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Abstract: This paper investigates the dynamic selection of an appropriate threshold for basic
Send-on-Delta (SoD) sampling strategies, given an available transmission rate to reduce the signal
tracking-error. The paper formulates the error-reduction principle and proposes an algorithm
that calculates, in real time, the amplitude threshold value (also called delta value) for a desired
mean transmission rate. The algorithm is implemented to be computed in a Send-on-Delta driver
and is tested with three signals that match the step response of a second order control system.
Comparison results with a conformant periodic transmission strategy reveals that it improves deeply
the tracking-error while maintaining the desired average throughput.
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1. Introduction

New paradigms in sensors and actuators data transmission strategies are topics of interest due to
the challenges that the increase in the amount of data presents in a completely inter-communicated
world. Cloud computing, Internet of Things (IoT), sensor networks, multimedia, teleoperation,
smart-phones and inter-vehicular communications are only a few examples of such a challenge.
The most used transmission strategy is the periodic sampling transmission strategy, where sensor
or controller data are periodically sent across networks and the parameter to be adjusted is the
transmission period. The motivation for this periodic sampling nature is that it is easy to be
implemented in computing environments, and there is a well known system theory around it.

On the other hand, amplitude sampling has grown in importance due its efficiency selecting
the data to be processed or to be sent across the networks. Basic amplitude sampling is focused on
transmitting a data packet when the value of the data deviates from a reference piece of data by a
known value called delta value, deadband or threshold. The utility of this sampling strategy is proved
by the implementation in real commercial sensors, like the EnOcean sensors [1], and its use is motivated
because it allows for sending much less data, maintaining a similar signal tracking-error performance.

The amplitude sampling technique is mentioned in the literature as the “send-on-delta“ method [2],
“deadband“ method [3], “event-triggering“, “event-sampling“ [4] or even “Lebesque sampling“ [5]. From now
on, we refer to this strategy as the send-on-delta (SoD) method. The most common SoD method uses
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a constant delta value (δ), and the reference data is the last sent one (xls); this SoD strategy is called
last-sent SoD or basic SoD and may be modeled by a send function S(t) like:

S(t) =

{
1 if ||xls − x(t)|| ≥ δ,
0 if ||xls − x(t)|| < δ,

(1)

where x(t) is the candidate data to be sent at instant t. In place of using the send function represented in
expression (1), some authors [6] use the function ‖xls − x(t)‖ − δ and employ the term trigger-function.

Apart from the basic SoD technique, there are some others, like the relative deadband, presented
in [7], inspired by Weber’s law in human sensibility, where the deadband value is proportional to the
value of the last-sent data (δ = c · xls); the network-based deadband [8,9] where the deadband value is
selected depending on the network status; the linear-predicted-data SoD [10] where the reference data is
a linear prediction calculated using the last-sent-data and the previous sampled data. Some other SoD
strategies are focused on the trigger function, for example the IAE-based SoD, where the driver sends
a sample if the sampling integral absolute error (IAE) is bigger than the deadband value [11], or the
Energy-error based SoD, where a data is sent if the energy of the error measured in the last sampling
interval is bigger than the deadband threshold [12]. In parallel, the SoD strategies are used to improve
collaborative challenges through data networks [13,14].

Periodic-sampling and Send-on-Delta sampling are not the only solutions to deal with the data
selection to be sent across the network. In the literature, we also find the ’adaptive sampling“ solutions.
As commented in [15], send-on-delta solutions differ from the adaptive-sampling in the way that both
selects the send instant; adaptive-sampling solutions does not monitor the data to be sent and compares
it with others (as done in the SoD solutions), but instead, the data send instant is determined by a timer
that is excited when an event occurs. The difference between these two transmission paradigms may
be found in the scientific literature under the more technical terms ”event-triggering“ (which refers to
the SoD solutions) and ”self-triggering“ (referred to the adaptive-sampling). A complete compilation
about event-based sampling is included in the book [16].

The advantages of using SoD are that it may save network resources maintaining an acceptable
application performance. Other resources saved by the SoD strategy are the battery consumption in
wireless sensor networks or the CPU load. Besides the savings on network consumption, the SoD
strategies may decrease the signal tracking-error [17,18], the system-error of control systems [4] or the
estimation-error if an estimator is used in networked control systems [19]; this would be achieved if the
average transmission rate remains the same as the transmission rate of a conforming periodic sampling
strategy [18]. An example of such a situation would occur in 3G/4G commercial data communications,
where the network operators sell an amount of data (D) to be sent monthly, which makes, in practical
implementations, a mean available bandwidth. In this case, the conforming periodic sampling strategy

would have a constant sampling rate of
D · 8

30 · 24 · 3600
bits/s, but the peak bandwidth is much bigger

(until 100 Mbps in 4G networks). The SoD sampling strategy may be used to try to reduce significantly
the signal tracking error, but maintaining the goal to send D bytes in one month.

Nevertheless, it is difficult to obtain a delta value for the basic SoD strategy given a desired
average transmission rate because it depends on the network performance, on the control system and
on the nature of the sampled signal, which is, in most cases, unpredictable. A preliminary attempt to
select dynamically a delta value for a simple control system is recently presented in [20], and, in this
paper, we formulate the bases, improve the behavior, and extend the results for general signal tracking.

The paper is organized as follows. This first section was an introduction to present the general
concepts of periodic sampling and send-on-delta (SoD) sampling. Section 2 studies the problems of
selecting a delta value if a mean allowable bandwith is given for the basic SoD strategy. The algorithm to
select dynamically a delta value is presented in detail in Section 3. Simulation results and comparative
analysis between the proposed solution and a conformant periodic sampling strategy are presented in
Section 4. Finally, in Section 5, the conclusions and future work are summarized.
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2. Problem Statement

Usually, SoD strategies stand to reduce the amount of data that should be transmitted through
a network to reduce resources. However, in some cases, the SoD strategy could be utilized by the
senders to reduce the tracking error in place of reducing the amount of sent messages. In this work,
we demonstrate that the tracking error generated by a basic SoD transmission strategy is in general
smaller than the one generated by a conformant periodic transmission strategy.

The problem is that it is very difficult to prevent the throughput λ of an unpredictable signal x(t)
given a fixed delta value δ, and, by extension, it is very difficult to obtain a fixed delta value given
a mean throughput λ.

From [17], the throughput λ of a monotonic continuous-time signal sampled periodically is given
by the formula:

λ =
|ẋ|max

εmax
, (2)

where |ẋ|max is the maximum of the absolute value of the signal time derivative and εmax is the upper
bound of the signal tracking error.

For a basic SoD (with delta value δ) applied to a monotonic continuous signal, the upper bound
of the signal tracking error matches the delta value. From [2], the upper and lower bounds of the basic
SoD strategy are given by the Formula (3):

λmax =
|ẋ|
δ

,

λmin =
|ẋ|
δ
− 2ν,

(3)

where ν is the local extrema density, that is, the average number of signal peaks (maxima and minima)
in a time unit, and |ẋ| is the average slope of the signal x(t) after an operation time of Top, given by

|ẋ| = 1
Top

∫ Top

0
|ẋ(τ)|dτ.

If the signal x(t) is monotonously increasing or decreasing, the limits in Equation (3) match each
other, and the relationship between δ and λ is fixed.

From Equation (3), given an average throughput λ, the maximum and minimum values for δ are
given by

δmin =
|ẋ|
λ

,

δmax =
|ẋ|

λ + 2ν
.

(4)

Assumption 1. From the Expression (4), if during the test duration, the signal is monotonically increasing
or decreasing, or has only a few maxima and minima per second compared to the average throughput (ν� λ),
equality (5) holds

δ =
|ẋ|
λ

. (5)
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Proposition 1. Based on Assumption 1, the basic Send-on-Delta transmission strategy generates a smaller
tracking error than a periodic transmission strategy with the same mean throughput.

Proof. For a periodic transmission strategy, the average throughput matches the instantaneous
throughput (λ = λ); therefore, from Equations (2) and (5):

δ

εmax
=
|ẋ|
|ẋ|max

.

From the properties of the expected value, it is always true that |ẋ| ≤ |ẋ|max. Therefore,

δ ≤ εmax. (6)

This result can be extended to no-monotonous signals by dividing the signal into monotonous
zones and maintaining the average throughput constant. If we define for the monotonous zone i:

• εi
max as the upper bound in error tracking for the periodic sampling strategy, and

• δi as the upper bound in error tracking for the SoD sampling strategy,

then εi
max ≥ δi ∀i.

Intuitively, this means that the basic SoD transmission strategy has in general a smaller tracking
error than the periodic transmission strategy for the same mean throughput.

2.1. Obtaining the Transmission-Rate Given a Delta Value.

Equation (5) presents an indeterminacy if δ = 0 due to the continuous nature of the signal x(t).
In practical implementations, discretized signals are used.

Assumption 2. Let us assume that the original raw signal x(t) is periodically discretized with sampling rate
sr = 1/T for computational use at the application layer. Samples are represented by x(kT) ≡ xk. After that, the
sample is delivered to the SoD driver that decides if it should be sent or not according to the send Function (1).
If sent, a packet contains one sample. Figure 1 may help to visualize this assumption. At reception, the SoD
driver uses the Zero Order Hold (ZOH) strategy, where the last received data is hold and delivered to the
application layer until a new data arrives.

Environment

Sensor

SoD driver

Application
Layer

Network

Figure 1. Discretized (xk) raw signal (x(t)).

Assumption 2 implies some consequences and clarifications:
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• In contrast to the original sampling rate sr = 1/T, we use the term transmission-rate or throughput
λ (in packets per second) to define the amount of messages in a time unit that will be sent after the
SoD strategy is applied by the SoD driver. Therefore, if there is not a SoD strategy implemented,
the transmission and the sampling rates are equivalent (sr = λ).

• Assumption 2 allows for defining the normalized throughput λ′ as the number of messages
in a time unit divided by the original periodic sampling rate sr of the signal (λ′ = λ/sr).
The normalized mean throughput λ′ is the mean throughput during the operation time, divided
by sr (λ′ = λ/sr).

• During the operation time Top, an amount of N samples are received by the SoD driver from the
application layer. Therefore, Top = NT.

• For a discretized signal xk ≡ x(kT), the value of |ẋ| after N samples is now

|ẋ|N =
1
N

N

∑
k=1

|xk − xk−1|
tk − tk−1

=
1

NT

N

∑
k=1
|xk − xk−1|.

Assumption 2 solves the indeterminacy of Equation (5) when δ = 0 by imposing operational
limits. If we define δmax and δmin as

δmax := max
0≤i<N
0≤j<N

|xi − xj|,

δmin := min
0≤i<N

|xi − xi+1|,

(7)

and define

cN =
|ẋ|N

sr
= T|ẋ|N =

1
N

N

∑
k=1
|xk − xk−1|, (8)

then the relationship between λ and δ may be synthesized in Equation (9), where λ′N is the mean
normalized throughput after sample N:

λ′N =



0 if δmax ≤ δ,

cN
δ

if δmin ≤ δ ≤ δmax,

1 if δ < δmin.

(9)

2.2. Obtaining a Delta Value Given a Mean Available Transmission-Rate

From Equation (9), given a normalized available average transmission-rate (λ′a) for an operation
time Top = NT , δ = δN can be expressed like:

δN =



δmin, if
cN

λ′a
≤ δmin,

cN

λ′a
, if δmin ≤

cN

λ′a
≤ δmax,

δmax, if δmax <
cN

λ′a
.

(10)

3. Practical Implementation

The sampling rate sr = 1/T at the application layer is known and the normalized available mean
transmission rate λ′a is given as the desired final result. Conversely, x(t) and, consequently, cN changes
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in an unpredictable way and so happens with λ′N that may not follow λ′a at all. Therefore, δN should
be calculated dynamically to achieve it. Relationship (10) is useful if the signal x(t) changes smoothly
due to the average value of cN , but the real nature of x(t) is unknown. However, some practical issues
should be taken into account.

3.1. Practical δ Limits

It is unfeasible to know the values of δmin and δmax based on Equation (7). Therefore, some practical
limits should be established. Taking into account that λmax is sr, and, therefore, λ′max = λ′max = 1,
the minimum value of δ is established as:

δm = cN . (11)

The maximum limit of δ can be established by a λmin value based on a maximum desired tracking
error or on limits given by transparency or stability issues if the x(t) signal has a teleoperation or
a control system nature. In these cases, the maximum value of δ is given by:

δM =
cN

λ′min
. (12)

3.2. Practical λ′a Implementation

The real average throughput after N samples (λN) is given by MsN /NT, where MsN is the number
of messages sent after an operation time of Top = NT time units. On the other side, the desired average
throughput (λa) could be given by MaN /NT, where MaN is the allowed number of messages to be
sent in Top. That means that the sender has a quantity of messages to send (MaN ) in an operation time
(Top = NT); However, since the operating time is not known in advance, the algorithm computations
are performed in fixed time windows (∆T).

Assumption 3. The whole operation time Top is an integer of ∆T:

Top = NT =
K

∑
i=1

∆T = K∆T.

Assumption 3 may be fulfilled if ∆T is small enough compared to Top and eliminates unnecessary
residual calculations.

Dividing calculations into K time windows, the average throughputs λN and λa may be replaced
by the amount of messages in ∆T time units, that is:

λN =
MsN

NT
=

1
K∆T

K
∑

i=1
Msi ,

λa =
MaN

NT
=

1
K∆T

K
∑

i=1
Ma∆T =

Ma∆T

∆T
,

(13)

where Msi is the amount of sent messages at the end of the i-th time-window and Ma∆T the amount
of allowed messages to be sent in ∆T. Since λa and ∆T are constants, so is Ma∆T . Therefore, λ′a is
replaced by:

λ′a =
T ·Ma∆T

∆T
.

Definition 1. The remaining number of messages during the i-th time-window Mri (t) is the difference between:
the real number of available messages to be sent at the start of the i-th time-window Mai , and the number of sent
messages during the i-th time-window Msi (t):

Mri (t) = Mai −Msi (t). (14)
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The real available number of messages to be sent Mai will be defined below.

Definition 2. The container number of messages at the end of the i-th time-window Mci is the sum of: Mri at
the end of the i-th time-window, and the remaining number of messages of previous time-windows:

Mci =
i

∑
k=1

Mrk (∆T). (15)

Definition 3. The real available number of messages to be sent at the start of the i-th time-window Mai is the
sum of: Ma∆T and Mci−1 :

Mai = Ma∆T + Mci−1 . (16)

Previous definitions have some remarks:

• t = 0 at the start and t = ∆T at the end of each time-window, that is, t ∈ [0, ∆T]. Mathematically,
t = NT mod ∆T, where N is the application sample number and T is the application sampling
period (see Assumption 2).

• for the first time-window (i = 1), Mc0 = 0 and, therefore, Ma1 = Ma∆T .
• Mri may have a negative value if Msi > Mai . Therefore, Mci may also have a negative value.

If Mci > 0 there is credit, that is, the sender can send more than the available number of messages
and, if Mci < 0, there is debt, that is, the sender should send if possible less than Mai messages.

From Equations (14) and (16),

Mri (t) = Ma∆T −Msi (t) + Mci−1 . (17)

Remark 1. If, at the end of the operation time, Mci tends to 0, that is,

K

∑
i=1

Mri

∣∣∣∣∣
K∆T→Top

→ 0,

then

λa =
K

∑
i=1

λai , (18)

where λai = Mai /∆T.

Taking into account Remark 1 and the central term of Equation (10), during the i-th time window,
the delta value is calculated in real-time as:

δN = δi(t) =
∆T − t

T ·Mri (t)
cN , (19)

where N matches NT = (i− 1)∆T + t.
In practical implementations, it could be recommended that the container messages would not be

available to be spent at the start of the time-window, because, in these cases, the δ(t) calculations may
oscillate too much from one window to the other.

To solve this practical issue, we propose a procedure to calculate Mri (t) presented below,
represented as:

Mri (t) = Ma∆T −Ms(t) + f (Mci−1 , Ms(t)), (20)

where f (Mci−1 , Ms(t)) is a function of the container messages updated every time a new message
is sent.

The procedure to calculate Mri (t) is presented in Procedure 1.
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Basically, for every time-window at the instant when a new message is sent, the procedure:

• does not decrease Mri if there is still a positive value in the container (credit, that is Mci > 0) and
this decreases the container, or

• decreases Mri twice if there is a negative value in the container (debt, that is Mci < 0) and increases
the container, or

• decreases Mri once if there is 0 in the container (Mci = 0).

The result of the procedure is replaced in Equation (19). Although Mri (t) may become 0 or
a negative value, it does not affect the δN results due to the limits in Equation (10).

Procedure 1 Calculate Mr

Mr = Ma∆T
Ms = 0
Mc = 0
t = 0
MessSent:
if Message sent then

Ms ← Ms + 1
Mr ← Mr − 1 // remaining messages decreases

if Mc > 0 then // if there are credit

Mr ← Mr + 1 // remaining messages increases

Mc ← Mc − 1 // credit decreases

goto NewWin.
else if Mc < 0 then // if there are debt

Mr ← Mr − 1 // remaining messages decreases

Mc ← Mc + 1 // debt decreases

NewWin:
if t ≥ ∆T then // A new time-window starts

Mc ← Mc + Mr
Mr = Ma∆T
Ms = 0
t = 0

goto MessSent.

3.3. Other Practical Issues

Equation (8) shows that, at the start of the algorithm, the delta value may change too fast following
cN when N is small. If, at the start of the algorithm, the signal is in a stationary state for N0 samples,
the cN0 value is small. Therefore, Equation (8) may be rewritten as:

cN =
1

N0 + N

(
cN0 +

N

∑
k=1
|xk − xk−1|

)
. (21)

This solution smooths the effect that could happen if, at the start of the algorithm, the signal
suddenly changes very fast and δ(t) grows accordingly.

Another issue is that, from Equation (19), if the cN variable grows too much, or if the Mri (t)
variable becomes too small (that is, if the predicted amount of data allowable to be sent is spent before
the time-window is finished), it is important to apply upper bounds for the delta value. In this case,
if the delta value exceeds the δM limit defined in Equation (12), it is reset to the average value of δ in
the N-th algorithm implementation given by:

δN−1 =
1

N − 1

N−1

∑
k=1

δk. (22)
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In the same way, at the end of the time-window (t = ∆T), from Equation (19), the value of δ(t)
may become too small if there are no messages sent (or too few). In this case, if the delta value is below
the δm limit defined in Equation (11), it is also reset to δN .

3.4. Summarizing the Algorithm

Expression (23) summarizes the proposed algorithm, where cN is given finally by Equation (21):

δN =



δN−1, if
∆T − t

T ·Mri (t)
cN ≤ δm,

∆T − t
T ·Mri (t)

cN , if δm ≤
∆T − t

T ·Mri (t)
cN ≤ δM,

δN−1, if δM <
∆T − t

T ·Mri (t)
cN ,

(23)

where t ∈ (0, ∆T), cN is calculated in Equation (21), δN−1 is calculated in Equation (22) and Mri (t) is
calculated applying the Procedure 1.

A schematic about the whole algorithm is illustrated in Figure 2.

Network

Application

    Layer

Calculate

Parameters:

Figure 2. δN algorithm.

4. Simulation

Simulations are performed with two main objectives: on the one side, the results of the simulations
have to show that the algorithm gets the desired mean available transmission rate λa for tested signals,
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and, on the other side, the proposed algorithm should feature a smaller signal tracking error at
reception than a conformant periodic sampling strategy.

Simulations are applied to three test signals. The signals are selected according to the unit step
responses for a second-order control system following Equation (24) with A = 1, φ = π/2 and
different ρ and µ parameters. Parameter ρ delimits the asymptotic contention of the overshoot and
undershoot, and µ delimits the number of oscillations before the settling time. For simplicity, we set ρ

to 1 (ρ = 1) for the three signals:

x(t) = A
(

1− eρt sin(µt + φ)

sin(φ)

)
. (24)

The first signal is an over-damped step-response, the second one is an under-damped
step-response and the last one is also an under-damped step response but with a high-oscillating
behaviour. The nature of the signals may have an important effect on the results, reflected not only by
the cN variable but in the number of sent messages (Ms) in the time-window. For example, for a signal
that changes rapidly during a short period but remains constant during a long period, the proposed
SoD sampling should perform significantly better than the periodic one; on the contrary, for a signal
that changes during the whole operation time, the proposed SoD sampling should perform worse than
before, but, in any case, based on Proposition 1, it has to perform better than the periodic one if the
delta value δ is well selected to match the desired throughput.

To observe the algorithm behavior in a long-time operation, the signals are periodically repeated,
using a repetition period of Tr = 20 s for the main tests. At the end of this section, some results with
different repetition periods are presented to observe the behaviour for different kinds of signals.

Simulations are performed using the network simulator NS2. Both extremes are connected through
a packet switched network with a bandwith of 10 Mbps and 1 ms delay between hosts. There is no
residual traffic in the network. We consider that the available transmission rate for each sender is
of 10 kbps and that the senders may take advantage of the whole available transmission rate over
1000 s. The raw original signal is sampled at 1000 pkt/s. We consider that the packet contains residual
information (control or other data) in addition to the sensed data. Therefore, the packet size is 125 bytes
and the available transmission rate is 10 pkt/s. The simulation parameters are presented in Table 1.

Table 1. Simulation parameters.

Test Signals x(t) =
(
1 − etsin(µt + π/2)

)
Over-damped Under-damped Under-damped High-Oscil.

µ = 0.25 µ = 2 µ = 16

Network Loop

Bandwith= 10 Mbps τ = 1 ms Full Duplex
Queue size = 2

Algorithm Parameters

λa = 10 kbps sr = 1000 pkt/s
λmin = 1 kbpspktsize = 125 Bytes T = 0.001 s

N0 = 104 ∆T = 1 s Toper = 1000 scN0 = 0.0 Ma∆T = 10 pkts

Figure 3 illustrates a detail of the sent signals comparing the periodic transmission with the
proposed SoD transmission strategy for λa = 10 kbps. The graph results show that the proposed SoD
algorithm tracks in a more accurate way the original signal for the three proposed test signals.
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The algorithm behavior is shown in Figures 4 and 5 using the under-damped High-Oscillating
test signal, which was the worst case. Figure 4 shows the results from Procedure 1 to calculate Mr,
where variables Ms and Mc are also drawn. As seen, Mc converges to 0 for long-time operation.
Figure 5 shows the |ẋ|N , δN and δN variables. Similar results are achieved for the over-damped and
under-damped signals.
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Figure 4. Algorithm behavior for the under-damped High-Oscillating signal. Details for the Ms, Mr

and Mc variables.
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Figure 5. Algorithm behavior for the under-damped High-Oscillating signal. Details for the |ẋ|N , δN

and δN variables.

The throughput and the error are illustrated in Figures 6 and 7. The bottom of Figure 6 shows the
throughput behavior during the whole testing time; the upper left corner shows a detail at the middle
of the testing time and finally the upper right corner shows the average value of the throughput during
the entire testing duration. As expected, the throughput is concentrated at the moments where the
signal changes faster, but the average throughput value converges to the desired average throughput
in long-time operations as seen in the upper right corner of the figure.
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Figure 7. Integral Absolute Error (IAE) results of the proposed algorithm and the conformant periodic
transmission for the three signals.

The tracking error is calculated comparing the original signal with the transmitted signal for the
two transmission strategies: the proposed SoD strategy and the conformant periodic transmission
strategy. That is, for the SoD strategy, the error is given by Expression (25), and, for the periodic
sampling strategy, the error is given by Expression (26):

e(t) =‖x1(t)δ=0 − x1(t)δ‖, (25)

e(t) =‖x1(t)sr=1000 − x1(t)sr=10‖. (26)

Note that x1(t)δ=0 = x1(t)sr=1000 represents the original signal, and x1(t)δ stands for the
transmitted signal after applying the SoD driver.
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In addition, the Integral Absolute Error (IAE(δ) =
∫ Tt

0
|e(τ)|dτ) is measured and presented in

Figure 7. This figure shows that the error measured using the SoD algorithm is much smaller than the
conformant periodic transmission strategy in long-time simulation intervals for the three tested signals.

Despite the graphs showing the effectiveness of the proposed algorithm, some numerical results
are given in Table 2.

Table 2. Results summary.

Proposed SoD δ(t) Algorithm

Over-Damped Under-Damped UD High Oscill

Average throughput (λN) 9,627 bps 9,634 bps 9,687 bps
Average δ 0.006538 0.008712 0.037178

IAE 1,249 1,660 6,946

Conforming Periodic Transmission

Over-Damped Under-Damped UD High Oscill

Used transmission-rate 10 kbps 10 kbps 10 kbps
IAE 3,637 5,083 25,628

Numerical results are calculated for the three signals with a repetition period Tr of 20 s. These results
reveal that the proposed algorithm performs well in long-time operation, and that the tracking error is
much smaller than the conformant periodic transmission strategy. However, as mentioned at the start of
this section, the nature of the test signals may affect the results, particularly the error results, mainly if
the signal spends a lot of time without changes. Therefore, Figure 8 presents an error comparison for the
three signals with Tr ∈ {5, 10, 15, 20} s. The vertical axis represents the ratio between the measured IAE
of the conformant periodic sampling and the proposed SoD sampling (IAEsr10 /IAEδ).
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Figure 8. IAE ratio (IAEsr10 /IAEδ) between the conformant periodic sampling and the SoD sampling
for different repetition periods.

In all of the cases, the proposed SoD sampling strategy performs better than the conformant
periodic sampling. Besides that for shorter repetition periods, the measured IAE for both strategies
are closer, the IAE for the periodic one is at least 1.5 times bigger than the proposed SoD, as expected
based on Proposition 1.

In spite of these results, the real throughput is difficult to adjust to match exactly the desired
throughput, especially at the start of the algorithm. Nevertheless, the results are satisfactory in
long-time operation for the three signals, matching more than 90% of the desired throughput 200 s
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after the start and matching more than 96% of the desired throughput at the end of the test times.
These results are very similar for the other repetition periods.

5. Conclusions

This paper presents an algorithm to reduce the signal tracking error taking advantage of the basic
Send-on-Delta (SoD) sampling strategy. Given a mean available bandwith, the paper demonstrates
that, for continuous signals, the SoD sampling strategy performs better than a conformant (same
available bandwith) periodic transmission. The algorithm is tested for three signals based on usual
step responses of second order control systems, and is then compared with the periodic transmission.
The tests compare two indicators: the tracking-error and the average-throughput. Results show that
the tracking-error is definitely smaller with the proposed method and that the average-throughput
is achieved in long-time operation. The fact that the average throughput is achieved in long-time
operation is due to the proper nature of the SoD technique, where samples are concentrated when
the signal changes faster; therefore, the throughput can not be uniform and has to be analyzed as
an average throughput in time, with more accurate results the longer the operation-time.

The results invite us to improve the algorithm behavior basically by minimizing the convergence
time of the mean throughput to the desired one. This could be achieved by changing some initial
parameters, parameters that are actually very few, to simplify the algorithm. Other SoD techniques,
such as the linear predicted SoD technique that could be very interesting for continuous signal tracking
as seen in [18], are being studied in order to also develop an algorithm to reduce the tracking-error
given a mean available transmission rate.

Finally, one of the main interests in developing the algorithm is to dynamically determine the
delta value to reduce the error in place of reducing the throughput if the available transmission rate is
dynamically shared by different senders—for example, for distributed sensor networks, multi-agent
systems or distributed systems in general.
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