by Equation (3) [22].

BETsleep = max(tsw,
Esw − Psleep· tsw

Pidle − Psleep
) (3)
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The transition energy overhead and recovery time are denoted as Esw and tsw, respectively.
Pidle denotes the idle power. The sleep power is denoted by Psleep. The break-even time should be
considered when developing a scheduling algorithm that not only uses the sleep mode, but also
guarantees real-time responsiveness.

2.2. Global Scheduling Approaches on Multi-Processors

Scheduling disciplines can be categorized by considering the complexity of the priority
mechanisms and the degree of job migration. Considering how task priorities are determined,
Carpenter et al. [23] have categorized the schemes to static, dynamic but fixed within a job,
or fully dynamic.

• Static: A single fixed priority is applied to all jobs for each task in the system. e.g., Rate Monotonic
(RM) scheduling.

• Dynamic but fixed within a job: Different priorities may be assigned for the jobs of a task, but a
job has a fixed priority at different times. e.g., Earliest Deadline First (EDF) scheduling.

• Fully dynamic: Different priorities may be assigned for a single job at different times, e.g., Least
Laxity First (LLF) scheduling.

Depending on the degree of job migration, Carpenter et al. [23] have categorized the migration
criterion to no migration, restricted migration, and unrestricted migration.

• No migration: The set of tasks in the system is partitioned into some subsets for available
processors, a scheduler schedules a subset on a unique processor. The jobs of a task in a subset are
executed on the corresponding processor.

• Restricted migration: Each job of a task must be scheduled entirely on a single processor. However,
other jobs of the same task may be executed on different processors. Therefore, migrations among
processors are allowed at the task-level context, but not at job boundaries.

• Unrestricted migration: Any jobs is also allowed to migrate among processors during its lifetime.

Note that our proposed scheduling algorithm supports fully dynamic and unrestricted migration.
Various global scheduling algorithms for multi-processors have been studied. In global scheduling,

all eligible jobs waiting for execution are in a single priority-ordered queue shared by all of the
processors in the system; the highest priority job is dispatched from this queue by the global scheduler.
Most of early the studies on global scheduling extended optimal scheduling algorithms known well
for a single processor, such as RM and EDF, to multi-processors. However, these extensions can
result in wasted utilization of resources. The fluid scheduling model with fairness notion, where
each task is always executed at a fixed rate, emerged to overcome the limitation [24]. Figure 1
compares the fluid scheduling concept and the practical scheduling. There is a gap between fluid
scheduling and practical scheduling, as shown in Figure 1. There are some algorithms extending
the fluid scheduling model for achieving optimality on multi-processors. Proportionate fair (P-fair)
scheduling has produced a feasible schedule for periodic tasks on multi-processors, and it has shown
considerable promise in multi-processor scheduling [25]. However, extensive amount of migrations
and preemption are needed to follow the fluid schedule. Much effort has been made to overcome this
problem in global optimal scheduling. Thereafter, Deadline Partitioning-fair (DP-fair) and Deadline
Partitioning-warp (DP-wrap) algorithms were proposed, and they exhibited better performance with
respect to preemption in [26]. The method of allocating tasks to the processors supported by these
scheduling algorithms is not suitable for uniform multi-processors. Cho et al. [27] proposed Largest
Nodal Remaining Execution-time First (LNREF) using a T-L plane abstraction and it performs well
with uniform multi-processors. Funk and Meka [28] proposed a T-L plane based scheduling algorithm,
U-LLREF, that extends LNREF algorithm for uniform parallel machines. In U-LLREF, a uniform
multi-processors provides a condition for determining event-c. Chen et al. [29] proposed Precaution
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Cut Greedy (PCG), a T-L plane based scheduling algorithm for uniform multi-processors. PCG uses
a modified T-L plane, a T-Ler plane. Figure 2 shows how the PCG schedules in the first T-Ler plane.
When event-c occurs, τ3 is assigned to p2 until the end of the T-Ler plane. Thus, in PCG, a task
monopolizes a single processor, thereby preventing unnecessary task migration.

Figure 1. Fluid schedule model.

Figure 2. A scheduling example in the 1st T-Ler plane.

2.3. T-L Plane Based Energy-Efficient Global Optimal Scheduling Approaches

Energy-efficient scheduling based on the T-L plane for uniform parallel machines has been
proposed due to the demand for energy efficiency. Uniform RT-SVFS [30] reduces the energy
consumption by scaling the frequency of all processors with a constant rate. By scaling the height of
the T-L plane, as shown in Figure 3, scheduling is enabled at the changed frequency. αk represents
the normalized frequency of the processor. In addition, energy-efficient T-L plane based scheduling
algorithms for unrelated parallel machines have emerged. Independent RT-SVFS [30] determines
the frequency by statically scaling each processor. This algorithm has been proposed to overcome
the heavy task bottlenecks that can occur when using the frequency scaling technique. The Growing
Minimum Frequency (GMF) [31], which is a state-of-the-art algorithm for T-L plane based non-uniform
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frequency scaling for saving energy on VFS embedded multi-processors, has been proposed for
the frequency control of multi-processors using U-LLREF, and the global optimal frequency can be
determined. RT-DVFS [32] allows you to dynamically adjust the frequency of each processor in the
event of scheduling.

Figure 3. Transistion of the T-L plane (frequency= αk).

It is difficult to consider DPM due to the idle time fragmentation problem that occurs when
using the T-L plane based scheduling algorithm. In addition, since scheduling is performed using all
processors existing in the system, a considerable energy overhead due to unnecessary state transition
occurs when DPM is used. TL-DPM [19] solves the idle time fragmentation problem by using a new
event to retrieve tokens, which is performed in the next plane. However, since only the token of the
next plane is targeted, there is room for solving the idle time fragmentation problem. Kim et al. [20]
proposed a generalized method for executing tokens to be scheduled in the later plane in the current
plane in order to solve this problem. To reduce the number of state transitions, scheduling is performed
using only the minimum number of processors.

3. Proposed Energy Efficient Approach on Uniform Multi-Processors

3.1. Feasibility Conditions

Theorems 1 and 2 represent the conditions that must be met to obtain schedules satisfying the
time constraints when uniform multi-processors are used for scheduling the given task set.

Theorem 1. (Horvath et al. [33]) The level algorithm constructs a minimal length schedule for the
set of independent tasks with service requirements e1 ≥ e2 ≥ ... ≥ en on the processing system
π = (c1 ≥ c2 ≥ ... ≥ cm), where m ≤ n. The schedule length is given by

max{ max
1≤i≤m

(
ei
ci
),

en

cm
}. (4)

Theorem 2. (Funk et al. [34]) Consider a set τ = {τ1, ..., τn} of periodic tasks indexed according to
non-increasing utilization (i.e., ui ≥ ui+1 for all i, 1 ≤ i ≤ n, where ui = ei/pi ). Let Ui = ∑i

j=1 ui
for all i, 1 ≤ i ≤ n. Let π denote a system of m ≤ n uniform processors with capacities c1, c2, ..., cm, ci ≥ ci+1
for all i, 1 ≤ i ≤ m. Periodic task system τ can be scheduled to meet all deadlines on the uniform multi-processor
platform π if and only if the following constraints hold:

Un ≤ cm, (5)

where Uk ≥ ck, for all k = 1, 2, ..., m.

Selecting processors for the scheduling tasks at the beginning of each T-L plane is divided into
the case where tasks are allocated to the processors with the same capacity as the utilization, and the
case where they are not.
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3.2. Processor Selections and Classification

3.2.1. Simple Case: Exact Match

Table 2 shows some examples of processor selections for scheduling the task set shown in Table 3.
In a CMOS chip, power consumption is determined by the operating frequency and supply voltage.
The relationship between the power consumption and the supply voltage in the processor is as follows.

Pdynamic ∝ V2. (6)

In addition, according to the relationship between the supply voltage and the operating frequency
in a processor, shown in Equation (7), a processor operating at a higher frequency requires a higher
supply voltage than that operating at a lower frequency. Therefore, as shown in Table 2, a processor
with a higher supply voltage will have a higher capacity.

f ∝
(V −Vth)

β

V
, (7)

where Vth is the threshold voltage of transistors and β is a measure of the velocity saturation in
COMS transistors.

Table 2. An example of the available processor sets.

S1 S2 S3

p1 (voltage = 1.4 v, freq. = 600 MHz, capacity = 1) O X O
... X X X

p5 (voltage = 1.2 v, freq. = 300 MHz, capacity = 0.5) X O O
p6 (voltage = 1.2 v, freq. = 300 MHz, capacity = 0.5) X O X

... X X X
pn−1 (voltage = 1 v, freq. = 150 MHz, capacity = 0.25) O O X

pn (voltage = 1 v, freq. = 150 MHz, capacity = 0.25) O O X
... X X X

total capapcity 1.5 1.5 1.5

Table 3. Task properties.

Task Period WCET Utilization

τ1 5 ms 2.5 ms 0.5
τ2 10 ms 5 ms 0.5
τ3 10 ms 1.25 ms 0.25
τ4 20 ms 2.5 ms 0.25

S1, S2, and S3 shown in Table 2 satisfy Theorems 1 and 2 presented above. Since the processing
capacity of S1, S2, and S3 is equal to the total utilization of the task set, there is no idle time when the
task set is scheduled. However, since the number and capacity of processors is not the same in each
processor, the power consumed by S1, S2, and S3 is different. The energy consumption for scheduling
the task set in Table 3 on S1, S2, and S3 is shown in Table 4. The lowest power consumption can be
observed on S2, where each task is independently assigned to a processor whose capacity is equal
to the utilization of each task in the task set. If the total capacity of a processor set is equal to the
total utilization of a task set, then there is no idle time because all processors always perform their
tasks. Therefore, the power consumption of each processor is dependent on the processed workload.
High-capacity processors can handle more work in terms of processor workloads. Equation (8) shows
the power consumption Ee(Vk) needed to process ei in a processor whose operating frequency and
supply voltage are fk and Vk, respectively.
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Ee(Vk) = αCV2
k fk(

ei
fk
) = αCV2

k ei, (8)

where Vk and fk denote the voltage and capacity of the k-th processor, respectively. Lemma 1 shows the
power consumption characteristics of processor sets whose total capacity is equal to the total utilization
of a task set.

Table 4. Dynamic power consumption of some feasible processor sets.

S1 S2 S3

Dynamic power consumption 2.46αC 1.94αC 2.68αC

Lemma 1. If Utotal = cn = ci + cj, when scheduling a task set with Utotal on two processor sets S1 = {cn}
and S2 = {ci, cj}, the power consumption satisfies αCV2

n en > αCV2
i ei + αCV2

j ej.

Proof of Lemma 1. According to Equation (8), the power consumption measures of S1 and S2 are
αCV2

n en and αCV2
n ei + αCV2

i ej respectively. Since cn = Utotal and ci + cj = Utotal , there is no idle time
when the tasks are scheduled. In addition, V2

n en = V2
n (ei + ej) > V2

i ei + V2
j ej, where en = ei + ej and

Vn > Vi, Vj. Hence, αCV2
n en > αCV2

i ei + αCV2
j ej.

According to Lemma 1, selecting the 0.8 capacity processor for scheduling the 0.6 and
0.2 utilization tasks in the task set, as shown in Table 1, will result in higher power consumption than
selecting the 0.6 and 0.2 capacity processors for the scheduling the tasks. Therefore, assigning each
task to the processor sets whose capacity is equal to its utilization is the most energy-efficient way
when there are enough processors. Under the condition of ci ≤ ui, the processor whose capacity is
equal to ui shows the lowest power consumption to execute the task with the utilization ui. Lemma 2
shows these characteristics.

Lemma 2. When a task with utilization ui is executed on two processors under the condition of cn > cj = ui,
their power consumption for processing the allocated workload during the task period is Ee(Vn) > Ee(Vj).

Proof of Lemma 2. When two processors with capacities of cn and cj perform the workload ei during
the period pi, their power consumption measures are Ee(Vn) and Ee(Vj) respectively. If cn > cj,
Vn > Vj is satisfied by Equation (7). Hence, Ee(Vn) > Ee(Vj) is satisfied by Equation (8).

When a task set with the total time of ∑n
i=1 ei is scheduled on n processors whose capacity is

different, the power consumption required for processing the allocated workload on n processors is
shown in Equation (9). e1, e2, ..., en represents the workload assigned to each processor.

Ee = αCV2
1 f1(

e1

f1
) + αCV2

2 f2(
e2

f2
) + ... + αCV2

n fn(
en

fn
)

= αCV2
1 e1 + αCV2

2 e2 + ... + αCV2
n en

=
n

∑
i=1

Ee(Vi).

(9)

If the total capacity of n processors is greater than the total utilization of a task set to be scheduled,
there will be idle time during task scheduling. This means that the power consumption during the
idle time should be taken into account to measure the processors’ power consumption required for
scheduling the task set. The power consumption of n processors is shown in Equation (10). αi denotes
the power consumption of the i-th processor during the idle time.
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Ed =
n

∑
i=1

(Ee(Vi) + αi). (10)

Lemma 3 and Theorem 3 show the power consumption required for scheduling a task set on a set
of n processors with different capacities.

Lemma 3. When the task set is scheduled with the processor set S1, the lowest power is consumed, where the
total capacity of S1 is ∑∀τi∈τ ui = ∑∀pi∈S1

ci.

Proof of Lemma 3. If ∑∀τi∈τ ui = ∑∀pi∈S1
ci, scheduling involves no idle time, so the processor

power consumption is ∑∀pi∈S1
Ee(Vi). If ∑∀τi∈τ ui < ∑∀pi∈S1

ci, scheduling involves some idle
time, so the processor power consumption based on Equation (10) is ∑∀pi∈S1

(Ee(Vi) + αi). Hence,
if ∑∀τi∈τ ui = ∑∀pi∈S1

ci, then the lowest power consumption will be observed.

Theorem 3. Independently assigning each task in the task set τ to processors whose capacity is equal to the
utilization of the task ui shows the lowest power consumption for scheduling a set of tasks.

Proof of Theorem 3. This is easily proven by Lemmas 1–3.

Therefore, selecting processors whose capacity is equal to the utilization of each task shows the
lowest power consumption for scheduling a set of tasks.

3.2.2. Generalized Solution

When not assignable to a processor with the same capacity as the task’s utilization, it is necessary
to select a processor set available for scheduling with the limited processors. Table 5 shows the
characteristics of processors used for task scheduling. Table 6 shows the processor sets selected from
the processors in Table 5 for scheduling the task set shown in Table 7.

Table 5. Processor properties.

p1 p2 p3 p4

Supply voltage 1.4 V 1.2 V 1.0 V 1.0 V
Operating frequency 600 MHz 300 MHz 150 MHz 75 MHz
Processing capacity 1 0.5 0.25 0.125

Table 6. Selecting processors for scheduling a task set.

S1 S2 S3 S4 S5 S6 S7 S8 ...

p1 O O O O X O O X ...
p2 O O O X O O X O ...
p3 O O X O O X O O ...
p4 O X O O O X X X ...

Total capacity 1.875 1.75 1.625 1.375 0.875 1.5 1.25 0.75 ...

Since the processor sets S1, S2, S3, and S6 shown in Table 6 satisfy Theorems 1 and 2, they
can be used for task scheduling. However, since the processor sets are differently configured,
the idle time during the task scheduling and the difference in their supply voltages result in their
different power consumption. Therefore, the following two strategies should be considered to select
energy-efficient processors.
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Table 7. Task properties.

Task Period WCET Utilization

τ1 5 ms 4.5 ms 0.9
τ2 10 ms 4.25 ms 0.425

Selecting a processor set for task scheduling in consideration of all the problems presented
above is a NP-hard problem. Therefore, in this paper, we propose a heuristic method for selecting
an energy-efficient processor set. In the proposed method, if the size of the current plane is smaller
than Csleep, the processor in active mode is added to a processor set for task scheduling because it
cannot be switched to sleep mode at the end of the previous plane. If the preferentially selected
processors are not enough for scheduling the given task set, additional processors will be selected.
Processors for scheduling are selected in terms of the local utilization of tasks from highest to lowest.
Selecting processors for scheduling depends on the difference between the total local utilization of
tasks in τready at the start time t0 in each plane ∑τj∈τready

rj(t0) and the total capacity ∑pj∈Pselected
cj of the

processors in Pselected. The selected processors are moved to Pselected. The following describes how to
select processors.

• If 0 ≤ ∑τj∈τready
rj(tj) − ∑pj∈Pselected

cj < ri(t0), the processor with the smallest capacity is
selected for scheduling in the given processor set, {pj|cj ≥ ri(t0)−∑τj∈τready

rj(t0)−∑pj∈Pselected
cj

where pj ∈ {Pall − Pselected}}.
• If ∑τj∈τready

rj(t0)−∑pj∈Pselected
cj ≥ ri(t0), the previously selected processor is used for scheduling

without selecting an additional processor.

Pall is the set of all the processors in the system. Pselected is the set of the selected processors
for task scheduling. Algorithm 1 shows how to select processors for scheduling at the beginning of
each plane. The function getMinimumCapacityProcessor(availableCapacity, τ, Ptemp) takes the available
capacity (availableCapacity) of the previously selected processor into account to return the lowest
capacity processor for scheduling the task set τ from the given processor set Ptemp. The function add()
adds elements to the set, and the function erase() removes elements from the set. The processors in Psleep
indicate the processor in the sleep state in the plane. It is necessary to ensure a break-even time longer
than the idle time in order to use DPM techniques for switching the state of a processor. To ensure
the idle timeis long enough to enter the sleep mode, the idle time in the plane should be generated
as much as possible on a single processor. To prevent unnecessary power consumption, a task is
assigned to the selected processor whose capacity is the lowest for scheduling the task. For this reason,
in the proposed method, the processors in the selected processor set are classified into the following
categories: processors that can be used to the maximum extent in the plane and processors that can
be used exclusively by a single task in the plane. That is, the processors in Pselected are classified into
the following categories: Pf ixed, Pmax, and Pslack. The processors in Pf ixed represent a set of processors
exclusively used by a single task. Pmax is the set of processors used to the maximum extent in the plane.
Pslack is the set of processors that may result in idle time in the plane during task scheduling. The tasks
to be executed on the classified processor sets are divided into the following categories: τf ixed, τmax,
and τslack. Tasks assigned to a processor set cannot be moved to another processor set. The following
describes how to classify the processor sets.
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Algorithm 1 Processor selection of the beginning time of a T-L plane

1: Input : Pall , Psleep, τall , psize
2: Output : Pselected, τready
3: psize—Size of the T-L plane
4: Pall—The set of processors in the system
5: Psleep—The set of processors to be sleep mode
6: Pselected—The set of processors selected for scheduling tasks
7: Ptemp—The temporary set of processors
8: τall—The set of all tasks in the system
9: τready—The set of ready tasks

10: τ—Temporary variable for tasks
11: p—Temporary variable for processors
12: availableCpacity—Temporary variable for available capacity
13: for ∀p ∈ Pall − Psleep do
14: if psize < p.Csleep then
15: add(p, Ptemp);
16: end if
17: end for
18: for ∀τ ∈ τall do
19: if τ.e > 0 then
20: add(τ, τready);
21: end if
22: end for
23: repeat
24: τ = getFirstLocalUtilizationTask(τready);
25: availableCapacity = ∑pi∈Pselected

pi.c−∑τi∈τready
τi.r(t0)

26: if availableCapacity ≥ τ.r(t0) then
27: contitue;
28: else
29: p = getMinimumCapacityProcessor(availableCapacity, τ, Ptemp);
30: if p is null then
31: p = getMinimumCapacityProcessor(availableCapacity, τ, Psleep);
32: if p.c > p1.c then
33: erase(p, Psleep)
34: end if
35: erase(p, Psleep);
36: else
37: erase(p, Ptemp);
38: end if
39: add(p, Pselected);
40: p1 = p;
41: end if
42: until τ is not null
43: return Pselected, τready

1. To select a processor for scheduling a task τi in τready where the difference between the total local
utilization of the tasks in τslack at t0 (∑τj∈τslack

(t0)) and the total capacity of the processors in Pslack
(∑τj∈τslack

rj) is greater than zero: ∑τj∈τslack
rj(t0)−∑pj∈Pslack

cj > 0.

• If ∑τj∈τslack
rj(t0)−∑pj∈Pslack

cj ≥ ri(t0), the task is additionally assigned to a previously selected
processor without selecting an additional processor. The assigned task is moved from τslack
to τready.

• If ∑τj∈τslack
rj(t0)−∑pj∈Pslack

cj < ri(t0), the task is additionally assigned to a previously selected
processor without selecting an additional processor. The assigned task is moved from τslack
to τready.
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2. If ∑τj∈τslack
rj(t0)−∑pj∈Psl

cj = ri(t0),

• All processors and tasks in Pslack and τslack are moved to Pmax and τmax.
• The processor whose capacity is the lowest for scheduling a task τi, is selected from the

following processor set, {pj|cj ≥ ri(t0)wherepj ∈ Pselected}. If the capacity of the selected
processor is equal to the local utilization (ri(t0)) of the task ti, the processor and the task
are moved to Pf ixed and τf ixed, respectively. Otherwise, they are moved to Pslack and τslack,
respectively.

Algorithm 2 shows how to classify the processor set Pselected into the following categories: Pf ixed,
Pmax, and Pslack. The task with the highest local utilization is considered first to classify the processor
set and the task set. The function getFirstLocalUtilizationTask(τready) returns the task with the highest
local utilization in τready. The function getMinimumCapacityProcessor(availableCapacity, τ, Pselected) takes
availableCapacity into account to return the processor whose capacity is the lowest for scheduling
a task τ in Pselected. If the capacity of the returned processor is equal to the local utilization of the
task, the processor and the task is moved to Pslack and τslack, respectively. If availableCapacity is 0,
the processors in Pslack and the tasks in τslack are moved to Pmax and τmax.

3.3. Scheduling Strategy

In the paper written by Chen et al. [29] , there are two suggested methods for scheduling on a
uniform multi-processors. However, event-t, event-s, and event-r presented above are not taken into
account in these scheduling methods. In this section, we propose a new T-L plane based scheduling
method in which event-t, event-s, and event-r are used to reduce the power consumption of a uniform
multi-processors. When the τf ixed, τmax, and τslack tasks are scheduled with the Pf ixed, Pmax, and Pslack
processor sets, the tasks cannot be moved from one processor set to another in order to generate no idle
time on the processors in Pf ixed and Pmax. The remaining part shows the movement of elements between
task sets and processor sets and the processor assignment when a rescheduling event occurs. Since
event-t as defined above targets identical multi-processors is not suitable for uniform multi-processors,
it is redefined as in Definition 1.

Definition 1. An event-t in uniform multi-processors occurs at tt if the following conditions are met.

• t f − tt ≥ Csleep.
• ∑τi∈τactive

ri(tt) = (∑pi∈Pslack
ci)− cj where pj ∈ Pslack.

Algorithm 3 shows the process of assigning tasks to processors when a rescheduling event
occurs. All the tasks in the set τactive are moved to the set τready, and all the tasks in the set τactive
are deleted. The function eraseAll(τactive) removes all elements in the set τactive. Tasks are assigned
to processors in each processor set in the following order: Pslack, Pmax, and Pf ixed. The function
getMaximumLocalUtilizationTask(p.c, τf ixed, τready) returns the task with the highest local utilization in
τf ixed and τready where the task can be performed on the processor with the capacity of p.c. The function
getFirstLocalUtilizationTask(τf ixed,τready) returns the task with the highest local utilization in τf ixed and
τready. The function allocateTaskToProcessor(τ, p) assigns the task τ to the processor p.
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Algorithm 2 Classification of selected processors for scheduling

1: Input : Pselected, τready
2: Output : Pf ixed, Pmax, Pslack, τf ixed, τmax, τslack
3: Pf ixed—The set of processors fixed by a task
4: Pmax—The set of processors having maximum utilization
5: Pslack—The set of processors to be able to have slack time
6: τf ixed—The set of tasks fixed to a processor on on Pf ixed
7: τmax—The set of tasks scheduled on Pmax
8: τslack—The set of tasks scheduled on Pslack
9: τ1—Temporary variable for tasks

10: τ2—Temporary variable for tasks
11: p1—Temporary variable for processors
12: p2—Temporary variable for processors
13: repeat
14: τ1 = getFirstLocalUtilizationTask(τready);
15: availableCapacity = ∑pi∈Pslack

pi.c−∑τi∈τslack
τi.r(t0);

16: p1 = getMinimumCapacityProcessor(availableCapacity, τ1, Pselected);
17: if p1.c = τ1.r(t0) then
18: add(p1, Pf ixed);
19: add(τ1, τf ixed);
20: else if availableCapacity = 0 then
21: for ∀τ2 ∈ τslack do
22: add(τ2, τmax);
23: erase(τ2, τslack);
24: end for
25: for ∀p2 ∈ Pslack do
26: add(p2, Pmax);
27: erase(p2, Pslack);
28: end for
29: add(τ1, τslack);
30: add(p1, Pslack);
31: else
32: add(τ1, τslack);
33: add(p1, Pslack);
34: end if
35: erase(p1, Pselected);
36: until τ1 is not null
37: return Pf ixed, Pmax, Pslack, τf ixed, τmax, τslack

Algorithm 4 shows the movement of the elements between processor sets and task sets. When
an event-b occurs, all the tasks which have triggered an event-b are moved to τdone and are removed
from τactive. The function getEventTasks() returns all the tasks that have triggered the event-b. When an
event-c or an event-f occurs, all the tasks that have triggered the event are moved to τf ixed, and the
processors that have triggered the event are moved to Pf ixed. The function getProcessor(τ.r(t0), Pmax)
returns the processor with the capacity τ.r(t0) in Pmax. When an event-t occurs, the processors which
can be switched to sleep mode are moved to Psleep and are removed from Pslack. When an event-s
or an event-r occurs, all the tasks that have triggered the event are moved to τdone and are removed
from τactive. The function reallocateProcessorTime() assigns the available processing time to a task with
remaining execution time in τdone. The assigned task is moved to τready.
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Algorithm 3 Assignment of tasks to processors at rescheduling

1: Input : Pf ixed, Pmax, Pslack, τf ixed, τmax, τslack
2: Output : τf ixed, τmax, τslack
3: for ∀τ ∈ τactive do
4: add(τ, τready);
5: end for
6: eraseAll(τactive);
7: for ∀p ∈ Pslack do
8: τ = getMaximumLocalUtilizationTask(p.c, τslack, τready);
9: if τ is null then

10: τ = getFirstLocalUtilizationTask(τslack, τready);
11: end if
12: allocateTaskToProcessor(τ, p);
13: erase(τ, τready);
14: add(τ, τactive);
15: end for
16: for ∀p ∈ Pmax do
17: τ = getMaximumLocalUtilizationTask(p.c, τmax, τready);
18: if τ is null then
19: τ = getFirstLocalUtilizationTask(τmax, τready);
20: end if
21: allocateTaskToProcessor(τ, p);
22: erase(τ, τready);
23: add(τ, τactive);
24: end for
25: for ∀p ∈ Pf ixed do
26: τ = getMaximumLocalUtilizationTask(p.c, τf ixed, τready);
27: allocateTaskToProcessor(τ, p);
28: erase(τ, τready);
29: add(τ, τactive);
30: end for
31: return τf ixed, τmax, τslack

Figure 4 shows the scheduling in the first plane from the proposed method when scheduling the
tasks of Table 8 on the processors listed in Table 9. Algorithm 2 is used to categorize the processor
sets and ready tasks selected by Algorithm 1 at t0. Task τ5 that has triggered an event-c at τ1 and
the processor p3 whose capacity is equal to the local utilization of τ5 are moved to τf ixed and Pf ixed,
respectively. At the same time, the processor p4 is moved to Psleep by event-t. Task τ1 that has triggered
an event-b at t2 is moved to τdone. Task τ3 that has triggered an event-b at t3 is moved to τdone. At the
same time, task τ3 that has triggered an event-c and the processor p1 whose capacity is equal to the
local utilization of τ3 are moved to τf ixed and Pf ixed, respectively. Table 10 shows the elements added
to the processor and task sets by Algorithm 4 at each event in the 1st plane. Tasks are assigned to
processors by Algorithm 3. As shown in Figure 4, tasks assigned to processors move diagonally along
the slope of the processor capacity and tasks unassigned to processors will move horizontally.
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Algorithm 4 Movement of elements during rescheduling in the T-L plane

1: Input : Pf ixed, Pmax, Pslack, τf ixed, τmax, τslack
2: Output : Psleep, τready, τactive, τdone
3: τactive—The set of tasks to be excuted
4: τdone—The set of tasks to be done
5: if event-b then
6: T = getEventbTasks();
7: for ∀τ ∈ T do
8: add(τ, τdone);
9: erase(τ, τactive);

10: end for
11: else if event-c | event-f then
12: T = getEventcOrEventfTasks();
13: for ∀τ ∈ T do
14: add(τ, τf ixed);
15: if τ ∈ τmax then
16: p = getProcessor(τ.r(t0), Pmax);
17: erase(τ, τmax);
18: erase(p, Pmax);
19: else
20: p = getProcessor(τ.r(t0), Pslack);
21: erase(τ, τslack);
22: erase(p, Pslack);
23: end if
24: add(p, Pf ixed);
25: end for
26: else if event-t then
27: capacity = ∑pi∈Pslack

pi.c−∑τi∈τslack
τi.r(t0)

28: p = getProcessor(capacity, Pslack);
29: add(p, Psleep);
30: erase(p, Pslack);
31: else if event-s | event-r then
32: T = getEventsOrEventrTasks();
33: for ∀τ ∈ T do
34: add(τ, τdone);
35: erase(τ, τactive);
36: end for
37: reallocationProcessorTime();
38: for ∀τ ∈ τdone do
39: if τ.l(tcur) = 0 then
40: continue;
41: else
42: add(τ, τready);
43: erase(τ, τdone);
44: end if
45: end for
46: end if
47: return Psleep, τready, τactive, τdone
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Table 8. Task properties.

Task Period WCET Utilization

τ1 5 ms 4 ms 0.8
τ2 5 ms 2.5 ms 0.5
τ3 10 ms 3 ms 0.3
τ4 10 ms 2 ms 0.2
τ5 20 ms 2 ms 0.1

Table 9. Processor properties.

p1 p2 p3 p4

Supply voltage 1.4 V 1.2 V 1.0 V 1.0 V
Processing capacity 1 0.5 0.25 0.25

Table 10. Example of sets at events in the plane.

Set Element

t0 t1 t2 t3

τf ixed τ2 τ2, τ5 τ2, τ4 τ2, τ4, τ5
Pf ixed p2 p2, p3 p2, p3 p1, p2, p3
τmax . . . .
Pmax . . . .
τslack τ1, τ3, τ4, τ5 τ1, τ3, τ4 τ3, τ4 .
Pslack p1, p3, p4 p1 p1 .
τdone . . τ1 τ1, τ3
Psleep . p4 p4 p4

Figure 4. A scheduling in the first plane.
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4. Energy Efficiency on Uniform Multi-Processors

In this section, the performance of the proposed algorithm is compared with the major algorithms
previously developed for power management. We implemented a simulator operating in Windows 10
using the Ruby language (version 2.4.1) for the experiments. Figure 5 illustrates the architecture of the
simulator. The results of the simulation show the energy consumption for task executions, as well as
the energy overheads associated with the state transitions.

Figure 5. The architecture of the simulator.

4.1. Experiment Environment

The characteristics of the cortex-A7 core in Marvell’s MV78230, which is the Multi-Core ARMv7
system based on the chip processor, is used to set the experimental parameters of the processor in the
simulator. This core supports dynamic frequency scaling and dynamic power down options. Tables 11
and 12 show that cortex-A7 supports six frequency levels and five processor states. Run thermal is
used in the stress test of the CPU. The deep idle and sleep modes consume the same energy with
respect to the CPU. We consider the run typical, idle, and sleep modes in Table 12 for our experiment.
WolfBot [16], which is a distributed mobile sensing platform, has ARMv7 based cortex processors.

Table 11. Frequency levels of the cortex-A7 core.

Parameter Level 1 Level 2 Level 3 Level 4

Frequency (MHz) 800 1066 1333 1600
Run typical power (W) 3.3 3.6 4 4.9

Table 12. Power states of the cortex-A7 core.

States Power (Watts)

Run Thermal 5.9
Run Typical 4.9

Idle 2.4
Deep Idle 0.07

Sleep 0.07
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To confirm the scalability of the proposed algorithm, we change the number of available processors
within the range 8–32. Then, we use the Emberson procedure to construct 100 task sets on each available
processor. The total utilization of the task set is equal to 8, and the task has a utilization within 0.01–0.99.
The period of each task is evenly distributed within 10–150 and simulated for 1000 system units.

4.2. Experiment Results and Analysis

Table 13 shows the platform type and power management technique of the algorithm to be
simulated. The algorithm’s platform type is called “non-uniform” when the associated frequency
of each processor is independently adjustable, and is called “uniform” when it can change all the
frequencies at a constant rate when scaling the frequency of the processor. It is possible for each
processor among the uniform multi-processors to operate at a different frequency. A job has a
different execution time depending on which processor is allocated. These platforms are otherwise
called “unrelated”.

Table 13. Summary of the energy-efficient scheduling algorithms.

Algorithm Name Platform Type Power Management

PCG Uniform -
Uniform-DPM (proposed) Uniform DPM

GMF Non-uniform SVFS
Independent RT-SVFS Non-uniform SVFS

Uniform RT-SVFS Uniform SVFS

Figure 6 shows the power efficiency obtained by simulating the five algorithms mentioned in
Table 13 while varying the number of available processors and the number of tasks. We implement our
proposed algorithm as well as the following models: PCG, the original uniform algorithm without
any power management [29]; Uniform-DPM, our proposed scheduling algorithm for DPM-embedded
uniform multi-processors; GMF [31]; Independent RT-SVFS [30]; and Uniform RT-SVFS [30]. The x-axis
of Figure 6 represents the number of available processors, and the y-axis represents the normalized
power consumption (NPC). The power consumption consumed by the PCG is measured by the
reference consumption and the power consumption rate of each algorithm. Figure 6 show the
results when the number of tasks composing a task set is 12, 16, 20, and 24, respectively. All of
the algorithms to be simulated is global optimal scheduling. Thus, since the total utilization of the
task set used in the simulation is fixed at 8, the power efficiency of all algorithms shows 100% energy
consumption in all scheduling using eight processors. As shown in Figure 6, the GMF and RT-SVFS
algorithms change the power efficiency according to the number of tasks, while the proposed algorithm,
Uniform-DPM, consumes the same a mount of power. This is because they always generate the same
idle time. In addition, in the case of many available processors, the proposed algorithm shows high
power efficiency by preventing unnecessary processor activation and idle time fragmentation, and by
preventing frequent state transitions of the processor. GMF and independent RT-SVFS have similar
power efficiencies because they determine the frequency of each processor independently. GMF finds
a global optimal solution in the search spaces, but not Independent-SVFS. Thus, GMF is better than
Independent-SVFS, as shown in Figure 6. Uniform RT-SVFS adjusts the frequency of all processors to a
certain ratio, so if the number of tasks is small, the energy efficiency is not good because the work can
be concentrated on some processor and the frequency of the processor cannot be lowered. However,
as the number of tasks increases, the number of tasks can be divided and processed simultaneously
by multiple processors, which can reduce the frequency of the processor. Tables 14 and 15 show the
energy efficiency characteristics of this proposed algorithm. Table 14 shows that Uniform-DPM always
shows constant energy efficiency regardless of the number of tasks. Table 15 shows that the energy
efficiency increases as the number of processors increases.
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Table 14. Summary of the experimental results by varying the number of tasks.

Saved Norm. Power Consumption (%)

# of Processors # of Tasks
(Total Untilization) Uniform-DPM GMF Independent

RT-SVFS
Uniform
RT-SVFS

12 12 (8) 19.6 9.9 8.3 0.3
12 16 (8) 19.6 14 11 0.8
12 20 (8) 19.6 16.4 14.6 1.7
12 24 (8) 19.6 18.6 17 3.6

Table 15. Summary of the experimental results by varying the number of uniform processors.

Saved Norm. Power Consumption (%)

# of Processors # of Tasks
(Total Untilization) Uniform-DPM GMF Independent

RT-SVFS
Uniform
RT-SVFS

12 24 (8) 19.6 18.4 17.1 3.6
16 24 (8) 32.8 17.6 16.4 3.3
20 24 (8) 42.2 15 14.3 2.7
24 24 (8) 49.4 14.5 12.9 2.5
28 24 (8) 54.9 12.1 11.6 2.2
32 24 (8) 59.3 11 10.6 2

(a)

(b)

Figure 6. Cont.
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(c)

(d)

Figure 6. Comparing the energy consumption of an energy-efficient approach while varying the
number of tasks: (a) 12; (b) 16; (c) 20; and (d) 24.

5. Conclusions and Future Works

The lifetime of WSNs is closely related to the management of sensor nodes operating at limited
energy. In this paper, we propose a power management method for sensor nodes supporting
DPM-enabled uniform multi-processors. In the proposed approach, the selection of processors to
process a set of tasks and the assignment of tasks to the selected processors have been proposed in
terms of energy efficiency. In addition, we implement a simulator to measure the power consumption
of various scheduling algorithms. The experimental results show that the proposed algorithms provide
better scalability to the number of available processors than DVFS-based approaches. Currently,
our proposed algorithms can handle periodic tasks with implicit deadlines. In future work, we plan
to extend our algorithms to handle sporadic tasks with time constraint. We are very interested in
combining the DVFS and DPM approaches for T-L plane abstraction as well. In addition, studies on
trade-offs between the power usage and computational complexity, as well as performance evaluations
on overloaded situations, would be interesting problems for potential future research.
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