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Abstract: This paper investigates a subarray based algorithm for direction of arrival (DOA) estimation
of wideband uniform linear array (ULA), under the presence of frequency-dependent mutual coupling
effects. Based on the Toeplitz structure of mutual coupling matrices, the whole array is divided into
the middle subarray and the auxiliary subarray. Then two-sided correlation transformation is applied
to the correlation matrix of the middle subarray instead of the whole array. In this way, the mutual
coupling effects can be eliminated. Finally, the multiple signal classification (MUSIC) method is
utilized to derive the DOAs. For the condition when the blind angles exist, we refine DOA estimation
by using a simple approach based on the frequency-dependent mutual coupling matrixes (MCMs).
The proposed method can achieve high estimation accuracy without any calibration sources. It has
a low computational complexity because iterative processing is not required. Simulation results
validate the effectiveness and feasibility of the proposed algorithm.
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1. Introduction

Wideband antenna arrays have attracted tremendous interest in various fields including radar,
radio astronomy, and wireless communications [1,2]. Most array signal processing algorithms, such as
direction of arrival (DOA) and digital beamforming (DBF), are sensitive to array errors because they
rely crucially on the prior knowledge of the array manifold. However, actual array systems are
inevitably affected by unknown mutual coupling effects between the elements, which may lead to
substantial performance degradation [3,4].

A variety of methods have been proposed to mitigate mutual coupling effects in narrowband
applications. It is possible to estimate the mutual coupling matrix (MCM) using a network analyzer
and computational electromagnetic solvers [5,6]. However, the methods are time-consuming and
essentially impractical once arrays are in operation. In [7,8], an alternating minimization procedure for
both DOA and mutual coupling parameters was created based on the subspace principle. Procedures
of this type, however, usually suffer from serious ambiguous problems and have high computational
complexity due to multidimensional searches in nonlinear optimization. An improved method resulted
from the application of a group of auxiliary elements on the boundaries of the uniform linear array
(ULA), and led to the development of a simple and effective DOA estimation algorithm [9–11].
This algorithm requires no calibration sources or iterations and behaves robustly through mutual
coupling. A two-dimensional DOA estimation method for an L-shaped sensor array is proposed
in [12]. This method employs two collocated antennas to reduce the mutual coupling effects.

In recent years, wideband signals have been widely used in various applications, such as passive
radar and sonar, and many wideband DOA estimation algorithms have been proposed [13,14].
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Compared to the narrowband situations, DOA estimation for wideband ULA in the presence of
unknown mutual coupling seems to be more difficult, since mutual coupling is a frequency-dependent
phenomenon [15–17]. In [18], the method of moments (MOM) is employed to quantize and eliminate
the mutual coupling effects on DOA estimation over a wideband range of frequencies. An improved
DOA estimation technique for ultra-wideband electromagnetic waves is studied in [19]. The technique
combines interferometry and a modified multiple signal classification (MUSIC) method to mitigate
mutual coupling effects. In [20,21], narrowband MCMs at some discrete frequencies are calculated
firstly based on the receiving mutual impedance method or the element pattern reconstruction method,
then, utilizing the system identification methods, a wideband calibration matrix is obtained, which can
be used to compensate the mutual coupling effects at all frequencies. An analysis of wideband DOA
estimation taking account of mutual coupling effects is presented in [22–24]. The wideband signals
are decomposed into multiple discrete narrowband components, and the transforming matrices are
decoupled by the MCMs at the corresponding sub-bands to eliminate mutual coupling.

The above wideband DOA estimation algorithms are based on the assumption that the MCMs
at all frequencies are perfectly known beforehand. In practice, however, the MCMs vary with
environmental factors such as temperature, humidity and vibration, and have to be recalculated
when the environment changes. During the operation of array systems, it may be difficult to carry out
the measurements owing to heavy workloads.

In this paper, we are concerned with wideband DOA estimation for ULA in the presence of
unknown mutual coupling. Based on the property that the MCM at any frequency is a Toeplitz
matrix, we propose a new wideband DOA estimation algorithm. The algorithm can estimate the
DOAs accurately without any prior knowledge of mutual coupling. It is computationally efficient and
feasible for the applications in real-time systems.

This paper is organized as follows: In Section 2, the model of wideband ULA with unknown
mutual coupling is presented; Section 3 illustrates the proposed algorithm to estimate wideband DOA
without any prior knowledge of mutual coupling; Computer simulations are shown and analyzed in
Section 4, followed by conclusions in Section 5.

2. Problem Formulation

Consider a wideband ULA with an operating frequency band of [ fL, fH ]. The array is composed
of N omnidirectional elements which are equally spaced. The inner-element distance d is defined as the
half wavelength of the highest frequency. Assuming that there are M wideband signals s1(t), · · · , sM(t)
from different directions θ = [θ1, · · · , θM]T impinging on the array, the output of the ith element can
be expressed as:

xi(t) =
M

∑
m=1

sm

(
t− (i− 1)d sin θm

c

)
+ ni(t) (1)

where ni(t) is white noise with a variance of σ2, and c is the speed of signal propagation. The Fourier
transform (FT) of Equation (1) is:

Xi( f ) =
M

∑
m=1

Sm( f )e−j2π f (i−1)d sin θm
c + Ni( f ) (2)

Most wideband DOA estimation algorithms divide the full band into a set of frequency bins using
discrete Fourier transformation (DFT). Therefore, the array outputs can be written in vector form at
f1, · · · , fK:

X( fk) = A( fk, θ)S( fk) + N( fk) (3)



Sensors 2017, 17, 230 3 of 13

where:
X( fk) = [X1( fk), · · · , XN( fk)]

T

S( fk) = [S1( fk), · · · , SM( fk)]
T

N( fk) = [N1( fk), · · · , NN( fk)]
T

(4)

for fL ≤ fk ≤ fH . A( fk, θ) ∈ CN×M is the steering matrix at fk, which is defined as: A( fk, θ) = [a( fk, θ1), · · · , a( fk, θM)]

a( fk, θm) =
[
1, e−j2π fkd sin θm/c, · · · , e−j2π fk(N−1)d sin θm/c

]T (5)

Taking mutual coupling effects into consideration, the received data may be written as:

X( fk) = C( fk)A( fk, θ)S( fk) + N( fk) (6)

where C( fk) ∈ CN×N is the MCM at fk.
It has been shown that C( fk) can be considered as a banded symmetric matrix in the case of

ULA [7]. Indeed, mutual coupling effects tend to be inversely related to the distance between elements
and may be negligible for the elements separated by a few wavelengths. Assuming there are P non-zero
mutual coupling coefficients, C( fk) can be determined from:

Ci,j( fk) = c(k)|i−j|+1 i, j = 1, · · · , N

0 <
∣∣∣c(k)P

∣∣∣< · · · <∣∣∣c(k)2

∣∣∣<∣∣∣c(k)1

∣∣∣= 1

c(k)i = 0 i > P

(7)

where c(k)i is the mutual coupling coefficient between the first and the ith element at fk. The number
of non-zero mutual coupling coefficients can be obtained by initial measurements using network
analyzers. Since mutual coupling varies slowly, these measurements may be carried out only once.

As can be seen from Equation (6), wideband array outputs are affected by the MCMs at all
frequencies in the band. If the mutual coupling is unknown, C( fk) in Equation (6) cannot be obtained.
In order to compensate Equation (6), measurements using a network analyzer must be carried out
to calculate mutual coupling coefficients. However, this method is time-consuming. In this paper,
however, we are concerned with estimating wideband DOA when mutual coupling is unknown.

3. Subarray-Based Wideband DOA Estimation Algorithm

3.1. Derivation of Focusing Matrices

A representative solution to wideband DOA estimation is the coherent subspace method (CSM) [13].
In CSM, the correlation matrices at different frequency bins are aligned by a series of focusing matrices
to form a narrowband subspace and, subsequently, the MUSIC method can be applied. In this section,
we construct the focusing matrices in the presence of unknown mutual coupling.

Considering the special structure of MCM in Equation (7), we take P− 1 elements on each side of
the array as auxiliary elements to combat mutual coupling effects. Define a m× k selecting matrix as:

Fk
m,n =

[
0m×n, Im, 0m×(k−m−n)

]
(8)

where 0m×n is a m× n zero matrix, and Im is the m×m identity matrix.
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The outputs of the remaining N − 2P + 2 elements, denoted as the middle subarray, can be
selected from the whole array outputs:

X̃( fk) = FN
N0,P−1X( fk)

= C̃( fk)A( fk)S( fk) + Ñ( fk)
(9)

where N0 = N − 2P + 2, and Ñ( fk) = FN
N0,P−1N( fk) is a N0 × 1 noise vector. C̃( fk) = FN

N0,P−1C( fk)

denotes the MCM of the middle subarray at fk, which can be written in the form of:

C̃( fk) =


c(k)P · · · c(k)2 1 c(k)2 · · · c(k)P 0 · · · · · · 0

0 c(k)P · · · c(k)2 1 c(k)2 · · · c(k)P 0 · · · 0
...

...
...

...
. . . . . . . . . . . . . . .

...
...

0 · · · · · · 0 c(k)P · · · c(k)2 1 c(k)2 · · · c(k)P

 (10)

Here we define c̃k =
[
c(k)P , · · · , c(k)2 , 1, c(k)2 , · · · , c(k)P

]T
∈ C(2P−1)×1 as the mutual coupling vector

at fk.
As shown in Equation (10), the non-zero mutual coupling coefficients of each element in the

middle subarray have the same values, differing only in positions. Making use of this property,
we construct the focusing matrices by the middle array outputs instead of the whole array outputs.
The intention, therefore, is to eliminate the influence of mutual coupling on wideband DOA estimation.

Without loss of generality, we define f0 ∈ [ fL, fH ] as the focusing frequency. The correlation
matrix of the middle array outputs at f0 is given by:

R̃( f0) = E
[
X̃( f0)X̃

H
( f0)

]
= C̃( f0)A( f0, θ)Rs( f0)AH( f0, θ)C̃

H
( f0) + σ2

0 IN0

(11)

where E[ · ] denotes the expectation operator, and σ2
0 is the power of noise at f0. The superscript H

denotes the conjugate transpose. Rs( f0) = E
[
S( f0)SH( f0)

]
is the correlation matrix of incident signals

at f0.
Due to the special structure of C̃( f0) in Equation (10), for the signal from θm, we have:

C̃( f0)a( f0, θm) =



c(0)P + c(0)P−1βm + · · ·+ c(0)2 βP−2
m + βP−1

m + c(0)2 βP
m + · · ·+ c(0)P β2P−2

m

βm

(
c(0)P + c(0)P−1βm + · · ·+ c(0)2 βP−2

m + βP−1
m + c(0)2 βP

m + · · ·+ c(0)P β2P−2
m

)
...

βN0−1
m

(
c(0)P + c(0)P−1βm + · · ·+ c(0)2 βP−2

m + βP−1
m + c(0)2 βP

m + · · ·+ c(0)P β2P−2
m

)


= g( f0, c̃0, βm)ã( f0, θm)

(12)

where βm = e−j2π f0d sin θm/c. c̃0 is the mutual coupling vector at f0. g( f0, c̃0, θm) = c(0)P + c(0)P−1βm + · · ·+
c(0)2 βP−2

m + βP−1
m + c(0)2 βP

m + · · ·+ c(0)P β2P−2
m is a function of the mutual coupling coefficients, frequency

and DOA. ã( f0, θm) ∈ CN0×1 is the ideal steering vector of the middle subarray defined as:

ã( f0, θm) =
[
1, βm, · · · , βN0−1

m

]T
(13)

From Equation (12), we can obtain:

C̃( f0)A( f0, θ) = [g( f0, c̃0, θ1)ã( f0, θ1), · · · , g( f0, c̃0, θM)ã( f0, θM)]

= Ã( f0, θ)D( f0, c̃0, θ)
(14)
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where
Ã( f0, θ) = [ã( f0, θ1), · · · , ã( f0, θM)]

D( f0, c̃0, θ) = diag{g( f0, c̃0, θ1), · · · , g( f0, c̃0, θM)}
(15)

For simplicity of notation, we suppress the DOA variable and represent A( f0, θ) by A( f0) and
D( f0, c̃0, θ) by D( f0, c̃0).

By Substituting Equation (14) into Equation (11) and subtracting the noise-power matrix, we can
obtain the focusing noise-free correlation matrix at f0:

P̃( f0) = Ã( f0)D( f0, c̃0)Rs( f0)DH( f0, c̃0)Ã
H
( f0) (16)

In the same way, we can derive the noise-free correlation matrix at each frequency bin as

P̃( fk) = R̃( fk)− σ2
k IN0 , where R̃( fk) = E

[
X̃( fk)X̃

H
( fk)

]
. σ2

k denotes the noise power at fk, which can
be estimated by:

σ2
k =

1
N0 −M

N0

∑
i=M+1

λi

(
R̃( fk)

)
(17)

where λi

(
R̃( fk)

)
i = M + 1, · · · , N0 denotes the small eigenvalues of R̃( fk).

Here we aim at transforming the noise-free correlation matrix at each frequency bin to P̃( f0).
Based on the two-sided correlation transformation (TCT) criterion [13], the focusing matrix is selected
to satisfy Equation (18):

T( fk)P̃( fk)T
H( fk) = P̃( f0) (18)

Generally, the focusing matrix is constrained to a unitary matrix. Therefore, it can be determined
by solving the following minimization problem:

min
T( fk)

‖P̃( f0)− T( fk)P̃( fk)TH( fk)‖F

subject to T( fk)TH( fk) = IN0

(19)

for k = 1, 2, · · · , K, where ‖ · ‖F denotes the Frobenius norm of a matrix.
It has been shown in [13] that the optimal solution of Equation (19) is given by:

T( fk) = U( f0)UH( fk) (20)

where U( f0) and U( fk) are the eigenvector matrices of P̃( f0) and P̃( fk), respectively.
Using Equation (20), we can construct a focusing matrix corresponding to the correlation matrix

at each frequency bin. Therefore, the general focused correlation matrix is obtained as:

P =
1
K

K

∑
k=1

T( fk)P̃( fk)T
H( fk) (21)

The selection of focusing frequency in Equation (19) is based on the criterion that minimizes the
fitting error, which is a function of f0. Details of the derivation of the optimal f0 are shown in [13].
Here we only give the result:

f0 = arg min
f0

M

∑
i=1

∣∣∣σi

(
P̃( f0)

)
− µi

K

∣∣∣2 (22)

where µi =
K
∑

k=1
σi

(
P̃( fk)

)
. σi

(
P̃( fk)

)
denotes the singular values of P̃( fk). M is the number of incident

signals, and K is the number of frequency bins. By searching fk(k = 1, 2, · · · , K) in Equation (22),
the optimal focusing frequency f0 can be found.
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If we directly deal with fk(k = 1, 2, · · · , K), narrowband DOA methods, such as MUSIC, should be
performed on all of the frequency bins. This kind of wideband DOA method is time-consuming. In this
manuscript, the correlation matrices at different frequency bins are aligned by a series of transforming
matrices. Therefore, the MUSIC method can be performed only at the focusing frequency bin, which is
computationally efficient. Moreover, these transforming matrices contain the information at each
frequency bin fk(k = 1, 2, · · · , K). As a result, the DOA estimation can also reach high accuracy.

3.2. DOA Estimation with Unknown Mutual Coupling

We have constructed the focusing matrices using the middle array outputs, where the energy of
wideband signals are condensed at the focusing frequency f0. Subsequently, wideband DOA estimation
problems can be addressed in narrowband.

In an ideal case, the noise-free correlation matrices at all frequency bins are transformed to the
focusing noise-free correlation matrix. Substituting Equations (16) and (18) into Equation (21) yields:

P = Ã( f0)R
′
s( f0, c̃0)Ã

H
( f0) (23)

where R
′
s( f0, c̃0) = D( f0, c̃0)Rs( f0)DH( f0, c̃0).

On the assumption that g( f0, c̃0, θm) 6= 0 for m = 1, · · · , M (the situations where g( f0, c̃0, θm) = 0
will be discussed further), D( f0, c̃0) is of full rank. Owing to the diagonal structure of D( f0, c̃0),
R
′
s( f0, c̃0) has the same rank as Rs( f0). Therefore, the general focused correlation matrix in Equation (23)

may be eigen-decomposed as:
P = EsΛsEH

s + EnΛnEH
n (24)

where Es and En represent the signal subspace and the noise subspace, respectively. Λs is a diagonal
matrix formed by the M principle eigenvalues, and Λn is formed from the remaining N0 − M
eigenvalues. Most DOA estimation methods, such as MUSIC, CSM, and ISM, require that the
number of incident signals is known. The number of principal eigenvalues equals to the number of
incident signals.

It can be seen from Equation (23) that the unknown mutual coupling coefficients are completely
contained in R

′
s( f0, c̃0). Therefore, they do not affect the orthogonality between the noise space and

the steering matrix of the middle subarray. According to the subspace principle, we have:

span
{

Ã( f0)
}
= span{Es}⊥span{En} (25)

As a result, it is possible to employ the MUSIC method without mutual coupling compensation:

PMUSIC(θ) =
1

‖EH
n ã( f0, θ)‖2

F

(26)

By searching the peaks of PMUSIC(θ), the DOA estimation of incident signals can be obtained.

3.3. Discussion

In Section 3.2, we assume that g( f0, c̃0, θm) 6= 0 for m = 1, · · · , M. However, in some particular
conditions, there may exist ϑ ∈ [−π/2,π/2] satisfying g( f0, c̃0, ϑ) = 0. In this case, signals from these
angles will be lost. These angles, the so called blind angles, are caused by mutual coupling effects [10],
and in the case of narrowband arrays, they are difficult to cope with.

In wideband applications, if the mutual coupling coefficients at the focusing frequency satisfy
g( f0, c̃0, ϑ) = 0, signals from ϑ will be missed. In order to address this problem, we select a different
frequency f ′0 as the focusing frequency, and the general focused correlation matrix can be obtained as:

P
′
= Ã

(
f ′0
)
D
(

f ′0, c̃
′
0

)
Rs
(

f ′0
)
DH
(

f ′0, c̃
′
0

)
Ã

H(
f ′0
)

(27)
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where c̃
′
0 denotes the mutual coupling vector at f ′0. The optimal focusing frequency can be

obtained by searching minimum value of Equation (22). Therefore, we can sort the values of
Equation (22) in ascending order, and select f ′0 corresponding to the second smallest values as another
focusing frequency.

Since g( f , c, θ) is a function of the mutual coupling coefficients which change with the frequency,
it rarely happens that both g( f0, c̃0, ϑ) and g

(
f ′0, c̃

′
0, ϑ
)

are equal to zero, so D
(

f ′0, c̃
′
0

)
is of full rank.

Therefore, ϑ can be estimated using P
′
.

In practice, it is difficult to select a proper focusing frequency to avoid the blind angles without
any prior knowledge of mutual coupling. However, we can choose several different frequencies

f (1)0 , · · · , f (K
′)

0 as the focusing frequencies and, subsequently, the corresponding spatial spectra

P(1)
MUSIC, · · · , P(K′)

MUSIC in Equation (26) can be obtained. It seems that blind angles may not exist at all
of the focusing frequencies owing to frequency-dependent mutual coupling coefficients. Therefore,
to avoid blind angles, we can calculate the average spatial spectrum as follows:

PMUSIC =
1
K′
(

P(1)
MUSIC + · · ·+ P(K′)

MUSIC

)
(28)

Finally, the complete descriptions of the proposed algorithm are summarized as follows:

(1) Divide the array outputs into non-overlapping time slices, each containing K samples, and apply
DFT in each slice to sample the spectrum of the outputs at a group of frequency bins
fk (k = 1, · · · , K).

(2) Select the outputs of the middle subarray from Equation (9). The number of nonzero
mutual coupling coefficients can be obtained by preliminary measurements at the lowest
operating frequency.

(3) Find P̃( f0) at the preselected focusing frequency. For each frequency bin, determine P̃( fk) and
construct the focusing matrix T( fk) using Equation (20).

(4) Calculate the general focused correlation matrix P using Equation (21).
(5) Apply the MUSIC method to P for the estimation of the DOA.
(6) In order to avoid blind angles, we choose several focusing frequencies and repeat steps (3) to (5)

and then search the peaks of the averaging spectrums in Equation (28). However, considering the
cost of computation, this step is usually skipped unless we find some signals are lost.

4. Simulation Results

In this section, several representative simulations are carried out to demonstrate the performance
of the proposed algorithm.

Consider a wideband monopole antenna array with N = 13 elements arranged uniformly in a line,
which is shown in Figure 1. The operation frequency band is B = 500 MHz with a center frequency of
fc = 1.5 GHz. With the purpose of avoiding grating lobes, the distance between neighboring elements
is set to d = 0.086 m, which is the half wavelength of the highest frequency. The wideband mutual
coupling coefficients are generated by the computer simulation technology Microwave Studio (CST
MW) software. In this paper, we assume that gain and phase errors have already been compensated [25],
and only mutual coupling errors are concerned.
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Figure 1. Setup of the array antenna. 

In the first simulation, three incoherent signals, with a bandwidth of 500 MHz covering [1.25 
GHz, 1.75 GHz], impinge on the array from −18°, 9°, and 23°. The signal to noise ratio (SNR) is set to 
5 dB and 100 snapshots are collected at each frequency bin. Two elements on both sides are treated 
as auxiliary elements, and the other N0 = 9 elements are treated as the middle array. The spatial 
spectrum of DOA estimation using the proposed algorithm is shown in Figure 2. In comparison, we 
also illustrate the results using the algorithm in [20], which employ the system identification method 
to decouple mutual coupling effects. Here we assume that the MCMs at all frequency bins are 
known precisely. However, such information may be unavailable in practice. Therefore, the results 
of the traditional TCT algorithm in [13] with unknown mutual coupling are also given. It is shown in 
the figure that both the proposed algorithm and the algorithm from [20] with known MCMs are able 
to estimate the DOAs successfully since the curves of their spatial spectrum share sharp peaks at the 
correct directions. However, without prior knowledge of the MCMs, the TCT algorithm yields poor 
resolution and the curve peaks deviate from their true positions. 

 
Figure 2. Spatial spectrums of wideband DOA estimation. SNR = 5 dB, snapshots = 100. 

The second simulation is carried out to evaluate the precision of DOA estimation, which may be 
measured by the root mean-squared error (RMSE) defined as: 
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where L  and M  denote the number of incident signals and the Monte Carlo trials, respectively. 

 î l  is the estimation of i  in the l th trial. Here we ran 200 Monte Carlo trials for each condition 

in the simulations unless specifically mentioned. 
The incident angles are the same as in Simulation 1. The RMSE of wideband DOA estimation 

against the input SNR and the number of snapshots at each frequency bin are shown in Figure 3a,b, 
respectively. The Cramer-Rao lower bound (CRLB) of the DOA estimation in the presence of 
mutual coupling (computed as shown in the Appendix A) is also illustrated. As we can see, the 
performance of the TCT algorithm is seriously degraded in the presence of unknown mutual 
coupling, and the RMSE can’t be improved by increasing the input SNR or the number of snapshots. 

Figure 1. Setup of the array antenna.

In the first simulation, three incoherent signals, with a bandwidth of 500 MHz covering [1.25 GHz,
1.75 GHz], impinge on the array from −18◦, 9◦, and 23◦. The signal to noise ratio (SNR) is set to 5 dB
and 100 snapshots are collected at each frequency bin. Two elements on both sides are treated as
auxiliary elements, and the other N0 = 9 elements are treated as the middle array. The spatial spectrum
of DOA estimation using the proposed algorithm is shown in Figure 2. In comparison, we also illustrate
the results using the algorithm in [20], which employ the system identification method to decouple
mutual coupling effects. Here we assume that the MCMs at all frequency bins are known precisely.
However, such information may be unavailable in practice. Therefore, the results of the traditional
TCT algorithm in [13] with unknown mutual coupling are also given. It is shown in the figure that
both the proposed algorithm and the algorithm from [20] with known MCMs are able to estimate the
DOAs successfully since the curves of their spatial spectrum share sharp peaks at the correct directions.
However, without prior knowledge of the MCMs, the TCT algorithm yields poor resolution and the
curve peaks deviate from their true positions.
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The second simulation is carried out to evaluate the precision of DOA estimation, which may be
measured by the root mean-squared error (RMSE) defined as:

θrmse =

√√√√ L

∑
l=1

M

∑
i=1

(
θ̂i(l)− θi

)2
/(ML) (29)

where L and M denote the number of incident signals and the Monte Carlo trials, respectively. θ̂i(l) is
the estimation of θi in the lth trial. Here we ran 200 Monte Carlo trials for each condition in the
simulations unless specifically mentioned.

The incident angles are the same as in Simulation 1. The RMSE of wideband DOA estimation
against the input SNR and the number of snapshots at each frequency bin are shown in Figure 3a,b,
respectively. The Cramer-Rao lower bound (CRLB) of the DOA estimation in the presence of mutual
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coupling (computed as shown in the Appendix A) is also illustrated. As we can see, the performance of
the TCT algorithm is seriously degraded in the presence of unknown mutual coupling, and the RMSE
can’t be improved by increasing the input SNR or the number of snapshots. In contrast, the unknown
mutual coupling has little influence on the proposed algorithm, which achieves considerable accuracy.
Since the proposed algorithm loses some array apertures in order to eliminate mutual coupling effects,
the performance is slightly worse than the algorithm in [20] with known MCMs at low SNR. However,
it still reaches high estimation precision and is close to the case without mutual coupling at high
SNR. Furthermore, there is no need to calculate any MCMs, so the proposed algorithm has low
computational requirements and achieves high real-time performance.
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Setting the SNR to 5 dB and the number of snapshots to 100, the effect of the array size is illustrated
in Figure 4. As is evident from the figure, the proposed algorithm outperforms the TCT algorithm with
unknown MCM. When array elements are not sufficient, the performance of our algorithm deteriorates
because only the elements from the middle subarray are used. In spite of this, the RMSE of our
algorithm is almost the same as the algorithm from [20] with known MCMs in the case of a large
array size.
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The resolution of the DOA estimation is investigated in the third simulation. Keeping other
conditions the same as in Simulation 1, we consider two wideband signals impinging on the array.
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The direction of one signal is fixed at −25◦, while that of the other signal varies from −21◦ to −9◦.
The RMSE of the DOA estimation against angle separation is shown in Figure 5. It is seen that the
proposed algorithm behaves robustly in the presence of unknown MCMs, and the RMSE is smaller
than 0.3◦ when the two signals are separated by 8◦.Sensors 2017, 17, 230  11 of 15 
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Figure 6 depicts the success probabilities which are derived from 500 trials. We assume that
the two signals are successfully resolved if both DOA estimation bias are smaller than 1◦, i.e.,
max

{∣∣θ̂1 − θ1
∣∣, ∣∣θ̂2 − θ2

∣∣} < 1, where θ̂i (i = 1, 2) stands for the estimation of θi. As can be seen
from the figure, with known MCMs, the signals can be well resolved with an angle separation of
6◦. The proposed algorithm, with slight resolution performance deterioration, still has the potential
to reach 100% success probabilities for signals separated by 8◦. However, the TCT algorithm with
unknown MCMs is not able to resolve the two signals unless they are separated by more than 13◦.
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In the fourth simulation, we consider the scenario where blind angles exist. We generate a group of
mutual coupling coefficients which satisfy g( f0, c̃0, θ3) ≈ 0 when θ3 = ±23◦, f0 = 1.5 GHz. According
to the analysis in Section 3.3, signals from ±23◦ will be missed if we choose 1.5 GHz as the focusing
frequency. The incident signals are assumed to be the same as Simulation 1. As illustrated from the
spatial spectrums in Figure 7, both the primary proposed algorithm and the TCT algorithm with
unknown MCMs miss the signal from θ3 = 23◦. With known MCMs, the algorithm from [20] can
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successfully derive the blind angle of 23◦. However, the DOA estimation is still affected by mutual
coupling, since a pseudo-peak appears at the other blind angle of −23◦. The result is similar to
the conclusion from [10]. In order to cope with this problem, we carried out the refined algorithm
presented in Section 3.3 by calculating the mean value of spectrums derived at the focusing frequencies
of 1.4 GHz, 1.5 GHz, and 1.6 GHz. The results show that all the signals can be resolved accurately
without any pseudo-peak.Sensors 2017, 17, 230  12 of 15 
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5. Conclusions

In this paper, we present a wideband DOA estimation algorithm for ULA in the presence
of unknown mutual coupling. Based on the special structure of the MCM, focusing matrices
are constructed using the outputs of the middle subarray to eliminate mutual coupling effects.
The algorithm can estimate the DOA accurately without any prior information of mutual coupling.
It does not require any iterative procedures and has low computational requirements. Moreover,
an improved approach is proposed to cope with the blind angles. The effectiveness of the proposed
algorithm is verified by the simulations.
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Appendix A

The CRLB of the wideband DOA estimation is derived as follows:
Suppose the frequency band is divided into K frequency bins, the received data in the presence of

mutual coupling can be expressed by Equation (A1):

X( fk) = C( fk)A( fk, θ)S( fk) + N( fk) for k = 1, 2, · · · , K (A1)

where N( fk) is white noise with a variance of Kσ2.
Defining Y( fk) = C( fk)A( fk, θ)S( fk), we can construct the stack vectors as:

X = Y + N (A2)
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where: 
X =

[
XT( f1), · · · , XT( fK)

]T ∈ CNK×1

Y =
[
YT( f1), · · · , YT( fK)

]T
∈ CNK×1

N =
[
NT( f1), · · · , NT( fK)

]T ∈ CNK×1

(A3)

The logarithm of the probability density (PDF) for J statistically-independent observations can be
written as [25]:

L(θ) = const− J(X− Y)HR−1
N (X− Y) (A4)

where RN = E
{

NHN
}
= Kσ2INK.

The first order derivative with respect to θi(i = 1, 2, · · · , M) is:

∂L
∂θi

= 2JRe

{
∂YH

∂θi
R−1

N (X− Y)

}
(A5)

The second order derivative is given by:

∂2L
∂θiθj

= 2JRe
{

∂YH

∂θiθj
R−1

N (X− Y)− ∂YH

∂θi
R−1

N
∂Y
∂θj

}
= −2JRe

{
∂YH

∂θi
R−1

N
∂Y
∂θj

} (A6)

Therefore, we can obtain the Fisher matrix:

Fi,j = −
∂2L
∂θiθj

= 2JRe

{
∂YH

∂θi
R−1

N
∂Y
∂θj

}
(A7)

Equation (A7) can be written in the form of:

F =
2J

Kσ2 Re
{

HHH
}

(A8)

where:

H =
∂Y
∂θT =

[
∂Y
∂θ1

,
∂Y
∂θ2

, · · · ,
∂Y
∂θP

]
∈ CNK×P (A9)

For any i ∈ [1, M], we have:

∂Y
∂θi

=

[
∂YT( f1)

∂θi
,

∂YT( f2)

∂θi
, · · · ,

∂YT( fK)

∂θi

]T

(A10)

where:
∂Y( fk)

∂θj
= C( fk)

∂A(θ, fk)

∂θj
s( fk) (A11)

Substituting Equations (A9)–(A11) into Equation (A8), the Fisher matrix can be calculated.
Subsequently, we can obtain the CRLB of the wideband DOA estimation in the presence of
mutual coupling.
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