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Abstract: The majority of techniques that deal with the mitigation of in-phase and quadrature-phase
(I/Q) imbalance at the transmitter (pre-compensation) require long training sequences, reducing
the throughput of the system. These techniques also require a feedback path, which adds more
complexity and cost to the transmitter architecture. Blind estimation techniques are attractive for
avoiding the use of long training sequences. In this paper, we propose a blind frequency-independent
I/Q imbalance compensation method based on the maximum likelihood (ML) estimation of the
imbalance parameters of a transceiver. A closed-form joint probability density function (PDF) for
the imbalanced I and Q signals is derived and validated. ML estimation is then used to estimate the
imbalance parameters using the derived joint PDF of the output I and Q signals. Various figures of
merit have been used to evaluate the efficacy of the proposed approach using extensive computer
simulations and measurements. Additionally, the bit error rate curves show the effectiveness of
the proposed method in the presence of the wireless channel and Additive White Gaussian Noise.
Real-world experimental results show an image rejection of greater than 30 dB as compared to the
uncompensated system. This method has also been found to be robust in the presence of practical
system impairments, such as time and phase delay mismatches.

Keywords: cumulative distribution function; demodulator; direct conversion transceivers; I/Q
imbalance; modulator

1. Introduction

Modern communication networks suffer from various imperfections that significantly degrade
their performance. Transmitters (Tx) and receivers (Rx) employ local oscillators to up- and
down-convert the in-phase (I) and quadrature-phase (Q) signals to the carrier frequency and baseband,
respectively. However, due to the non-idealities of the local oscillators and mixers, there is an imbalance
in the gain and phase of the up/down-converted I/Q signals. I/Q imbalance results in mirror frequency
imaging [1]. This problem is quite prevalent in direct-conversion radio architecture where the image
falls within the band of interest after down-conversion.

The effects of I/Q imbalance can be mitigated using signal processing techniques, instead of
adding hardware components to the transceiver topology or making changes in the transceiver
topology. Various methods have been proposed to mitigate the effects of modulator and/or
demodulator imperfections [1–15]. These include both frequency-independent (e.g., [4–7,10,11,15])
and frequency-dependent models (e.g., [8]).

The method proposed in [1] employs two solutions to mitigate the effects of I/Q mismatch in OFDM
receivers. The first method is based on least squares, while the second is an adaptive least mean squares
based method using pilot tones. However, the effect of transmitter imbalances has not been considered.
Similarly, the methods suggested in [2,3] aim to mitigate the joint effect of receiver I/Q imbalance
in the presence of phase noise and carrier frequency offset, respectively. The imbalance parameters
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are estimated by minimizing the mean squared error. A maximum likelihood based estimation for
transceiver’s I/Q imbalance is presented in [4] in the presence of Additive White Gaussian Noise
(AWGN) channel. Many of these methods, however, require long training sequences to estimate the
model coefficients. These techniques also require the disruption of signal transmission as the imbalanced
signals need to be time and phase aligned with the training/input signal for accurate modeling.

Blind methods are attractive in cases where long training sequences are not available or need to
be avoided. Blind and semi-blind methods have been proposed in literature [5–9,11] with the aim of
mitigating these imperfections. A gradient-based adaption algorithm based on image suppression
ratio has been suggested in [7] for low-IF transmitters. The method proposed in [8] uses second-order
statistics, i.e., the circularity property of the signals, to eliminate the effect of I/Q imbalance in
quadrature radio receivers. Similarly, the method proposed in [10] provides a maximum likelihood
estimation of receiver I/Q imbalance parameters. A higher order statistics based method for blind
transmitter I/Q imbalance calibration has been proposed in [11]. The authors make use of a diode
detector in the feedback path for detecting the instantaneous envelope of the transmitted signal, for
its simplicity. As pointed out by the authors, demodulator or mixer based circuits can also be used
in the feedback path. However, a limitation of these methods is that they either consider the effect
of the modulator or the demodulator I/Q imbalance, i.e., if the effect of the modulator imbalance
is considered, the demodulator is considered as ideal and vice versa. Similarly, the authors in [12]
investigated the effects of Tx I/Q imbalance in direct-conversion transmitters while considering a
super-heterodyne receiver. This, however, eliminates the direct-conversion architecture’s advantage of
low complexity and cost efficiency. Hence, the methods that can compensate for both the Tx and Rx
impairments without the need for a change in the architecture are attractive for practical systems.

Methods that consider this combined effect have been presented in [13,14]. However, both of
these techniques, similar to [4], are data-aided techniques that, as previously mentioned, reduce the
throughput of the system. Blind compensation methods for both the transmitter and the receiver I/Q
imbalance compensation have been proposed in [15,16]. The former relies upon carrier frequency
offset to decouple these imbalances followed by Cholesky decomposition for the estimation procedure.
While the later proposes a two-step blind compensation technique using marginalized particle filter,
which suffers from high computational complexity. In addition, none of these techniques provides an
experimental validation of the proposed methodologies and their resulting impairments in realistic
scenarios using measurement set-ups.

This paper proposes a novel post-compensation methodology for the transceiver (Tx-Rx)
impairments that has the advantage of joint blind compensation for both the modulator and
demodulator I/Q imbalances at the receiver, based on the statistics of the received signal. In addition,
the proposed technique also eliminates the need for decoupling these imbalances. Statistics-based
methods have been shown to perform reasonably well in the case of other front-end impairments such
as power amplifier nonlinearity [17,18].

The proposed methodology requires only prior knowledge of the standard deviation of the actual
I and Q signals and does not require pilots or training sequences. Another important feature of
the proposed methodology is that it does not need a feedback path at the transmitter, resulting in
a much simpler architecture. The restrictions for low cost and implementation size of the uplink
scenario (mobile to base station communication) demand effective post-compensation schemes due to
the difficulty in implementing complex compensation schemes in the mobile set, while maintaining
computational and cost efficiency. Post compensation allows the base station receiver to apply the
mitigation algorithm, as it has more computational resources and hardware flexibility than that of the
mobile receiver system. The implementation of these methods helps avoid the feedback path at the
transmitter saving valuable hardware resources such as demodulators, filters, and analog-to-digital
converters (ADCs) and the resulting impairments.

The rest of the paper is organized as follows: Section 2 starts with a detailed model description
and mathematical formulation, followed by the proposed mitigation strategy. Section 3 describes the
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performance evaluation of the proposed methodology using computer simulations. Section 4 provides
a discussion regarding the proposed work. Section 5 presents the measurement setup and results
obtained using the proposed methodology. Conclusions are summarized in Section 6.

2. Model Formulation and Mitigation Methodology

2.1. I/Q Impairment Model Formulation

Figure 1 shows a simplified block diagram of a transceiver system with modulator and
demodulator imperfections, along with the post-compensation block. In a typical transmitter, the
baseband I and Q signals pass through the modulator and are up-converted to the desired radio
frequency (RF). Ideally, the local oscillator should produce a 90 degrees phase difference between
the I and the Q branches, while maintaining equal gain between the two branches. However, this
difference is not exactly 90 degrees, due to the non-idealities of various components used for up- and
down-conversion, resulting in phase imbalance. Similarly, a gain mismatch is introduced between
the I and the Q branches of the modulator/-demodulator, which also affects the quality of the signal.
The combined effect of the gain and phase imbalances is referred to as I/Q imbalance. The RF output
of the modulator can be represented as: yRF(t) = Re

{
(IT(t) + jQT(t))e2π f t

}
, where f is the carrier

frequency and t is the time. The baseband equivalent of the output I and Q of the modulator can be
expressed as [11]:

IT(t) = gI cos(θ)I(t) + gQ sin(θ)Q(t) (1)

QT(t) = gI sin(θ)I(t) + gQ cos(θ)Q(t) (2)

where gI and gQ are the transmitter’s gain imbalance parameters in the I and the Q paths, respectively.
The phase imbalance i.e., φ is split equally between the two branches i.e., θ = φ/2. The transmitted
signal after passing through an AWGN channel, in matrix form, can be written as:

yT = ςTx + n (3)

where

ς =

√
g2

I + g2
Q

2
; T =

√
2

(1 + g2)

(
g cos(θ) sin(θ)
g sin(θ) cos(θ)

)
(4)
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Figure 1. Block diagram of transceiver system with modulator’s and demodulator’s imperfections. 

Figure 1. Block diagram of transceiver system with modulator’s and demodulator’s imperfections.
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Here g = gI/gQ, yT = [IT(t) QT(t)]
T is the imbalanced signal at the output of the modulator,

while x = [I(t) Q(t)]T is the input signal to the modulator. T is the matrix of modulator’s imbalance
parameters, n =

[
nI(t) nQ(t)

]T is the noise vector, and nI(t) and nQ(t) are the noise components in
the I and the Q branches respectively. This signal is then demodulated at the receiver, which also
introduces an I/Q imbalance resulting in the following expressions for the received signals:

IR(t) = gI I cos(θ′)IT(t) + gQQ sin(θ′)QT(t) + ñI(t) (5)

QR(t) = gI I sin(θ′)IT(t) + gQQ cos(θ′)QT(t) + ñQ(t) (6)

where gI I and gQQ are the receiver’s gain imbalance parameters in the I and Q components, respectively.
Similar to the modulator, θ′ is the phase imbalance in each branch of the receiver. Defining
g′ = gI I/gQQ, the output of the demodulator can be written as:

yR = ς′RyT = ςς′RTx + ñ (7)

where yR = [IR(t) QR(t)]
T is the signal at the output of the demodulator, R is the matrix of the

receiver’s imbalance parameters and

ς′ =

√
g2

I I + g2
QQ

2
; R =

√
2

(1 + g′2)

(
g′ cos(θ′) sin(θ′)
g′ sin(θ′) cos(θ′)

)
(8)

Since, the I/Q imbalance considered in this case is linear with respect to the modeling parameters,
the combined baseband model of the I and Q components under the effect of both the imbalances can
be written as:

yR = ςς′
√

2
(1 + g2)

√
2

(1 + g′2)

(
g′ cos(θ′) sin(θ′)
g′ sin(θ′) cos(θ′)

)(
g cos(θ) sin(θ)
g sin(θ) cos(θ)

)
x + ñ (9)

Or simply
yR = Ax + ñ = y + ñ (10)

where y =
[
Iy(t) Qy(t)

]T and A is the matrix containing the joint imbalance parameters. Matrix A is
defined as:

A =

(
α1 β1

α2 β2

)
(11)

where

α1 = ςς′
√

2
(1 + g2)

√
2

(1 + g′2)

(
gg′ cos(θ) cos(θ′) + g sin(θ) sin(θ′)

)
(12)

β1 = ςς′
√

2
(1 + g2)

√
2

(1 + g′2)

(
g′ cos(θ′) sin(θ) + sin(θ′) cos(θ)

)
(13)

α2 = ςς′
√

2
(1 + g2)

√
2

(1 + g′2)

(
gg′ cos(θ) sin(θ′) + g sin(θ) cos(θ′)

)
(14)

β2 = ςς′
√

2
(1 + g2)

√
2

(1 + g′2)

(
g′ sin(θ′) sin(θ) + cos(θ′) cos(θ)

)
(15)

Using this imbalance model, the next step is to derive a closed-form probability density function
(PDF) expression of the output signals in terms of the imbalanced parameters and find an estimate of
matrix A using the maximum likelihood (ML) estimation.
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2.2. Closed-form PDF of the Imbalanced Signal

The following assumptions were made before deriving the PDF of the demodulated signal:
A1: The I and Q components are jointly Gaussian and independent, i.e., (E[IQ] = E[I]E[Q]), where

E[.] is the expectation operation.
A2: The input I and Q signals have similar statistics, i.e., both components have zero means (uI =

uQ = 0) and same variances (σ2
I = σ2

Q = σ2).
These assumptions result in the covariance matrix of x to be diagonal i.e., Cx = σ2I, where I

represents identity matrix and are valid for practical communication signals without making significant
changes in system specifications. The assumption of I and Q signals being independent is considered in
many works (e.g., reference [8] in this work and references [20–25] found in [11]). Orthogonal frequency
division multiplexing (OFDM) signals have been shown to exhibit Gaussian characteristics [19].
The authors in [11] also assume similar statistics of I and Q signals.

For N samples of the received signal, the N-point PDF of y can be written as [10]:

fy(y; Γ) =
N

∏
i=1

1

2π
√∣∣Cy(Γ)

∣∣ exp(−1
2

yT
i C−1

y (Γ)yi) (16)

where Cy denotes the covariance matrix of y and G = [α1 β1 α2 β2]
T is the vector of unknown

imbalance parameters defined in Equations (12)–(15). Using the expressions for the covariance matrix
of y i.e., Cy and its determinant, the joint PDF of Iy and Qy takes the following form (see Appendix A
for derivation):

fy(y; Γ) =
1

(2πσ2|γ|)N e
−( 1

2σ2γ2

N
∑

i=1
p(i))

(17)

where σ represents the standard deviation of the I and Q signals, |γ| is the determinant of A.
An auxiliary set of variables has been used for mathematical simplicity, which are defined as:

p(i) = p2
1(i) + p2

2(i) (18)

p1(i) = β2 Iy(i)− β1Qy(i) (19)

p2(i) = −α2 Iy(i) + α1Qy(i) (20)

The analytical closed-form expression for the PDF of the imbalanced signal obtained using
Equation (17) is herein referred to as the ‘derived’ PDF. It should be noted here that the noise has not
been included in the analysis i.e., yR = y in Equation (10). A maximum likelihood estimation of the
imbalance parameters is obtained using this PDF. In the presence of noise, however, the PDF of the
imbalanced signal yR is given below, where * represents convolution of the two PDFs [20]:

fyR(yR; Γ) = fy(y; Γ) ∗ fñ(ñ; Γ) (21)

2.3. Accuracy of Derived PDF

The accuracy of the derived PDF can be measured by various figures of merit, including the
Kullback-Leibler (KL) divergence, which is the measure of similarity or dissimilarity between two PDFs.
If we consider two discrete PDFs, f (xk) and g(xk), using K independent and identically distributed
samples {xk}K

k=1, KL divergence can then be defined as [21]:

DKL( f ||g) =
K

∑
k=1

f (xk)log
(

f (xk)

g(xk)

)
(22)
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A higher value of KL divergence indicates dissimilarity between the compared PDFs, while, a
smaller value indicates similarity or closeness of the compared PDFs. Another figure of merit for
comparing two PDFs is the Hellinger distance. The square of the Hellinger distance is defined as [22]:

D2
H( f ||g) = 1

2

K

∑
k=1

(√
f (xk)−

√
g(xk)

)2
(23)

The first step is to analyze the effect of the I/Q imbalances on the PDF of the signal. Kernel
Density Estimation (KDE) is a well-established method for PDF estimation and hence has been used
here for comparison. Table 1 compares the input signal’s PDF ( fin,KDE) and the imbalanced signal’s
PDF (gKDE) using the nonparametric KDE method for the metrics provided in Equations (22) and (23)
for the noiseless case. These values of the KL divergence and Hellinger distance show the divergence
in the PDFs of the modulator’s input signal and the demodulator’s output signal. This is due to the
presence of the I/Q imbalance in the system, which changes the PDF of the input signal.

Table 1. Comparison of probability density functions (PDFs) for noiseless case and g = g′ = 0.92 dB and
θ = θ′ = −6 degrees.

Signal
DKL D2

H

fin,KDE ‖ gKDE fy(y; Γ) ‖ gKDE fin,KDE ‖ gKDE fy(y; Γ) ‖ gKDE

WCDMA 1111 1.146 × 10−1 2.2 × 10−3 2.38 × 10−2 4.75 × 10−4

LTE 101 1.368 × 10−1 2 × 10−3 2.8 × 10−2 4.97 × 10−4

The next step is to determine the accuracy of the derived analytical expression in Equation (17).
For this purpose, the derived PDF of the imbalanced signal ( fy(y; G) was compared to the KDE-based
estimate of the output i.e., gKDE. In this case, Table 1 shows that the values of both the KL divergence
and the Hellinger square distance are quite small for both Wideband Code Division Multiple Access
(WCDMA) and Long-Term Evolution (LTE) signals, resulting in the conclusion that the derived PDF is
very similar to the desired PDF.

This is also evident from Figures 2 and 3, which show the effect of I/Q imbalance on the PDF
contours and the accuracy of the derived PDF of the output signal of the demodulator, respectively.
It can be concluded from Table 1 and Figure 3 that there is an excellent correspondence between the
derived and KDE-based PDFs of the imbalanced signals. It should be noted that the analysis provided
here is for the PDF obtained in Equation (17) for the noiseless case i.e., derived PDF.
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A deviation from the input signal’s PDF can be seen due to I/Q imbalance.
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2.4. Parameter Estimation 

Once the PDF of the imbalanced signals is obtained and verified, the next step is the estimation 
of imbalance parameters. These modeling parameters are obtained by maximizing the likelihood 
function or the derived PDF. Hence, the imbalance parameters are obtained by solving the system of 
following equations (see Appendix B for derivation): 
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Figure 3. Contour plot for the PDF of imbalanced (g = 0.92 dB, g′ = 0.5 dB and θ =−6 degrees, θ′ =−2 degrees)
signal using the KDE based method and the derived expression (17) for noiseless case. The derived
PDF follows the PDF of the imbalanced signal obtained using the KDE method.

Figure 4 shows the comparative analysis for the noisy case. It can be seen that the KL divergence
between the derived PDF and KDE based estimate of yR is higher at lower Signal to Noise Ratios
(SNRs). The reason being that the derived PDF does not consider the effects of noise and this results
in a significant discrepancy between the two density functions. However, at around 12 dB SNR, the
discrepancy reduces significantly and the KL divergence curve is close to the noiseless case (dotted
line). Hence, the estimation of the imbalance signal is carried out using the derived PDF of yR without
including the effects of noise as this leads to simplicity in the estimation procedure.
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2.4. Parameter Estimation

Once the PDF of the imbalanced signals is obtained and verified, the next step is the estimation
of imbalance parameters. These modeling parameters are obtained by maximizing the likelihood
function or the derived PDF. Hence, the imbalance parameters are obtained by solving the system of
following equations (see Appendix B for derivation):

β2

2
(1T.p)− γ(p2

T.Qy) = 0 (24)

α2

2
(1T.p)− γ(p1

T.Qy) = 0 (25)
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α1

2
(1T.p)− γ(p1

T.Iy) = 0 (26)

β1

2
(1T.p)− γ(p2

T.Iy) = 0 (27)

where 1 is the unit vector containing all ones i.e., 1N×1 = [1 1 . . . . 1]T; p, p1 and p2 are the vector
representations of p(i), p1(i) and p2(i) from Equations (18)–(20), respectively for i = 1, . . . ,N; and Iy and
Qy are the vector representations of Iy(i) and Qy(i).

By solving this set of four equations, the unknown imbalance parameters, i.e., α1 β1 α2 and β2 can
be estimated. After an estimate is obtained, the estimated I and Q signals can finally be obtained with
the following expression:  ∧

I(i)
∧

Q(i)

 =

 ∧
α1

∧
β1

∧
α2

∧
β2

−1(
IR(i)

QR(i)

)
(28)

It should be noted that we are able to estimate the final matrix A and not the transmitter and
receiver imbalance matrices T and R individually. The Cramer-Rao Lower Bound (CRLB) for the
proposed estimator is provided in Appendix C.

Solution of nonlinear equations: Here we discuss possible solutions to Equations (24)–(27) for the
estimation of the imbalance parameters. Nonlinear multivariable optimization techniques, such as
the simulated annealing algorithm [23] or the nonlinear system solver-based Levenberg-Marquardt
method [24], can be used to solve these nonlinear system of equations. The simulated annealing
algorithm relies on minimizing the system’s energy by lowering the temperature of the system until
the convergence criterion is met. This technique is quite effective for non-convex systems, as it has the
ability to avoid being stuck in the local minima. The complexity of the proposed methodology relies on
the optimization technique required to estimate the imbalance parameters using Equations (24)–(27).
Simulated Annealing algorithm has been used in this work to estimate the unknown parameters.
A detailed analysis on the complexity of the simulated annealing algorithm has been provided in [25].

3. Simulation Results

3.1. Normalized Mean Squared Error and Image Suppression Evaluation

The figures of merit to assess the accuracy of the proposed method include the normalized mean
squared error (NMSE), image suppression (IMGsup) and the bit error rate (BER). NMSE is an effective
figure of merit for in-band performance analysis and is given by [26]:

NMSE(dB) = 10 log10(

L
∑

l=1
|yact(l)− yest(l)|2

L
∑

l=1
|yact(l)|2

) (29)

where yact is the desired/measured output, yest is the output estimated by the proposed methodology
and L is the length of data used for evaluation. Image suppression [7] (reciprocal of image rejection
ratio) is the ratio of the image power to the desired signal power and measures the effectiveness of the
algorithm to mitigate the I/Q imbalance.

IMGsup( f ) = 10 log10

(
Pimage( f )
Psignal( f )

)
(30)

where Pimage is the power in the image band and Psignal is the power in the signal band and f denotes
the frequency.
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Figure 5 shows the NMSE performance of the proposed methodology for various signals.
The signals used for the evaluation of the proposed methodology were a 20 MHz four-carrier Wideband
Code Division Multiple Access (WCDMA 1111) signal, a 9 MHz Long Term Evolution (LTE) signal and
20 MHz WCDMA 1101 signal. It can be seen in the figure, that with the proposed mitigation approach,
the NMSE is considerably reduced as compared to the uncompensated case.
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Figure 5. Normalized mean squared error (NMSE) vs. SNR using the proposed mitigation approach
for g = g′ = 0.92 dB and θ = θ′ = −6 degrees.

As mentioned in [27], I/Q imbalance results in mirror frequency imaging, i.e., if the
baseband/low-IF signal is up-converted to RF at a carrier frequency of wc, a mirror image of this signal
is created at −wc which when down-converted to baseband/low-IF results in cross talk between the
signals, distorting the desired signal. For signals symmetric around the DC such as the WCDMA 1111
signal, the image lies exactly on top of the desired signal when down-converted. Hence, it is difficult
to observe the image caused by the I/Q imbalance using the power spectral density. This can be seen
in Figure 6a. However, as shown in Figure 6b, for signals not symmetric about DC, it is possible to
observe the power in the image band using the spectrum of the signal.

For this reason, three cases of the WCDMA 1101 signals (namely S1, S2 and S3 as shown in Table 2)
with different center frequencies (f c) are used to measure the image suppression performance of the
proposed technique as shown in Figure 7. These signals are centered on different frequencies, i.e.,
f c = 10 MHz, 5 MHz and around DC, respectively, and are used to evaluate the performance of the
proposed methodology by observing the suppression in the image band. For WCDMA 1101 signal S1,
the image lies out of band when down-converted, however, for WCDMA 1101 signals S2 and S3, the
image band falls into the band of interest, degrading the signal quality.

Sensors 2017, 17, 2948  9 of 21 

 

Code Division Multiple Access (WCDMA 1111) signal, a 9 MHz Long Term Evolution (LTE) signal 
and 20 MHz WCDMA 1101 signal. It can be seen in the figure, that with the proposed mitigation 
approach, the NMSE is considerably reduced as compared to the uncompensated case. 

 

Figure 5. Normalized mean squared error (NMSE) vs. SNR using the proposed mitigation approach 
for g = g’ = 0.92 dB and θ = θ’ = −6 degrees. 

As mentioned in [27], I/Q imbalance results in mirror frequency imaging, i.e., if the 
baseband/low-IF signal is up-converted to RF at a carrier frequency of wc, a mirror image of this signal 
is created at −wc which when down-converted to baseband/low-IF results in cross talk between the 
signals, distorting the desired signal. For signals symmetric around the DC such as the WCDMA 1111 
signal, the image lies exactly on top of the desired signal when down-converted. Hence, it is difficult 
to observe the image caused by the I/Q imbalance using the power spectral density. This can be seen 
in Figure 6a. However, as shown in Figure 6b, for signals not symmetric about DC, it is possible to 
observe the power in the image band using the spectrum of the signal. 

For this reason, three cases of the WCDMA 1101 signals (namely S1, S2 and S3 as shown in  
Table 2) with different center frequencies (fc) are used to measure the image suppression performance 
of the proposed technique as shown in Figure 7. These signals are centered on different frequencies, 
i.e., fc = 10 MHz, 5 MHz and around DC, respectively, and are used to evaluate the performance of 
the proposed methodology by observing the suppression in the image band. For WCDMA 1101 signal 
S1, the image lies out of band when down-converted, however, for WCDMA 1101 signals S2 and S3, 
the image band falls into the band of interest, degrading the signal quality. 

f0

After Down-Conversion
PSD

f0

PSD

0
f

PSD

0 wc-wc
f

Baseband Signal After Up-Conversion

PSD

0 f 0 wc-wc f

PSDPSD
(a)

(b)  

Figure 6. Mirror frequency Imaging (MFI) due to I/Q imbalance. (a) MFI for symmetric 1111 signal 
for which the power in the image band cannot be seen using PSD; (b) MFI for asymmetric signals and 
the power in the image band is visible. 

Figure 6. Mirror frequency Imaging (MFI) due to I/Q imbalance. (a) MFI for symmetric 1111 signal for
which the power in the image band cannot be seen using PSD; (b) MFI for asymmetric signals and the
power in the image band is visible.
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Figure 7. Power spectral density (PSD) of WCDMA 1101 (S1, S2 and S3) signals before and after
correction, using the proposed method for g = 0.92 dB, g′ = 0.5 dB and θ = −6 degrees, θ′ = −2 degrees
under 20 dB SNR.

The spectrum of compensated signal achieved by the proposed algorithm for these three WCDMA
1101 signals can also be seen in Figure 7 for g = 0.92 dB, g′ = 0.5 dB and θ = −6 degrees, θ′ = −2 degrees.
It can be seen that by using the proposed methodology the image has been suppressed down to the
noise floor leading to a reasonable image suppression as presented in Table 2.
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Table 2. IMGsup using proposed Methodology for g = 0.92 dB, g′ = 0.5 dB and θ = −6 degrees,
θ′ = −2 degrees under 20 dB SNR.

Signal Image Suppression before
Compensation (dB)

Image Suppression after
Compensation (dB)

S1 (WCDMA 1101 with f c around 10 MHz) −16.2 −28.7
S2 (WCDMA 1101 with f c around 5 MHz) −15.5 −28.7

S3 (WCDMA 1101 with f c around DC) −15.4 −28.8

Complexity: As mentioned earlier, the complexity of the proposed methodology depends on
the optimization technique required to estimate the imbalance parameters. In the proposed work,
we use simulated annealing algorithm as a case study to evaluate the speed and complexity of the
proposed mitigation strategy. The number of data samples and the number of iterations required
for convergence will be used as metrics to evaluate the speed of the algorithm. For a WCDMA 1111
signal, the proposed methodology requires as low as 3000 samples and 2820 iterations to converge to
an NMSE of −19.37 dB under 20 dB SNR. Similarly, for a 9 MHz LTE signal, with 3000 samples, the
algorithm converges to an NMSE of −19.43 dB in 2370 iterations.

3.2. BER Performance in the Presence of Multi-Path Channel

3.2.1. Parameter Estimation under Known Channel

Another important factor in the evaluation of the proposed methodology is the effect of the wireless
channel on the system performance. The problem of connection between transceiver impairments and
channel estimation has been explained in [15,28,29]. In order to understand the effects of channel on the
proposed mitigation strategy, an OFDM signal was generated to evaluate the performance of the proposed
technique under the influence of wireless channel. Random data bits were generated and modulated
using 16-Quadrature Amplitude Modulation (QAM). A 1024-point inverse Fourier transform was applied
to this modulated signal. Modulator imbalance was applied to the signal and the signal was passed
through a multi-path channel with the channel taps [0.866 + 0.5j 0.0643 + 0.0766j 0.0098 − 0.0017j] [15].
At the receiver, the demodulator imbalance parameters were applied; and, the signal was then fed to the
post-compensation algorithm. The performance of the proposed mitigation methodology was tested after
channel equalization, assuming that the channel state was known. The corrected signal was demodulated
after application of Fast Fourier Transform (FFT); and the BER was computed. The BER performance
vs. SNR is shown in Figure 8. It can be seen that the proposed method can reasonably estimate and
correct for the joint modulator and demodulator impairments in the presence of multi-path channel and
AWGN noise. The achieved BER using the proposed methodology is very close to the AWGN bound for
all values of SNR.
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3.2.2. Parameter Estimation under Unknown Channel

In the previous section, the imbalance parameters were estimated after removing the channel
effect assuming that the channel response was known. The next step, is to understand the effect of
channel on the PDF of the output signal and estimate the I/Q imbalance parameters in the presence of
unknown wireless channel response. In order to understand this, the following definitions are made:

gin: KDE estimate of the input signal’s PDF.
gCH: KDE estimate of the output signal’s PDF under the influence of Tx and Rx impairments and

multi-path channel.
gIQ: KDE estimate of the output signal’s PDF under the influence of Tx and Rx impairments alone

in AWGN channel.
gS: KDE estimate of the output signal’s PDF under the influence of Tx and Rx impairments and

multipath channel effects after gain and phase synchronization.
Table 3 compares these PDFs to understand the effects of wireless channel on signal’s PDF.

KL divergence and square of Hellinger distance are higher when comparing gin with gCH. This is due
to the combined effect of transceiver impairments and channel. These merits are comparatively lower
when comparing gin with gIQ as gIQ only considers the effects of transceiver impairments alone and
not the multi-path channel. However, if we perform gain and phase synchronization on the output
signal under the influence of transceiver’s impairments and multipath channel, we obtain gS. Table 3
and Figure 9 show that the divergence between gS and gIQ is considerably reduced once a gain and
phase synchronization procedure is performed. Due to this closeness, the proposed mitigation strategy
can be applied to estimate the desired parameters. This has been verified in Figure 10, which shows
the BER using the proposed estimation methodology.

Table 3. Comparison of PDFs for g = g′ = 0.5 dB and θ = θ′ = −2 degrees under 20 dB SNR and
Multipath Channel for 16-QAM OFDM signal.

DKL D2
H

gin ‖ gCH 0.0588 0.0135
gin ‖ gIQ 0.0162 0.0042
gIQ ‖ gS 0.0039 9.59 × 10−4
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Figure 9. Contour plot for the PDF of 16-QAM OFDM I/Q signals using the KDE method under
multipath channel and 20 dB SNR. The colored contours show the variations in PDF due to Tx
and Rx I/Q imbalance only under Additive White Gaussian Noise (AWGN). The black contours
show the PDF of the output signal under the influence of I/Q imbalance and channel after gain and
phase synchronization.
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g = g′ = 0.5 dB and θ = θ′ = −2 degrees.

3.3. Constellation Plots

Figure 11 shows the constellations for the received and the corrected signal for a 16-QAM signal.
The transceiver I/Q imbalance was applied to the signal in the presence of the AWGN channel.
The degradation due to this gain and phase imbalance on the signal constellation can be seen in the
figure. The proposed compensation technique is applied to the signal and the constellations are then
observed. It can be seen that the proposed methodology improves the signal constellation and makes
the symbol detection feasible at the receiver.
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Figure 11. Constellation of 16 QAM signals under 20 dB SNR (a) transmitted signal (b) received signal
and (c) corrected signal for g = g′ = 0.92 dB and θ = θ′ = −6 degrees; (d) Received and (e) corrected
signal for g = 0.92 dB, g′ = 0.5 dB and θ = −6 degrees, θ′ = −2 degrees.
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4. Discussion

Methods that deal with compensating the modulator impairments at the transmitter, using
training signals require a feedback path to down-covert the RF signal to baseband or low IF.
This feedback path contains a digital demodulator, an ADC and a frequency down-converter, which
adds a time delay and phase mismatch to the received signal along with the ADC’s distortions. The
output of the demodulator in the presence of these effects can be written as: ydelay = y(n− td)ejφd ,
where td is the time delay and φd is the phase shift caused by the feedback path. Prior to system
identification, the input and output signals are time and phase aligned. An inaccurate adjustment
leads to poor modeling and compensation performance by manifesting itself as dispersion in the gain
and phase characteristics of the system.

For very small time delays, better time resolution (1/f s) is needed, which places a stringent
requirement on the sampling frequency (f s) of the ADCs. In order to avoid changing the ADC or
other hardware for increased sampling rate, signal processing techniques have been used in many
works. A popular method for the time adjustment of these signals is the cross-correlation based
method [30]. First, a coarse estimation is applied, followed by a Lagrange polynomial-based fine time
delay estimation.

If we consider a function: yl = f (xl), with values of the function known only at l = 1, 2, . . . , P,
the Lagrange interpolation polynomial of degree P-1 can be used to find the values of y at other values
of x [31]. Interpolation of the data using this polynomial is, however, a computationally complex
procedure requiring O(P2) floating-point operations. Similarly, a phase shift adjustment needs to be
performed before system identification. However, since the proposed methodology does not require
the input/training signal for estimation of the imbalance parameters, it is not affected by the time delay
and phase mismatch. Thus, cumbersome alignment techniques can be avoided using this method.

In addition to timing and phase mismatch, the feedback path can also add an I/Q imbalance to
the received signal. Opting for a different receiver topology, instead of direct conversion, can solve
this problem. For example, the method employed in [12] uses a super-heterodyne receiver in the
feedback path to avoid receiver imbalance. However, this comes at a cost of hardware complexity and
other feedback loop impairments, such as the gain/phase response of the feedback path; and, ADC
distortions still need to be considered.

The method employed in [32] down-converts the RF signal to a low IF, followed by sampling and
analog-to-digital conversion. Although, this can help avoid the impact of receiver imbalance and the
proposed method can eliminate the effects of gain/phase and impulse response of the feedback loop,
methods for timing, frequency and carrier synchronization are still required. The method proposed
in [11] solves the problem of phase mismatch by using a diode detector in the feedback path of the
transmitter, which calculates the instantaneous power. However, for the technique proposed in this
work, no extra hardware in the transmitter is needed, as it does not need a feedback path at the
transmitter, making it cost effective and very suitable especially for uplink scenarios. This advantage
is due to the blind nature of the estimation procedure, eliminating the need for a feedback path and
the resulting distortions.

5. Experimental Results

After evaluating the performance of the proposed methodology using extensive simulations,
the next step required experimental validation. The experimental setup is shown in Figure 12. Since
the proposed mitigation strategy deals with frequency independent I/Q imbalances, the test signal
selected was a 16-QAM signal with a narrow bandwidth of 10 KHz to minimize the effect of the
frequency response, expected from the experimental setup. As many as 20,000 data points were
generated and modulated using quadrature amplitude modulation. A raised cosine filter with a roll off
factor of 0.3 and a filter delay of 3 was used to limit the bandwidth of the signal. The signal was then
up-sampled by a factor of 8 (the sampling rate was 80 KHz). The I and Q components had the same
variance and zero mean, thereby meeting the assumptions in Section 2.2. This signal was then shifted
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to a low IF of 20 KHz in the digital processing unit and loaded to a vector signal generator (VSG,
Agilent E4438C, Keysight Technologies, Santa Rosa, CA, USA) through a general-purpose interface
bus (GPIB). For direct conversion transceivers, the image lies exactly on the band of interest, and the
image suppression cannot be seen clearly. Hence, conversion to low IF enables visualization of the
image band.

The VSG performed digital modulation, digital-to-analog conversion, and frequency
up-conversion. In order to add modulator imperfections, a gain imbalance of 1 dB and a phase
imbalance of 5 degrees were added to this signal to voluntarily add I/Q imbalance to the VSG.
This signal was then transmitted at a carrier frequency of 2.14 GHz and captured using a vector signal
analyzer (VSA, Agilent E4440A, Keysight Technologies, Santa Rosa, CA, USA) with a span of 62.5 KHz
and a resolution bandwidth of 15.2 Hz. The VSA served as a receiver in this case. The receiver
performed frequency down-conversion, analog-to-digital conversion and finally demodulation and
adds its inherent imbalance. This captured signal, with a time length of 250 ms, was loaded into the
digital signal processor without any compensation for time delay or phase mismatch. Finally, the
proposed post compensation technique was applied to this signal. The imbalanced and corrected
waveform were captured by the spectrum analyzer, and a snapshot of the spectrum is shown in
Figure 13. It can be seen that before compensation, the image suppression was around −20 dB.
However, after application of the proposed post-compensation algorithm, the image was reduced by
around 30 dB, resulting in an image suppression of more than −50 dB. Finally, Figure 14 shows the
corrupted and recovered constellation using the proposed methodology. It can be seen in Figure 13
that the inherent DC offset of the device still showed up in the compensated output. This issue can be
resolved by subtracting the mean of the compensated signal from the signal, thus reducing the DC
offset due to local oscillator leakage [32].
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Further experiments were conducted using a 1 MHz signal with a sampling frequency of 5 MHz
using the same values of gain and phase imbalance. Figure 14 shows the corrupted and recovered
constellation using the proposed methodology for 1 MHz signal. It can be seen that the proposed
methodology is able to mitigate the effects of I/Q imbalance and improve the signal constellation.
This is also validated using the Error Vector Magnitude (EVM) [33] as shown in Table 4. It can be seen
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that the variation in EVM due to I/Q imbalance has been corrected using the proposed scheme and
the NMSE is reduced considerably. The results obtained using the measurements were also compared
to the simulations using the same values of imbalance parameters as in the measurement setup.

Table 4. NMSE and EVM for 1 MHz 16 QAM signal using experimental data and comparison
with simulations.

EVM
Uncompensated Signal

EVM
(This Work)

EVM
[15]

EVM
(No imb.)

EVM
(Sim.)

NMSE (dB)
Uncompensated Signal

NMSE
(This Work)

NMSE
[15]

NMSE
(No imb.)

NMSE
(Sim.)

7.1651 0.7809 0.986 0.59 0.6162 −22.89 −41.77 −39.87 −43.96 −41.87

6. Conclusions

In this paper, the issue of transmitter and receiver I/Q imbalances has been addressed.
Using statistical properties of the communication signals, an empirical PDF-based blind estimation
method has been proposed to mitigate the effects of frequency independent I/Q imbalance in
wireless transceivers.

A PDF of the impaired signal was estimated at the receiver, and the accuracy of this function was
evaluated. Once the derived PDF was found to be accurate, the imbalance parameters were calculated
by maximizing the PDF in terms of these parameters, resulting in four nonlinear equations. A nonlinear
optimization technique was used to solve for the imbalance parameters, and the performance
was evaluated.

Simulation results show that the proposed model resulted in reduced error, reasonable image
suppression, and a very low BER, validating the modeling and estimation capability of the proposed
method. The proposed model was also tested in a real-world experimental setup and performed
reasonably well, meeting the desired mitigation performance.
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Appendix A

To derive the closed form expression for the PDF of the output signal y, we start with the following
PDF provided in Equation (16):

fy(y; Γ) =
N

∏
i=1

1

2π
√∣∣Cy(Γ)

∣∣ × exp(−1
2

yT
i C−1

y (Γ)yi) (A1)

The covariance matrix of y is given by:

Cy(Γ) = E(yyT) = E(AxxTAT) = ACxAT (A2)

where Cx is the covariance matrix of x. Replacing the expression of Cx = σ2ID (using assumptions A1
and A2) in the above equation, we have

Cy(Γ) = σ2AAT (A3)
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The determinant of Cy is givssssen by:

|Cy(Γ)| = (σ2)
R|AAT| (A4)

where R denotes the size of the matrix which is 2 in our case. Furthermore,∣∣∣Cy(Γ)
∣∣∣1/2 = σ2γ; γ = α1β2 − α2β1 (A5)

The inverse of Cy is given by:

C−1
y (Γ) =

1
σ2 (A

T)
−1

(A)−1 (A6)

where

(AT)
−1

=
1
γ

(
β2 −α2

−β1 α1

)
; A−1 =

1
γ

(
β2 −β1

−α2 α1

)
(A7)

Hence,

C−1
y (Γ) =

1
σ2γ2

(
β2

2 + α2
2 −β1β2 − α1α2

−β1β2 − α1α2 β1
2 + α1

2

)
(A8)

Putting the expressions for Cy
−1 and |Cy|1/2 in Equation (A1), we obtain the closed form

expression for the demodulated imbalanced signal as:

fy(y; Γ) =
1

(2πσ2|γ|)N e
−( 1

2σ2γ2

N
∑

i=1
(β2 Iy(i)−β1Qy(i))

2+(α1Qy(i)−α2 Iy(i))
2)

(A9)

Appendix B

In order to obtain the imbalanced parameters in A in Equation (11), we derivate the loge of the

obtained PDF of the imbalanced signal and equate it to zero i.e.,
∂ ln( f (Iy ,Qy))

∂α1
= 0, providing the

following expression:
N

∑
i=1

β2 p(i)−
N

∑
i=1

γQy(i)p2(i) = Nβ2σ2γ2 (A10)

Similarly
∂ ln( f (Iy ,Qy))

∂σ = 0 results in:

N

∑
i=1

p(i) = 2Nσ2γ2 (A11)

Placing Equation (A11) into Equation (A10), we get:

β2

2

N

∑
i=1

p(i)− γ
N

∑
i=1

p2(i)Qy(i) = 0 (A12)

Similarly, derivating the loge of the PDF with respect to the remaining imbalance parameters leads
to the following equations:

α2

2

N

∑
i=1

p(i)− γ
N

∑
i=1

p1(i)Qy(i) = 0 (A13)

α1

2

N

∑
i=1

p(i)− γ
N

∑
i=1

p1(i)Iy(i) = 0 (A14)
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β1

2

N

∑
i=1

p(i)− γ
N

∑
i=1

p2(i)Iy(i) = 0 (A15)

These equations in vector format have been presented in Equations (24)–(27). The definitions for
p(i), p1(i) and p2(i) have been provided in Equations (18)–(20).

Appendix C

Here we provide the Cramer-Rao lower bound (CRLB) for the proposed estimator using the
Fisher information matrix. The variance of the proposed estimator is given by:

var(Γ̂) ≥ [I(Γ)]mn
−1 (A16)

where [I(Γ)]mn is the Fisher information matrix. From Equation (A9), the log of the likelihood function
can be obtained as:

ln( fy(y; Γ)) = −Nln(2πσ2)− Nln(γ)− 1
2σ2 ∑

i
yT

i (AAT)
−1

yi (A17)

The Hessian of this log likelihood function is given by:

[H(Γ)]mn =
∂2ln( fy(y; Γ))

∂Γm∂Γn
= [H1]mn + [H2]mn (A18)

where H1 and H2 are the Hessian matrices of the second and third term, respectively. Also:

[I(Γ)]mn = −E([H(Γ)]mn) (A19)

E([H1]mn) = E(
N
γ2

∂γ

∂Γ

∂γ

∂Γ

T
) =

N
γ2


β2

2 −α2β2 −β1β2 α1β2

−α2β2 α2
2 α2β1 −α1α2

−β1β2 α2β1 β1
2 −α1β1

α1β2 −α1α2 −α1β1 α2
1

 (A20)

Using the following statistics of the received signal:

E[Q2
y] = (α2

2 + β2
2)σ

2 (A21)

E[I2
y ] = (α2

1 + β2
1)σ

2 (A22)

E[IyQy] = (α1α2 + β1β2)σ
2 (A23)

The expected value of the second Hessian matrix can be written as:

E([H2]mn) = − N
γ2


α2

2 + β2
2 0 −(α1α2 + β1β2) 0

0 α2
2 + β2

2 0 −(α1α2 + β1β2)

−(α1α2 + β1β2) 0 α2
1 + β2

1 0
0 −(α1α2 + β1β2) 0 α2

1 + β2
1

 (A24)

[I(Γ)]mn =
N
γ2


α2

2 α2β2 −α1α2 −α1β2

α2β2 β2
2 −α2β1 −β1β2

−α1α2 −α2β1 α2
1 α1β1

−α1β2 −β1β2 α1β1 β2
1

 =
N
γ2 Λ (A25)
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Having gained the expression for the Fisher information matrix using Equation (A25), the variance
of the proposed estimator can be calculated by Equation (A16) as:

var(Γ̂) ≥ γ2

NΛ
(A26)
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