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Abstract: Pre-stress degradation or looseness of rock bolts in mining or tunnel engineering threatens
the stability and reliability of the structures. In this paper, an innovative piezoelectric device named
a “smart washer” with the impedance method is proposed with the aim of developing a real-time
device to monitor the pre-stress level of rock bolts. The proposed method was verified through
tests on a rock bolt specimen. By applying high-frequency sweep excitations (typically >30 kHz) to
the smart washer that was installed on the rock bolt specimen, we observed that the variation in
impedance signatures indicated the rock bolt pre-stress status. With the degradation of rock bolt
pre-stress, the frequency in the dominating peak of the real part of the electrical impedance signature
increased. To quantify the effectiveness of the proposed technique, a normalized root mean square
deviation (RMSD) index was developed to evaluate the degradation level of the rock bolt pre-stress.
The experimental results demonstrated that the normalized RMSD-based looseness index, which
was computed from the impedance value detected by the “smart washer”, increased with loss of the
pre-stress of the rock bolt. Therefore, the proposed method can effectively detect the degradation of
rock bolt pre-stress, as demonstrated by experiments.

Keywords: rock bolt monitoring; pre-stress level monitoring; piezoceramic materials; smart washer;
electro-mechanical impedance

1. Introduction

Thanks to their low cost, simplicity, and ease of installation, rock bolts, as a major measure to
enhance the bearing capacity of surrounding rock and foundations, have been widely used in mining,
tunnel, and geotechnical engineering [1]. Rock bolts are used as either temporary or permanent
support systems to prevent the movement and expansion of rock strata. Rock bolts increase the
stability of surrounding rock or soil by increase the cohesiveness and internal friction angle. However,
for rock-bolted structures, in some cases, pre-tension degradation may lead to a compromised structure
integrity or a reduction in load bearing capacity. Therefore, monitoring the pre-load status of rock
bolts is essential in evaluating the health condition of a given rock bolt and its entire structure.

A considerable amount of research has been conducted to monitor rock bolt pre-tension status.
All related research can be classified into two categories: the destructive testing method and the
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non-destructive testing method. A destructive testing method is a traditional way of diagnosing the
working condition of a rock bolt and includes core drilling detection and the pull-out test method [2].
Core drilling detection is an outdated method that is rarely used now. The pull-out test is a method
that can measure the bearing state of a specific rock bolt. The shortcoming of a destructive testing
method is that the rock bolt will be destroyed. The guided wave propagation in a free bar was
first studied numerically in the late nineteenth century by Pochhanmer [3] and Chree [4], which
formed the foundation for guided wave-based damage detection methods. In recent years, due to its
non-destructive nature, the ultrasonic guided wave method, as a non-destructive testing method, has
gained popularity in rock bolt monitoring. A test method based on the frequency response of rock
bolts was developed to determine encapsulation conditions [5]. The test determined the dominant
frequency response when the rock bolt was struck with a hammer system attached to the bolt head.
Beard et al. [6–9] proposed an ultrasonic pulse echo inspection technique, which was carried out from
the free end of the rock bolt. The result showed that high frequency modes have low attenuation.
A research group from Dalhousie University, Canada, consecutively investigated the influence of
curing time [10], grouted length [11], grout strength [12], and missing grout [13] on the characteristics of
ultrasonic guided waves on the grouted rock bolt. Another research group from the Republic of Korea
also systematically conducted experiments and field tests on the rock bolt integrity monitoring using
ultrasonic guided waves [14–16]. The wavelet transform was adopted to extract useful information on
the grouting conditions of the rock bolt.

An electro-mechanical impedance (EMI)-based damage detection technique using
lead–zirconate–titanate (PZT) patches is becoming a promising tool for detecting local damage in a
wide variety of structures [17–19]. In this technique, a PZT patch is employed as both a sensor and
an actuator. The impedance technique detects the variations of structural mechanical impedance
caused by the occurrence of damage. According to the coupling theory of a PZT patch bonded on a
host structure, the electrical impedance or admittance (inverse of impedance) of the PZT patches is
directly related to the mechanical impedance of the host structure and will be affected by the presence
of structural damage. Through monitoring the electrical impedance or admittance of the PZT patches
bonded on the host structure and comparing it to a baseline measurement, the integrity of the host
structure can be qualitatively determined. The small-sized PZT patches can be easily bonded on,
or embedded into, a structure, even in inaccessible areas, to monitor the damage evolution of the host
structure. This technique has the advantages of real-time and minimum requirements on transducers
and data processing, which facilitates autonomous structural health monitoring. Research endeavors
have been reported in applying the EMI technique for damage detection in a variety of structures,
such as concrete strength monitoring [20–22], dental implant assessment [23,24], corrosion monitoring
of reinforced concrete [25], lap-joint monitoring [26], and concrete-encased composite structures [27].

In this paper, we adopted and extended a newly developed technology, called a “smart washer”,
which was fabricated by sandwiching a waterproof PZT patch with two pre-machined flat metal
rings for bolted connection monitoring. Previous work has shown that it has great damage detection
potential for bolted connections using the active sensing method. In this study, by integrating the
piezoelectric impedance method with the smart washer, the pre-tension looseness of a rock bolt was
monitored. To enable the experimental study, a special loading frame that can adjust the pre-tension
of a rock bolt was designed and fabricated. The piezoceramic smart washer was installed between
the nut and the anchor plate on the rock bolt. The smart washer functioned as an actuator and a
sensor, so it generated stress waves that travel across the rock bolt and detect the stress waves that
cross the specimen. The piezoelectric impedance method was employed to measure the resonance
frequency change with the rock bolt pre-tension looseness, and the relationship between the extent
of the pre-tension degradation of the rock bolt and the resonance frequency of the specimen was
built. In addition, based on the root mean square deviation (RMSD) method, a normalized rock bolt
pre-tension looseness index is proposed here to evaluate rock bolt pre-tension looseness.
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2. Principles

2.1. Electro-Mechanical Impedance

Electro-mechanical impedance is a novel method for monitoring local damage in a structure.
The one-dimensional model of electro-mechanical impedance theory was first proposed by Liang et al. [28].
A simplified illustration of an integrated PZT and host structure system is shown in Figure 1.
In this model, one end of the PZT is fixed and the system is considered a single degree-of-freedom
mass-spring-damper system. Under the input of V = vsin(ωt), the impedance of the coupled system is
affected by the dynamics of the PZT and the adjacent area of the host structure.
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In this system, the electrical admittance Y(ω), which represents the inverse of the electrical
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where ZA and ZS represent the PZT’s and structure’s mechanical impedance, respectively. In addition,
ω is the excitation frequency, ρ is the density of the PZT, l is the PZT length, w is the PZT width,

h is the PZT thickness, κ is the wave number (=ω/cE
t ), and cE

t is wave velocity (=
√

YE
11/ρ). d31 is the

piezoelectric constant in the x-direction at zero stress, εT
33=εT

33(1 − δj) and YE
11=YE

11(1 + ηj), where η

and δ are the mechanical loss factor and dielectric loss factor, εT
33 is the complex dielectric constant

of piezoelectric material under zero stress; YE
11 is the complex modulus in the x-direction under zero

stress. Based on this formula, the change of electrical impedance of host structure can be detected
through the bonded PZT. With a high frequency excitation, very small damage can be detected.

2.2. Root-Mean-Square Deviation Based Damage Index

In this study, root mean square deviation (RMSD) was applied to quantify the severity of pre-tension
looseness. The RMSD method, previously used by Giurgiutiu et al. [29], has the following expression:

ρRMSD(%) =

√√√√∑i=N
i=1 (yi − xi)

2

∑i=N
i=1 (xi)

2 × 100 (2)
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where yi and xi represent the electrical impedance or electrical admittance before and after the damage,
respectively. Since the electrical impedance and electrical admittance are complex, Equation (2) can be
further expressed as

ρRMSDR(%) =

√√√√√√√
n
∑

i=1
(Re(yi)− Re(xi))

2

n
∑

i=1
(Re(xi))

2
× 100 (3)

ρRMSDI(%) =

√√√√√√√
n
∑

i=1
(Im(yi)− Im(xi))

2

n
∑

i=1
(Im(xi))

2
× 100 (4)

where ρRMSDR and ρRMSDI are the real part and the image part of the electrical impedance or electrical
admittance before and after the damage. It should be noted that the imaginary part εT

33 is more sensitive
to the temperature variation than the real part since the dielectric constant is temperature-sensitive
and only affects the imaginary part. Therefore, the real part of the admittance (or impedance) is mainly
used for monitoring in applications [30].

In order to quantify the looseness degree of the pre-stress on a rock bolt, the normalization of
RMSD of the real part of electrical impedance is proposed as the looseness index:

Ii
RMSDR =

ρb
RMSDR − ρi

RMSDR

ρb
RMSDR − ρt

RMSDR
(5)

where the i is the ith sequence number of experiment, and ρb
RMSDR and ρt

RMSDR are the RMSD values
without looseness and with total looseness, respectively. In this paper, this damage index is used to
evaluate rock bolt looseness or the loss of the pre-stress.

3. Experimental Tests

3.1. Smart Washer and Test Specimen

Piezoceramic materials, which have direct and converse piezoelectric effects, are often used to
build transducers. With the direct piezoelectric effect, a piezoceramic transducer can produce an electric
charge when stress is applied, and the opposite process is called the converse piezoelectric effect.

To enable easy use of piezoceramic materials in a rock bolt with proper protection, a PZT-based
device, the smart washer, fabricated by sandwiching a piezoceramic transducer between two flat metal
rings, as shown in Figure 2, was adopted.
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Figure 2. The design of the smart washer with connecting wires: (a) schematic diagram and  

(b) photograph. 
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In this study, the smart washer was mounted on a specimen, which consisted of a rock anchor,
a heavy hex nut, a smart washer, and a bearing anchor plate. Detailed information of the specimen is
shown in Figure 3.
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3.2. Instrumentation Setup

Smart washer-based rock bolt pre-tension monitoring using piezoelectric impedance measurement
consists of three parts: a hydraulic jack, a loading frame, and an electrical impedance measuring system.
The specimen fabrication is shown in Figure 4 and the experimental setup is shown in Figure 5.
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Figure 4. The loading system of rock bolt specimen.

In the experiment, the pre-tension or the pre-stress of rock bolt was controlled by the hydraulic
jack with a range of 0–30 MPa. The loading procedure that consisted of eleven loading cases from
30 MPa to 0 MPa was carried out, as listed in Table 1. The decrease of the stress or the tension of the
rock bolt simulates the process of the loss of pre-stress, the loss of pre-tension, or the looseness of the
rock bolt. For example, the case of 0 MPa indicates the total looseness of the rock bolt.
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Table 1. Experimental procedure with eleven loading cases.

Sequence Number 1 2 3 4 5 6 7 8 9 10 11

Pre-load (MPa) 30 27 24 21 18 15 12 9 6 3 0

3.3. Test Procedures and Frequency Range

The smart washer impedance test procedures were carried out in two steps:
(1) The wide frequency range test: To detect the incipient-type damage, the wavelength of the

excitation signal should be less than the characteristic length of the damage. With high frequency
excitation when the wavelength is much smaller than that of the damage, it is easy to detect the change
in structural integrity. Excitation of 10–1000 kHz with 801 sampling data points was used with a
pre-stress of 12 MPa in this experiment, as shown in Figure 6.

Figure 6. Electrical impedance signature acquired from the PZT patch (10 kHz–1 MHz).
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(2) The narrow frequency range test. From Figure 6, there is a sharp peak around 347.8 kHz
between the red dotted lines in the real part of the electrical impedance signature. According to the
Sauerbrey equation [31], the frequency shifts in the dominating peaks of the impedance signature of
the PZT patch are proportional to the square of its fundamental resonance frequency. It is expected
that some changes of the mechanical properties of the host structure may have caused some significant
variation in the resonance frequency shifts of the electro-mechanical impedance functions of the PZT
patch. To find the change in peak frequency value, a narrow frequency range from 250 kHz to 450 kHz
was used.

4. Experimental Results and Analysis

According to Table 1, 11 different loading scenarios were investigated with the pre-stress level
reduced from 30 MPa to 0 MPa. For each loading case, the electrical impedance signature of the PZT
transducer was directly acquired by the impedance analyzer. The real parts of the electrical impedance
for the eleven tests over the frequency range of 250 kHz to 450 kHz are shown in Figure 7. There is a
frequency shift at the peak frequency in Figure 7. However, with the development of the loss of the
pre-stress, the dominating frequency peak shifts back and forth, and the dominating frequency peak
cannot be used as an index to indicate pre-stress change.

Figure 7. Electrical impedance signature of real part acquired from the SW (250 kHz–450 kHz).

To reveal the looseness quantitatively, the normalized RMSD-based rock bolt looseness index was
used. With the help of Equation (5), the processed result is shown in Figure 8. The bolt looseness index
is 0 in the case of 30 MPa pre-tension (without the loss of any pre-stress); in the case of a rock bolt load
of 0 MPa (completely looseness), the rock bolt looseness index is 1. The indexes clearly show that bolt
looseness increases with reductions in applied torque. Figure 9 shows the experimental results of three
repeated experiments, which validate the reliability and repeatability of the proposed looseness index.
It is clear that the rock bolt pre-tension looseness index can effectively reflect the severity of the rock
bolt looseness.
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Figure 8. Normalized RMSD-based rock bolt looseness index from the first experiment.
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5. Conclusions

In this paper, a piezoceramic smart washer is proposed to monitor the pre-load or pre-stress loss of
a rock bolt. The authors propose a robust and feasible rock bolt looseness monitoring approach, which
is based on the electro-mechanical impedance method. A rock bolt specimen with a smart washer was
investigated under different pre-stress levels. Due to a structural stiffness reduction, the frequency
of the real part of the electrical impedance signature increased with the decrease in pre-stress levels.
Furthermore, a normalized RMSD bolt looseness index was applied to show the severity of rock bolt
pre-stress loss, and the proposed method successfully monitored the looseness level of the rock bolt,
as demonstrated experimentally. Future work will involve field testing of the proposed method, with
more testing sets to assess the feasibility of the proposed smart washer and looseness index.
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