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Abstract: Computer aided diagnosis systems can help to reduce the high mortality rate among
cardiac patients. Automatical classification of electrocardiogram (ECG) beats plays an important role
in such systems, but this issue is challenging because of the complexities of ECG signals. In literature,
feature designing has been broadly-studied. However, such methodology is inevitably limited by the
heuristics of hand-crafting process and the challenge of signals themselves. To address it, we treat
the problem of ECG beat classification from the metric and measurement perspective. We propose
a novel approach, named “Set-Based Discriminative Measure”, which first learns a discriminative
metric space to ensure that intra-class distances are smaller than inter-class distances for ECG features
in a global way, and then measures a new set-based dissimilarity in such learned space to cope
with the local variation of samples. Experimental results have demonstrated the advantage of this
approach in terms of effectiveness, robustness, and flexibility based on ECG beats from the MIT-BIH
Arrhythmia Database.

Keywords: ECG beat classification; set-based discriminative measure; metric space; set-based
dissimilarity

1. Introduction

As stated by the World Health Organization, cardiovascular diseases are the primary cause of
death worldwide. To diagnose heart diseases, electrocardiogram (ECG) signal analysis is one of the
most commonly used tools at the early stage. ECG signals record the cardiac electrical activity, and can
provide important pathological information about human cardiac condition. However, it is actually
impractical for doctors to analyze large amounts of ECG records in a short period of time, due to the
limited ability of human eyes as well as the complicated variation of ECG signals themselves. Hence,
the Computer Aided Diagnostic (CAD) system has attracted growing attention in recent years [1,2].

As a non-invasive method for ECG signal analysis by CAD, heartbeat classification is important
to recognize the heart arrhythmias. The ECG beats usually suffer from the changing amplitude
and duration of waveforms caused by the real-scenario noises and the signal chaotic nature,
which dramatically increase the challenge to decipher the hidden beat type information contained
within the data.

In literature, methodologies for ECG beat classification can be summarized into two stages. The first
stage is feature extraction. This stage transforms the raw signal into the meaningful discriminatory
quantities. The second stage is classification. This stage distinguishes the sample classes by pattern
recognition and/or machine learning techniques.

Feature extraction plays an important role in the method pipeline because this stage establishes
a platform for the subsequent procedures of pattern recognition and/or machine learning. Technologies
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to extract ECG signal features have been studied and developed from different angles, such as
description of waveform morphologies, representation of waveband statistics, quantization of wavelet
coefficients, and so forth [3–15].

ECG signals show sophisticated variations for different patients across temporal and physical
conditions. Even for the healthy subject, the heartbeats will not be the same from one to the other.
Although feature methodology tries to quantify ECG in a discriminative way, the heuristics of
hand-crafting process and the complicated variation of signals unavoidably impede the performance
enhancement. Therefore, pattern analysis and/or machine learning techniques play an important role
in further improving the classification performance based on the extracted features [16–22].

To our knowledge, the main problem haunting this issue is large intra-class variation and
small inter-class difference, which is caused by the facts that the same ECG beat type may present
different characteristics across subjects and conditions, but different beat types may exhibit similar
morphological and statistical properties. Furthermore, because ECG data suffer from variations,
they are usually not independent and identically distributed between training and testing domains,
which can easily lead to the over-fitting problem. On the other hand, for multi-class classification,
the challenge increases with the number of classes, especially when the data undergo severe variations.
Although the Association for the Advancement of Medical Instrumentation (AAMI) standards group
all ECG beats in the MIT-BIH Arrhythmia Database into five classes [4,5,7,9,11,23–28], in diagnosis,
the finer classification on 16 detailed beat types will provide more valuable information. However, in
such cases, the increased class number will unavoidably complicate the classification process.

To address these problems, we propose a novel approach, named “Set-Based Discriminative
Measure”. This approach recasts the issue of ECG beat classification into the problem of set-based
dissimilarity measure. More specifically, we first learn a discriminative metric space using the training
data to pull the same-class testing samples close together whilst pushing the different-class ones far
apart; then, we measure the new dissimilarities between the query set in the testing data domain and the
corpus sets in the training data domain. Based on these dissimilarity scores, we can rank the corpus sets
and match the query set in question to the top-rank class. In practice, the ECG signals actually belong
to time-series data. In most cases, the specific arrhythmia heartbeats tend to occur frequently and
contiguously instead of only once for the patients if they suffer from some cardiovascular diseases. It is
not difficult to obtain the beat data set by means of automatic analysis or human-computer interaction.
Moreover, the large set for the fixed beat type can also be collected by combining the subsets under
different circumstances based on the existing pattern re-identification/matching techniques.

To sum up, there are three novel aspects in our approach. Firstly, we design a new scheme to
classify the ECG beats. Different than the previous scheme pipeline “feature + classifier” that directly
outputs the final decision, our proposed method solves the problem in the mode “feature + metric
+ measure” from the dissimilarity measure perspective. Measuring dissimilarity is convenient for
generating the ranking results in the specified order, and the ranking sequence has an advantage in
tolerating the correct match to appear in the top several positions, especially when the target beat
types are ambiguous to distinguish. Secondly, we suggest measuring the set-based dissimilarity
instead of sample-based distance. Traditional ECG beat classification focuses on the single sample
manner. By contrast, the set contains the distribution information in the local area, which provides
more opportunities for the dissimilarity measure to work against the potential abnormal behavior of
the single sample. To better exploit the within-set information, we design a new set-based dissimilarity
in our model. Last but not least, we employ the metric learning approach for projecting ECG beat
features into a more discriminative space. Metric learning warps the feature space to satisfy the relative
comparison relationship between intra-class distances and inter-class distances, which directly copes
with the main problem of large intra-class but small inter-class distances in ECG beat classification.
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2. Materials

We use MIT-BIH Arrhythmia Database for tests [29]. This benchmark database has been provided
systematically for research studies on ECG analysis and can be obtained from the Physionet website [30].
The source of ECG data in this database was the collection of 4000 long-term Holter recordings taken
from the arrhythmia laboratory from 1975 to 1979.

In total, this database contains 48 recordings, which were selected to comprise the normal beat
and common types of life threatening arrhythmias. For these recordings, the subjects were 25 men
aged from 32 to 89 and 22 women aged from 23 to 89. The first 23 recordings (numbered from 100
to 124 with some numbers missing) include the representative samples that arrhythmia detectors
may encounter during routine clinical use. The remaining 25 recordings (numbered from 200 to 234,
again with some numbers missing) cover a variety of rare but clinically important phenomena that
might present significant difficulty to arrhythmia detectors. There are two channels of signals for each
recording. The first channel is modified limb lead II in most cases, and occasionally modified lead
V5. The second channel is usually modified lead V1, and sometimes V2, V4 or V5. All the signals last
slightly longer than 30 minutes. These signals have been processed by a band-pass filter at 0.1–100 Hz
and sampled at 360 Hz. We use the data from both channels for experiments. For convenience, we
denote the dataset based on the first channel as MLII, and that based on the second as MLV.

Because each recording in MIT-BIH Arrhythmia Database is continuous in nature, it is necessary
to extract the single heart beat from the signals for further processing. Actually, this database also
has provided annotations for both beat class information and timing information verified by the
independent experts. Since current capable R-peak detection algorithms have achieved more than 99%
positive predictive accuracy and sensitivity [31–33], we directly use the prepared R-peak annotation
file. Based on the R-peak position identified in the annotation file, we extract 235-point segments
at R peaks from the recordings. For each segment, there are 90 sampling points before the R peak
and 144 sampling points after it. If sampling points are inadequate before the first or after the last
detected QRS complex in any of the signal files, then the corresponding beat is neglected. Finally,
we acquire more than 109, 000 beats from 16 different beat types altogether. Note that there are no
universal standards for restricting the length of beat segments. Longer or shorter beats segments are
also acceptable for experiments, and they do not affect the method demonstration. Thus, we don’t
plan to look into this aspect in the paper.

3. Methods

In brief, there are three components in the proposed model: feature representation, metric learning,
and set-based dissimilarity. Feature representation converts original ECG beats into the meaningful
measurable quantities, which thus provides a platform for the subsequent processing. Metric learning
optimizes a discriminative metric to improve the feature space by compacting the same-class samples
whilst separating the different-class samples as far as possible. In the learned metric space, set-based
dissimilarity measures the distance between query and corpus sets, and the classification/ranking
results can be determined by these distance scores. We will launch detailed elaboration on each model
component in this section.

3.1. Feature Representation

As the first component, feature representation plays a fundamental role in ECG classification.
Every year, many new features emerge and achieve encouraging results in literature. In consideration
of the latest research progress in wavelet transform based features [6,24,34–38], we represent the ECG
data by this family.

More specifically, we mainly use wavelet Bi-orthogonal 6.8 (Bior 6.8) for experimental
demonstration. Bior 6.8 decomposes the signals successively up to eight levels that include the low
frequency and high frequency components. The low frequency component is called “approximation”,
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and the high frequency component is called “detail”. After decomposition, we calculate the maximum,
minimum, mean, and variance of the coefficients from all the detail sub-bands and approximation
sub-band, and then concatenate these statistical values into one 36-dimensional feature vector.
Note that this feature has implicitly handled the baseline wander problem during quantification and
representation, so we don’t have to do the extra data pre-processing of baseline wander elimination.

It is worth mentioning that, besides Bior 6.8, we also adopt several different wavelets to construct
feature spaces for experimentation. Honestly, the value of the proposal lies in the incremental
performance from the basic feature space. Although feature representation is not the focus of this
paper, we admit that introducing a better feature can lead to an improved result, just like standing on
the shoulders of giants.

3.2. Metric Learning

The purpose of feature representation is to construct a discriminative space in which sample
classes can be easily distinguished. However, because of the complexity of ECG data, the phenomenon
of class inseparability still exists even in a carefully-designed feature space, which more or less affects
the classification results. Therefore, we resort to the Mahalanobis metric learning approach to transform
the structure of feature space, in pursuit of the goal that intra-class distances are smaller than inter-class
distances for all samples. To this end, we interpret multi-class classification from the viewpoint of
ranking order, and employ the Metric Learning to Rank (MLR) model [39]. MLR directly optimizes
the list-wise ranking, for which only the rank of the first correct match is counted, while the ranks
of both other correct matches and any incorrect matches are arbitrary. Thus, optimizing ranking is
consistent with the multi-class situation during ECG beat classification: there are large amounts of
ranking instantiations of a given ground truth. MLR is described in the followings.

Given query collection Q =
{

q | q ∈ Rd}, which consists of query sample vectors, and corpus
collection X =

{
xi | xi ∈ Rd}, which consists of corpus sample vectors, we suppose that w is the

Mahalanobis metric matrix intended to optimize, and φqi(q, xi) is a kind of matric representation of
a corpus sample xi with regard to q:

φqi(q, xi) = −(q− xi)(q− xi)
T. (1)

A desired ranking model can be defined by

gw(q, xi) = w
T
φqi(q, xi) (2)

for scoring xi, and the ranking can be done by sorting scores in a descending order.
To learn w, usually, a joint feature map is adopted to represent the whole set of ranked data X .

Let yranking
q ∈ Y be a ranking of X with respect to q, and ψ(q, yranking

q ,X ) ∈ Rd be a vector-valued joint
feature map, which is defined as the partial order feature:

ψ(q, yranking
q ,X ) = ∑

xi∈χ+
q

∑
xj∈χ−q

(
φqi(q, xi)− φqj(q, xj)

|χ+
q ||χ−q |

), (3)

whereX+
q denotes the set of relevant corpus samples with regard to the query sample q; X−q denotes the

set of irrelevant corpus samples with regard to the query sample q; and | • |means the set cardinality.
One important property of ψ(q, yranking

q ,X ) is that, for a fixed w, the ranking yranking
q which

maximizes wTψ(q, yranking
q ,X ) can be obtained by sorting gw(q, xi) in order of the descending scores.

The best w is expected to be the one that simultaneously makes

y∗q = arg max
yranking

q

wTψ(q, yranking
q ,X ), (4)
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where y∗q is the ground truth ranking of X for q. Thus, w can be learned by solving the following
optimization problem:

arg min
w

tr(w) +
C
|Q|∑q

ξq (5)

s.t.

wTψ(q, y∗q ,X ) ≥ wTψ(q, y,X ) + ∆(y∗q , y)− ξq,
∀q, y 6= y∗q ;

ξq ≥ 0, ∀q,

where y∗q is the ground truth ranking of X for a given q ∈ Q, and ξq is the slack variable, C is the

trade-off parameter balancing between the slack variable and the regularizer, and ∆(y∗q , yranking
q ) is the

loss function to penalize predicting yranking
q instead of y∗q , defined by ∆(y∗q , yranking

q ) = 1− S(q, yranking
q ),

in which

S(q,y) =
1
|Q| ∑

q∈Q

{
1/rq, rq ≤ k,

0, rq > k,
(6)

where rq is the position of the first relevant item in response to q in y; and k is the number of top ranked
items to be considered. If the position of the first relevant item in response to q in y is larger than k,
the reciprocal rank score will be penalized to be 0. Here, we just directly follow the commonly-used
setting k = 3 in the relevant works by default, which in some sense considers the balance of avoiding
the penalty from being either over strict or over loose [40–44]. Additionally, in Problem 5, the l2-norm
based regularizer ‖w‖2/2 is also an alternative choice [39].

For the issue of ECG beat classification, the distribution gap between unknown testing data and
prepared training data is ubiquitous, which aggravates the over-fitting problem. Actually, MLR has
an advantage in tackling such an over-fitting problem, which is also one reason for us to employ this
model [44]. MLR is based on the structural Support Vector Machine (SVM) framework. For machine
learning approaches which directly work on Empirical Risk Minimization (ERM), minimizing the
empirical risk cannot be guaranteed to be equivalent to minimizing the expected risk when the number
of training samples is limited and the dimensionality is high, so it is easy for such kinds of models
to incur over-fitting. SVMs have an advantage in avoiding over-fitting because SVMs use the spirit
of the Structural Risk Minimization (SRM) principle. The SRM principle addresses over-fitting by
balancing the model’s complexity against its success at fitting the training data. SVM learning actually
minimizes both the Vapnik–Chervonenkis dimension and the approximation error at the same time.
MLR is a structural SVM model, so it also inherits the robust ability against over-fitting. Hence,
the inherent nature of MLR is conducive to alleviating the stubborn over-fitting problem during the
learning process.

Because measuring Mahalanobis distance with the learned metric is equivalent to measuring
Euclidean distance in the space projected by the decomposed metric l where w = lTl → l = w1/2,
in order to favor the set-to-set dissimilarity measure in the next step, we take advantage of such l to
project the feature space.

3.3. Set-Based Dissimilarity

Although the projected space has been improved by the learned metric globally, due to the
challenges of real ECG data, there still exists a portion of samples with unexpected deviation in the
local areas. To reduce the impact from the irregularly-distributed samples, we recommend measuring
the set-to-set dissimilarity instead of traditional point-to-point distance that merely focuses on the
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isolated two samples. Set-based dissimilarity is not vulnerable to the irregular behavior of individual
samples if it suitably makes use of the within-set resource during measurement.

There are many kinds of set-based dissimilarities in a variety of applications, such as Minimum
Point-wise Distance (MPD), Average Point-wise Distance (APD), Mean Approach Distance (MAD), and
so on [42]. Inspired by the success of traditional dissimilarities for the classification topics in computer
vision fields, we design a new dissimilarity: “Minority-Based Dissimilarity (MBD)”. This dissimilarity
takes within-set variability into account by measuring the closest local minorities of each paired sets,
with the assumption that the outer samples of sets are more informative for discrimination than the
central parts.

Let us denote a an arbitrary point in set A, b an arbitrary point in set B, l the point-to-point
distance, and d the point-to-set distance. Thus, MBD between two sets is given by:

DMBD(A, B) =
1
|Au| ∑

a∈Au

d(a, B)� 1
|Bv| ∑

b∈Bv

d(A, b), (7)

where the abstract symbol � can be defined as sum-operation, max-operation, or min-operation;
by default, we make this operation as the sum-operation in this paper; Au is the subset of A nearest to B,
and Bv is the subset of B nearest to A; d(a, B) = min{l(a, b)|b ∈ B}, and d(A, b) = min{l(a, b)|a ∈ A};
and | • |means the set cardinality.

In fact, MBD has a close relationship with MPD and MAD. MPD is formulated as DMPD(A, B) =
mina∈A,b∈B d(a, b); and MAD is formulated as DMAD(A, B) = 1

|A| ∑a∈A d(a, B) + 1
|B| ∑b∈B d(A, b).

Hence, MBD can be degenerated into MPD if |Au| = |Bv| = 1 when symbol � is defined as
the min-operation, and into MAD if |Au| = |A| and |Bv| = |B| when symbol � is defined as the
sum-operation. Therefore, MPD and MAD can be treated as the special cases of MBD.

In summary, set-based dissimilarity and metric learning solve the variation problem of ECG
features from different perspectives. Metric learning relies on optimizing the global space metric
for all the samples, while set-based dissimilarity takes advantage of within-set information in the
local area during measure. In addition, the reason for metric learning to complement set-based
dissimilarity is that the behavior of closing the same-class samples and distancing the different-class
samples can potentially improve the relative comparison relationship among sets with the target of
better discrimination.

4. Results

4.1. Experimental Setup

The details of 16 ECG beat types are given in Table 1. It can be seen from this table that data
distribution among 16 classes is quite imbalanced. Class N has the largest size which is even more
than 75,000, while the size of the smallest class S is only 2. In addition, other class sizes vary from
tens to thousands. Such imbalance more or less enhances the classification difficulty. The beat data
are collected from 235-point segments of the ECG recordings, so the original data dimension is 235.
We illustrate these data in Figure 1 by sampling the beat from each class. The waveform display may
not be exactly medically-standard because we directly use the real data which suffer from variations
and noises. However, these waveforms just reflect the challenge we meet in this issue: ECG beat data
are complicated and their classes are easy to be confused.

Our proposed method can be denoted by “MLR + MBD/MPD” in short, where MBD is the first
recommended set-based dissimilarity, and MPD is the second recommended one. First, we demonstrate
the effectiveness of the whole scheme in comparison with other representative methods. In this part,
we evaluate the overall performances of the methods for all beat classes as well as their separate
performances on each beat class. Second, we evaluate the components of the proposed model to justify
their roles and test the model flexibility. In this part, we evaluate several different learned metric
spaces for the recommended set-based dissimilarities, and compare these dissimilarities with other
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analogous ones. Moreover, we also evaluate the function of the regularizer of MLR as well as the
minority size of MBD. Third, we discuss the critical parameters involved in the method to check how
they influence the results. In this part, we pay attention to discussing the set size of MBD/MPD,
as well as the trade-off parameter of MLR. Fourth, we validate the robustness of the proposed method
by confirming its stability and reliability against different feature spaces. In this part, we evaluate the
method by means of different features based on six wavelet types with two encoding ways. At last,
we compare the proposed approach with other competitive techniques based on AAMI standards to
show its compatibility and capability.

Table 1. Database properties.

Electrocardiogram (ECG) Beat Class Class Size Abbreviated Denotation

Normal Beat 75,023 N
Left Bundle Branch Block Beat 8072 L

Right Bundle Branch Block Beat 7255 R
Atrial Premature Beat 2546 A

Premature Ventricular Contraction 7129 V
Aberrated Atrial Premature Beat 150 a

Nodal (Junctional) Premature Beat 83 J
Supraventricular Premature or Ectopic Beat (Atrial or Nodal) 2 S

Fusion of Ventricular and Normal Beat 802 F
Ventricular Flutter Wave 472 W

Atrial Escape Beat 16 e
Nodal (Junctional) Escape Beat 229 j

Ventricular Escape Beat 106 E
Paced Beat 7026 P

Fusion of Paced and Normal Beat 982 f
Unclassifiable Beat 33 Q
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Figure 1. Illustration of 16 types of electrocardiogram (ECG) beats.
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The evaluation rule is as follows. We perform 10-fold cross-validation. In each trial, we randomly
halve the training and testing data. In addition, we keep the same train-test splits for method
comparison. In the training stage, for the classes whose sizes are much larger than the others, such
as classes N, A, L, R, P and V, we limit the training data number by randomly selecting at most
500 samples to alleviate the class imbalance problem. In the testing stage, we match between the
testing and training sets to decide the testing set label. This process is on the basis of set-integrity
assumption: the samples within the set are relevant.

There are three choices for instantiating the abstract operation of MBD in Equation (7). According
to the preliminary tests on datasets MLII and MLV in Table 2, we find that the sum-operation is a little
more effective than the other two, so we directly utilize the sum-operation. By the way, the choice of
max-operation is also admissible for MBD because of its similar performance to the sum-operation.

Table 2. Comparison of different operations in Minority-Based Dissimilarity (MBD).

MBD Sum-Operation Max-Operation Min-Operation

MLII 96.39 96.38 95.64
MLV 92.04 92.02 91.31

4.2. Effectiveness Evaluation

We demonstrate the effectiveness of our proposed method in comparison with SVM [2], Neural
Network (NN) [35], and Linear Discriminant Analysis (LDA) [4]. They belong to the traditional
methods for ECG beat classification based on the single-sample manner. Hence, we treat single-sample
classification in original feature space with Euclidean metric as the method baseline.

During implementation, for the proposed method, we set the testing set size to be 50 samples for
each beat class except for types J, Q, e and S, because, in total, they only have 42 samples, 17 samples,
eight samples, and one sample for testing, respectively. For classes J, Q, and e, we fix the set size to be
five and, for S, we treat this single sample as the whole set. As for MBD, we set the minority size as the
1/10 sample number of the smaller one by default. If the minority size is smaller than one, we just
maintain the size as one. For SVM, we select the Radial Basis Function (RBF) kernel with the default
gamma value 2, set the penalty parameter to be 10, and make the stopping criterion as 0.01. For NN,
we adopt the five-layer structure, in which the sizes from the bottom layer to the top layer are 36, 31,
26, 21 and 16, respectively. For the hidden units, we choose the hyperbolic tangent activation function.
To learn such structure, we utilize the stochastic gradient descent algorithm, in which the batch size is
set as half of the training data size, and the learning rate is set as two. For LDA, we keep the subspace
dimension as 26 for dimension reduction.

The results on MLII and MLV are reported in Tables 3 and 4, respectively, in terms of classification
rate on Rank-1 and Rank-5. Here, the classification rate on Rank-1 is identical with accuracy, which
is the ratio of the number of correctly classified patterns to the total number of patterns classified.
For SVM and NN, we only record the accuracy because they directly produce the classification
results rather than the distance scores for ranking. Note that, for multi-class classification, accuracy
is more suitable than other evaluation metrics which are common in binary classification, such as
sensitivity, specificity, and so forth. From the results, we can see that the proposed method significantly
outperforms the compared widely-used approaches.
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Table 3. Method performance for all beat classes on MLII.

Method MLR + MBD MLR + MPD SVM NN LDA Baseline

Rank-1 96.84 94.92 82.10 78.02 87.92 88.73
Rank-5 99.85 99.80 - - 99.00 99.92

Abbreviations: Metric Learning to Rank→MLR; Minimum Point-wise Distance→MPD;
Support Vector Machine→SVM; Neural Network→NN; Linear Discriminant
Analysis→LDA.

Table 4. Method performance for all beat classes on MLV.

Method MLR + MBD MLR + MPD SVM NN LDA Baseline

Rank-1 92.78 91.10 74.49 76.38 83.89 83.49
Rank-5 99.74 99.69 - - 99.01 98.21

As our first recommended set-based dissimilarity, MBD performs better than MPD in the learned
metric space. SVM and NN seem to drag down the performance because of the over-fitting and
variation problems. However, these problems have been well handled by the proposed method by
contrast. The advantage of our approach over the compared methods reflects the benefits from the
suitably exploited set-based information in the learned metric space. To be frank, although tuning
the parameters of these compared methods may perhaps bring some small performance fluctuation,
such limited performance fluctuation will not influence the comparison results between our approach
and them due to their significant performance gap.

We also evaluate the method performance for each independent beat class in Tables 5 and 6.
It can be observed from the results in Table 5 that, generally, the proposed method performs better
than the other methods. For classes L, a, W, j, E, P and f, MLR + MBD even achieves saturated
results. For classes e and S, our proposed method has unsatisfactory performance because the small
sample number in their classes are adverse to exploiting the set-based information. However, for these
two classes, the performances of other approaches are also quite low as well due to the limited training
data. In addition, class Q displays an overall inferior performance for all methods as expected on
account of its unclassifiable property. In Table 6, the proposed method outperforms other compared
approaches on the whole. In addition, MLR + MBD acquires the saturated performance on classes
L, a, j, E, P and f, which are similar to the results on MLII in Table 5. Moreover, class S fails all the
methods. For e, although the proposed method is inferior to other methods, the winner also has quite
low performance. Class Q is still unclassifiable as its label name suggests. Their low performances are
also similar to the situation in MLII in Table 5.

Table 5. Method performance for each beat class on MLII.

Beat MLR + MBD MLR + MPD SVM NN LDA Baseline

N 96.72 94.72 81.05 74.36 85.26 86.38
L 100 99.75 91.94 90.63 98.33 98.37
R 99.03 99.03 93.84 89.60 96.20 95.32
A 94.40 90.40 76.58 68.19 82.82 86.00
V 96.90 92.54 98.43 78.82 87.10 87.24
a 100 100 53.60 35.60 67.60 67.60
J 81.25 81.25 70.71 22.62 80.95 76.19
S 0.00 0.00 0.00 0.00 10.00 50.00
F 98.75 82.50 67.73 78.35 87.53 87.43
W 100 85.00 36.48 79.92 83.73 85.97
e 10.00 10.00 25.00 6.25 36.25 38.75
j 100 95.00 77.91 61.83 81.48 81.22
E 100 100 88.30 86.23 93.77 93.96
P 100 100 61.28 94.49 98.71 98.91
f 100 100 82.24 87.07 96.62 97.19
Q 16.67 16.67 2.35 10.00 20.59 6.47
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Table 6. Method performance for each beat class on MLV.

Beat MLR + MBD MLR + MPD SVM NN LDA Baseline

N 91.91 90.11 70.36 73.89 80.52 80.56
L 100 100 89.49 91.46 97.44 96.46
R 95.97 97.22 89.85 89.61 93.26 92.97
A 86.40 81.60 77.71 62.22 79.46 81.00
V 94.23 89.15 82.44 57.41 80.22 76.15
a 100 100 40.40 13.87 59.47 56.67
J 80.00 80.00 68.57 42.38 72.14 76.19
S 0.00 0.00 0.00 0.00 0.00 0.00
F 77.50 71.25 43.22 74.16 85.26 83.04
W 80.00 75.00 42.37 77.58 82.80 73.77
e 0.00 0.00 12.50 1.25 21.25 18.75
j 100 95.00 80.78 69.22 77.74 77.48
E 100 100 76.42 81.89 89.81 89.81
P 100 100 84.66 96.90 99.37 98.87
f 100 100 83.60 90.57 96.90 95.15
Q 3.33 3.00 0.00 2.94 20.59 2.35

4.3. Component Analysis

We also evaluate the two important modeling components in our method: metric learning and
set-based dissimilarity.

On the one hand, we instantiate the metric learning component by several capable models
other than MLR in the scheme. These models include Large Margin Nearest Neighbor (LMNN) [45],
Information-Theoretic Metric Learning (ITML) [46], and Local Fisher Discriminant Analysis (LFDA) [47].
It can be seen from the results in Tables 7 and 8 that, although the effectiveness of set-based dissimilarity
MBD and MPD limits the performance enhancing space, MLR still behaves stronger than other
compared metric learning models in boosting their performances. The performance gap between
MLR + MBD/MPD and LMNN + MBD/MPD is not large. This is because MLR and LMNN share
a similar inner mechanism despite their different modeling ways: they pursue an optimized relative
comparison relationship between intra-class and inter-class distances. Therefore, LMNN can be used
as an alternative metric learning component to substitute for MLR in the scheme. Such modeling
freedom actually reflects the flexibility of our method, which also ensures its developing potentiality
in the future.

Table 7. Modeling component analysis on MLII.

Modeling MLR + MBD LMNN + MBD ITML + MBD LFDA + MBD MLR + MPD LMNN + MPD

Accuracy 96.84 96.65 96.39 95.87 94.92 94.61
Modeling ITML + MPD LFDA + MPD MBD MPD MAD APD
Accuracy 94.19 93.70 96.39 94.19 30.68 4.46

Abbreviations: Large Margin Nearest Neighbor→LMNN; Information-Theoretic Metric Learning→ITML; Local Fisher Discriminant
Analysis→LFDA; Mean Approach Distance→MAD; Average Point-wise Distance→APD.

Table 8. Modeling component analysis on MLV.

Modeling MLR + MBD LMNN + MBD ITML + MBD LFDA + MBD MLR + MPD LMNN + MPD

Accuracy 92.78 92.43 92.04 91.37 91.10 90.57
Modeling ITML + MPD LFDA + MPD MBD MPD MAD APD
Accuracy 90.00 90.04 92.04 90.00 16.22 4.30

On the other hand, we analyze the set-based dissimilarity component by comparing MBD, MPD,
APD, and MAD [42]. They encode the point-to-point distances into the set level in different ways.
MPD measures the minimum distance between sets, APD measures the average distance between sets,
and MAD balances the strategies of MPD and APD by measuring the mean approach distance between
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sets, while MBD measures the minority distance between sets, which generalizes both MPD and MAD.
The results in Tables 7 and 8 show that MBD and MPD are substantially more effective than MAD and
APD, which implies that the discriminative information is primarily contained within the outer part
instead of the central part of the sets. Furthermore, the advantage of MBD over MPD indicates that, in
the outer part of the sets, the inner minority is more discriminative than the outmost periphery.

Moreover, we also analyze the regularizer alternatives of the MLR component in Equation (5).
The results in Tables 9 and 10 show that changing the regularizer has a minor influence on the whole
framework. This also embodies some flexibility of our method.

Table 9. MLR regularizer analysis on MLII.

Regularizer MLR + MBD MLR + MPD MLR

tr(w) 96.84 94.92 89.42
‖w‖2/2 96.81 94.93 89.41

Table 10. MLR regularizer analysis on MLV.

Regularizer MLR + MBD MLR + MPD MLR

tr(w) 92.78 91.10 84.79
‖w‖2/2 92.96 90.96 85.42

Furthermore, we evaluate the performance of MBD under different sizes of minorities formulated
in Equation (7). The sizes of minorities are determined by |Au| and |Bv|. We use the same quantity
of minorities for both measured sets: |Au| = |Bv| = α = β ·min(|A|, |B|), where α denotes the size
of minorities and β denotes the ratio. If α < 1, then we set α = 1. The results for MBD in both
Euclidean and learned metric spaces are reported in Tables 11 and 12. We can see the effectiveness of
minority-based strategy by comparing the results between using the partial subset from 1/50 to 1/2
and using the whole set by 1/1. The performance for both MBD and MLR + MBD present a rising
tendency when β decreases by the large, respectively. In addition, when β is approximately within the
range [1/30, 1/6], MBD has relatively good performance in both Euclidean and learned metric spaces.

Table 11. Minority size analysis for MBD on MLII.

Size Ratio 1/1 1/2 1/3 1/4 1/5 1/6 1/7

MLR + MBD 86.46 93.19 94.95 95.89 96.57 96.64 96.66
MBD 85.34 93.54 94.99 95.80 96.28 96.47 96.43

Size Ratio 1/8 1/9 1/10 1/20 1/30 1/40 1/50
MLR + MBD 96.84 96.84 96.84 96.25 95.90 94.92 94.92

MBD 96.50 96.50 96.39 95.67 95.29 94.19 94.19

Table 12. Minority size analysis for MBD on MLV.

Size Ratio 1/1 1/2 1/3 1/4 1/5 1/6 1/7

MLR + MBD 85.66 90.38 90.90 91.37 92.10 92.31 92.69
MBD 80.77 90.42 90.79 91.03 91.54 91.56 91.69

Size Ratio 1/8 1/9 1/10 1/20 1/30 1/40 1/50
MLR + MBD 92.87 92.87 92.78 92.95 92.66 91.10 91.10

MBD 91.80 91.80 92.04 92.08 91.75 90.00 90.00

On the whole, MLR is a global metric learning method that optimizes the distance comparison
relationship for all the samples in the feature space. Both effectiveness of MLR itself and improving
the set-based dissimilarity for measurement based classification directly justify the goal of this
model to make intra-class distances smaller than inter-class distances. In the learned metric space,
local variations of the sample set become the main problem that impedes the performance of set-based
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dissimilarity. The effectiveness of MBD in such space just validates its capability to cope with
such problem.

4.4. Parameter Discussion

We further discuss the critical parameters involved in the proposed method: the set size
(the sample number of set) for MBD and the trade-off parameter for MLR. Because MPD is the
second recommended set-based dissimilarity in our model, we also put it into discussion.

At first, we evaluate the performance of MBD and MPD in both Euclidean and learned metric
spaces, respectively, under the set size varying from 10 to 100 with a step length of 10. The performance
with the set size larger than 100 is less meaningful because the performance may be deteriorated or
exaggerated due to the statistical bias caused by the limited sample number of a few beat classes.

By combining the results in Tables 13 and 14, we find that the performance first increases and
then decreases on the whole except the minor fluctuation. Hence, too large and too small set sizes may
degrade the capability of both MBD and MPD; when the set size falls in the approximate range [30, 70],
they can play comparably good performances in both Euclidean and learned metric spaces.

Table 13. Set size discussion for set-based dissimilarity on MLII.

Set Size 10 20 30 40 50 60 70 80 90 100

MLR + MBD 93.84 95.77 96.31 96.76 96.84 96.79 96.64 96.37 96.37 95.83
MLR + MPD 93.84 94.47 94.79 94.78 94.92 94.96 94.67 94.60 94.64 94.28

MBD 93.40 95.34 95.96 96.15 96.39 96.34 96.36 96.02 96.01 95.62
MPD 93.40 93.98 94.26 94.31 94.19 94.51 94.13 94.14 94.23 93.90

Table 14. Set size discussion for set-based dissimilarity on MLV.

Set Size 10 20 30 40 50 60 70 80 90 100

MLR + MBD 90.05 92.27 92.89 92.79 92.78 92.75 92.41 92.28 92.15 91.95
MLR + MPD 90.05 90.64 90.86 91.04 91.10 91.08 90.82 90.69 90.76 90.43

MBD 89.41 91.18 91.91 92.04 92.04 91.91 91.54 91.10 91.37 91.00
MPD 89.41 89.69 89.93 89.85 90.00 90.08 90.03 89.70 89.77 89.64

Then, we evaluate the MLR trade-off parameter C in Equation (5). This parameter plays the
role in balancing slack variable and regularizer. Usually, when the different-class distributions are
seriously overlapped in the feature space, the smaller parameter is more desirable, and, conversely,
when the distributions are relatively separable, the larger one seems better. We testify a group
of trade-off parameters {0.001, 0.01, 0.1, 1, 10, 100, 1000} to reveal how they influence the method
performance of MLR + MBD/MPD. We also record the results of MLR under these trade-off parameters
directly without doing set-based dissimilarity measurement. For convenience, we provide the baseline
performance as reference.

By observing the results in Tables 15 and 16, we find that, for MLR, the smaller parameters give
rise to the better performance than the larger ones, which hints that the sample overlapping situation
indeed exists in the feature space. Actually, the soft manner from the slack variable of MLR can cope
with such a situation to a certain degree. In greater detail of the results, the comparison between
the first and second rows shows the trade-off parameter has no influence on the superiority of MBD
to MPD in the learned metric space; the comparison between the second and third rows manifests
the effectiveness of set-based strategy in the learned metric space regardless of the settings of such
parameters; the comparison between the third and fourth rows displays the positive role of metric
learning itself in improving the space discriminability during single-sample classification.
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Table 15. MLR trade-off parameter discussion on MLII.

Trade-Off Parameter 0.001 0.01 0.1 1 10 100 1000

MLR + MBD 96.83 96.76 96.80 96.84 96.79 96.82 96.82
MLR + MPD 94.92 94.94 94.89 94.92 94.87 94.86 94.86

MLR 89.45 89.45 89.41 89.42 89.41 89.43 89.44
Baseline 88.73 88.73 88.73 88.73 88.73 88.73 88.73

Table 16. MLR trade-off parameter discussion on MLV.

Trade-Off Parameter 0.001 0.01 0.1 1 10 100 1000

MLR + MBD 92.96 92.96 92.96 92.78 92.87 93.01 92.69
MLR + MPD 90.96 90.96 90.96 91.10 91.16 91.17 90.70

MLR 85.42 85.42 85.42 84.79 83.71 83.98 83.72
Baseline 83.49 83.49 83.49 83.49 83.49 83.49 83.49

4.5. Robustness Validation

The robustness of the proposed method can be demonstrated by its stable effective performance
against different feature spaces as well as different datasets.

Firstly, we evaluate the proposed method in different feature space based on various wavelet
transforms. These features are concatenated by either all or statistics (maximum, minimum, mean,
and variance) of the decomposition coefficients of wavelets. The wavelets include Bior 6.8, Daubechies
14 (Db 14), Symlets 8, Coiflets 5, Fejer-Korovkin 22 (FK 22), and Reverse Bi-orthogonal 6.8 (RBior 6.8).

We can confirm the robustness of our approach by the results in Tables 17 and 18 that the
performances present a stable stair-wise increase from baseline through MLR + MPD to MLR + MBD
irrespective of features and datasets. Moreover, the performance discrepancy on the same dataset is
not that large among these features, which also shows some flexibility on feature component selection
in the scheme. Furthermore, the features concatenated by all of coefficients seem to perform better
than statistics of coefficients. This is because the latter is much higher compressed than the former,
but the compressed representation is inevitably accompanied with the information loss. However,
it is obvious that the full use of coefficients will lead to the high dimensionality of feature vectors,
which will add to the burden of computing and storage. Actually, running methods based on features
concatenated by statistics of coefficients takes much shorter time and smaller memory than those
composed of all the coefficients. By contrast, the strategy using statistics of coefficients better regards
the balance between effectiveness and efficiency of feature representation.

Table 17. Method performance in different feature spaces on MLII.

All of Coefficients Bior 6.8 Db 14 Symlets 8 Coiflets 5 FK 22 RBior 6.8

MLR + MBD 96.93 97.83 97.68 97.64 97.83 97.55
MLR + MPD 94.39 96.26 95.93 95.87 96.01 95.76

Baseline 92.18 92.54 92.37 92.39 92.49 92.16
Statistics of Coefficients Bior 6.8 Db 14 Symlets 8 Coiflets 5 FK 22 RBior 6.8

MLR + MBD 96.84 93.95 96.48 96.17 94.28 96.56
MLR + MPD 94.92 92.31 94.31 93.99 92.69 94.76

Baseline 88.73 82.78 83.34 83.81 83.87 84.05

Abbreviations: Bi-orthogonal 6.8→Bior 6.8; Daubechies 14→Db 14; Fejer-Korovkin 22→FK 22; Reverse
Bi-orthogonal 6.8→RBior 6.8.
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Table 18. Method performance in different feature spaces on MLV.

All of Coefficients Bior 6.8 Db 14 Symlets 8 Coiflets 5 FK 22 RBior 6.8

MLR + MBD 94.40 94.20 94.44 93.94 94.18 94.27
MLR + MPD 92.57 92.31 92.83 92.67 92.60 92.50

Baseline 89.57 89.64 89.80 89.50 89.61 89.60
Statistics of Coefficients Bior 6.8 Db 14 Symlets 8 Coiflets 5 FK 22 RBior 6.8

MLR + MBD 92.78 92.43 93.06 93.00 93.11 92.89
MLR + MPD 92.04 90.51 91.62 91.14 90.68 91.30

Baseline 83.49 81.43 83.23 82.61 82.06 83.25

4.6. Technique Comparison

ECG beat classification is a well studied problem. In this paper, we deal with this issue from the
16-class classification perspective. This setting is different from much traditional research using AAMI
standards (ANSI/AAMI EC57: 1998) that group ECG beats in the MIT-BIH Arrhythmia Database into
five big classes [4,7,11,24,27,28]. To compare our method with these techniques in literature, we also
conduct experiments on dataset MLII by means of such a widely-used standard classification scheme.
Actually, the considered 16 classes contain all the 15 beat types addressed by the AAMI standards as
well. According to the standards, the five big classes are Non-Ectopic Beat, Supra-Ventricular Ectopic
Beat, Ventricular Ectopic Beat, Fusion Beat, and Unknown Beat. More specifically, Non-Ectopic Beat
include beat types N, L, R, e and j; Supra-Ventricular Ectopic Beat include beat types a, A, S and J;
Ventricular Ectopic Beat include beat types E and V; Fusion Beat include beat type F; and Unknown
Beat include beat types Q, P and f.

In experiments, we use the feature composed of all decomposition coefficients of wavelet Db 14
due to the capable performance of this feature observed. We record the performance of the proposed
method and the recent representative techniques in Table 19. This table shows good performance of the
proposed method for ECG beat classification by the popular AAMI standards, which further confirms
the method compatibility and capability as well.

Table 19. Performance comparison of ECG classification techniques.

Literature Representation Classification Accuracy

Martis et al. [4] DWT + ICA Probabilistic NN 99.28
Elhaja et al. [7] PCA + DWT + HOS + ICA SVM-RBF 98.91

Martis et al. [28] PCA SVM-RBF 98.11
Das et al. [11] ST + DWT + TF Multilayer Perceptron NN 97.50

Chazal et al. [27] Morphology + Intervals LDA 96.87
Thomas et al. [24] DTCWT + MF Artificial NN 94.64

Proposed DWT MLR + MBD 99.36

Abbreviations: Discrete Wavelet Transform→DWT; Independent Component Analysis→ICA;
Principal Component Analysis→PCA; Higher Order Spectra→HOS; S-Transform→ST; Temporal
Features→TF; Dual Tree Complex Wavelet Transform→DTCWT; Morphological Features→MF.

5. Conclusions

In this paper, we proposed a novel method, set-based discriminative measure, to better resolve
the issue of ECG beat classification. This method measures the discriminative set-based dissimilarity
in a learned metric space. We have not only demonstrated the effectiveness, robustness, and flexibility
of this method, but also analyzed its modeling components as well as critical parameters. Besides ECG
beat classification, the proposed method also has potential to tackle other bio-information classification
tasks that share similar characteristics to this issue. Therefore, our ongoing work in the future will
include extending and applying this method to dealing with them.
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