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Abstract:



Recently, the sparse representation based classification methods have received particular attention in the classification of hyperspectral imagery. However, current sparse representation based classification models have not considered all the test pixels simultaneously. In this paper, we propose a hyperspectral classification method with spatial filtering and [image: there is no content] norm (SFL) that can deal with all the test pixels simultaneously. The [image: there is no content] norm regularization is used to extract relevant training samples among the whole training data set with joint sparsity. In addition, the [image: there is no content] norm loss function is adopted to make it robust for samples that deviate significantly from the rest of the samples. Moreover, to take the spatial information into consideration, a spatial filtering step is implemented where all the training and testing samples are spatially averaged with its nearest neighbors. Furthermore, the non-negative constraint is added to the sparse representation matrix motivated by hyperspectral unmixing. Finally, the alternating direction method of multipliers is used to solve SFL. Experiments on real hyperspectral images demonstrate that the proposed SFL method can obtain better classification performance than some other popular classifiers.
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1. Introduction


Over the past few decades, hyperspectral imagery has been widely used in different remote sensing applications owing to its high-resolution spectral information of the materials in the scene [1,2,3]. Various hyperspectral image classification techniques have been presented for a lot of real applications including material recognition, urban mapping and so on [4,5,6,7,8].



To date, a lot of hyperspectral image classification methods have been presented. Among them, the most representative method is the support vector machine (SVM) [9], which has shown desirable hyperspectral image classification performance. Recently, the sparse representation based classification methods have received a lot of attention in the area of image analysis [10,11,12,13,14], particularly in the classification of hyperspectral image. Chen et al. introduced a dictionary-based sparse representation framework for hyperspectral classification [15]. To be specific, a test pixel is sparsely represented by a few labeled training samples, and the class is determined as the one with the minimal class-specific representation error. In addition, Chen et al. also proposed the simultaneous orthogonal match pursuit (SOMP) to utilize the spatial information of hyperspectral data [15]. To take the additional structured sparsity priors into consideration, Sun et al. reviewed and compared several structured priors for sparse representation based hyperspectral image classification [16], which can exploit both the spatial dependences between the neighboring pixels and the inherent structure of the dictionary. In [17], Chen et al. extended the joint sparse representation to the kernel version for hyperspectral image classification, which can provide a higher classification accuracy than the conventional linear sparse representation algorithms. In addition, Liu et al. proposed a class-specific sparse multiple kernel learning framework for hyperspectral image classification [18], which determined the associated weights of optimal base kernels for any two classes and led to better classification performances. To take other spectral properties and higher order context information into consideration, Wang et al. proposed the spatial-spectral derivative-aided kernel joint sparse representation for hyperspectral image classification [19], and the derivative-aided spectral information can complement traditional spectral features without inducing the curse of dimensionality and ignoring discriminating features. Moreover, Li et al. proposed the joint robust sparse representation classification (JRSRC) method to take the sparse representation residuals into consideration, which can deal with outliers in hyperspectral classification [20]. To integrate the sophisticated prior knowledge about the spatial nature of the image, Roscher et al. proposed constructing a novel dictionary for sparse-representation-based classification [21], which can combine the characteristic spatial patterns and spectral information to improve the classification performance. In order to adaptively explore the spatial information for different types of spatial structures, Fu et al. proposed a new shape-adaptive joint sparse representation method for hyperspectral image classification [22], which can construct a shape-adaptive local smooth region for each test pixel. In order to capture the class-discriminative information, He et al. proposed a group-based sparse and low-rank representation to improve the dictionary for hyperspectral image classification [23]. To take different types of features into consideration, Zhang et al. proposed an alternative joint sparse representation by the multitask joint sparse representation model [24]. To overcome the high coherence of the training samples, Bian et al. proposed a novel multi-layer spatial-spectral sparse representation framework for hyperspectral image classification [25]. In addition, to take the class structure of hyperspectral image data into consideration, Shao et al. proposed a probabilistic class structure regularized sparse representation method to incorporate the class structure information into the sparse representation model [26].



It had been argued in [27] that the collaborative representation classification can obtain very competitive classification performance, while the time consumption was much lower than that of sparse representation. Thus, various collaborative representation methods had been proposed for hyperspectral image classification. Li et al. proposed the nearest regularized subspace (NRS) classifier by using the distance-weighted Tikhonov regularization [28]. Then, the Gabor filtering based nearest regularized subspace classifier had been proposed to exploit the benefits of using spatial features [29]. Collaborative representation with Tikhonov regularization (CRT) had also been proposed for hyperspectral classification [30]. The main difference between NRS and CRT was that the NRS only used within-class training data for collaborative representation while the latter adopted all the training data simultaneously [30]. In [31], the kernel version of a collaborative representation was proposed and denoted as kernel collaborative representation classifier (KCRC). In addition, Li et al. proposed proposed combining the sparse representation and collaborative representation for hyperspectral image classification to make a balance between sparse representation and collaborative representation in the residual domain [32]. Moreover, Sun et al. combined the active learning and semi-supervised learning to improve the classification performance when given a few initial labeled samples, and proposed the extended random walker [33] algorithm for the classification of hyperspectral image.



Very recently, some deep models had been proposed for hyperspectral image classification [34]. To the best of our knowledge, Chen et al. proposed a deep learning method named stacked autoencoder for hyperspectral image classification in 2014 [35]. Recently, convolutional neural networks have been very popular in pattern recognition, computer vision and remote sensing. Convolutional neural networks usually contained a number of convolutional layers and a classification layer, which can learn deep features from the training data and exploit spatial dependence among them. Krizhevsky et al. trained a large convolutional neural networks to classify the 1.2 million high-resolution images in the ImageNet, which had obtained superior image classification accuracy [36]. Since then, convolutional neural networks had been applied for hyperspectral image classification [37,38], which had achieved desirable classification performance. To take the spatial information into consideration, a novel convolutional neural networks framework for hyperspectral image classification using both spectral and spatial features was presented [39]. In addition, Aptoula et al. proposed a combined strategy of both attribute profiles and convolutional neural networks for hyperspectral image classification [40]. To overcome the imbalance between dimensionality and the number of available training samples, Ghamisi et al. proposed a self-improving band selection based convolutional neural networks method for hyperspectral image classification [41]. In addition, some patch based convolutional neural networks hyperspectral image classification methods had also been proposed, such as the method in [42,43]. In order to achieve low computational cost and good generalization performance, Li et al. proposed combining convolutional neural networks with extreme learning machines for hyperspectral image classification [44]. Furthermore, Shi et al. proposed a 3D convolutional neural networks (3D-CNN) method for hyperspectral image classification that can take both the spectral and spatial information into consideration [45].



However, all of the above mentioned methods, whether they are based on sparse representation, collaborative representation or deep models, adopt the pixel-wise classification strategy, i.e., they do not consider all the pixels simultaneously. In [46], theoretical work has demonstrated that multichannel joint sparse recovery is superior to applying standard sparse reconstruction methods to each single channel individually, and the probability of recovery failure decays exponentially with the increase in the number of channels. In addition, the probability bounds still hold true even for a small number of signals. For the classification of hyperspectral images, the multichannel means recovering multi hyperspectral pixels simultaneously. Therefore, inspired by the theoretical work in [46], in this paper, we propose a hyperspectral classification method with spatial filtering and [image: there is no content] norm (SFL) to deal with all the test samples simultaneously, which can not only take much less time but also obtain comparable good or better classification performance. First, the [image: there is no content] norm regularization is adopted to select correlated training samples among the whole training data set. Meanwhile, the [image: there is no content] norm loss function which is robust for outliers is also implemented. Second, we adopt the simple strategy in [47] to exploit the local continuity, and all the training and testing samples are spatially averaged with their nearest neighbors to take the spatial information into consideration, which can be seen as spatial filtering. Third, the non-negative constraint is added in the sparse representation coefficient matrix motivated by hyperspectral unmixing. Finally, to solve SFL, we use the alternating direction method of multipliers [48], a simple but powerful algorithm that is well suited to distributed convex optimization.



The main contribution of this work lies in proposing an SFL for hyperspectral classification that can deal with all the test pixels simultaneously. Experiments on real hyperspectral images demonstrate that the proposed SFL method can obtain better classification performance than some other popular classifiers.




2. Related Work


In this section, we briefly introduce the classical sparse representation for the classification of hyperspectral images, which can be found in [16]. It is assumed that the pixels in the same class lie in the same low-dimensional subspace, and it has K different classes. Therefore, for an unknown test sample [image: there is no content], where B denotes the the number of bands, [image: there is no content] is assumed to lie in the union of the K different subspaces, which can seen as the sparse linear combination of all the training samples


y=A1x1+A2x2+⋯+AKxK=[A1⋯AK]x1⋮xK=Ax.



(1)







Therefore, given the dictionary of training samples [image: there is no content], where M is the number of training samples. For an unknown test sample [image: there is no content], the sparse representation coefficient vector [image: there is no content] can be obtained by solving the optimization problem as follows:


x^=argminx∥y−Ax∥22+λ∥x∥1,



(2)




where [image: there is no content] consists of the class subdictionaries [image: there is no content], and λ is the regularization parameter. In addition, Equation (2) can be solved by the alternating direction method of multipliers in [49]. Thus, the class label of [image: there is no content] is determined as the one with the minimal class-specific reconstruction residual:


Class(y)=argmink=1,⋯,K∥y−Akx^k∥22.



(3)








3. Proposed Classifiers


In [46], it has been proved that, with the increase in the number of channels, the failure probability of sparse reconstruction decreases exponentially. Thus, multichannel sparse reconstruction is superior to single channel sparse reconstruction. In addition, the probability bounds are valid even for a small number of signals. Based on this theory, we deal with all the test samples simultaneously, and the proposed SFL classification method will be briefly described.



Let Y=[y1,y2,⋯,yN]∈RB×N, where [image: there is no content] denotes the columns of [image: there is no content], and N denotes the number of test pixels. To deal with all the test pixels simultaneously, it is natural that the sparse representation coefficient matrix X=[x1,x2,⋯,xN]∈RM×N for all the test pixels can be obtained by solving the optimization problem as follows:


X^=argminX∥Y−AX∥F2+λ∥X∥1,



(4)




which also can be solved by the alternating direction method of multipliers in [49]. [image: there is no content] represents the matrix Frobenius norm, which is equal to the Euclidean norm of the vector of singular values, i.e.,


[image: there is no content]



(5)




where [image: there is no content] ([image: there is no content]) denotes the singular value of [image: there is no content]. After the optimized [image: there is no content] is obtained, the classes of all test pixels can be obtained by the minimum class reconstruction error:


Class(yn)=argmink=1,⋯,K∥yn−Akxn^k∥22,n=1,⋯,N.



(6)







However, Equation (4) adopts the pixel-wise independent regression, which ignores the correlation among the whole training data set. Recent research shows that the high-dimensional data space is smooth and locally linear, and it has been versified in image reconstruction and classification problems [50,51]. For joint consideration of the classification of neighborhoods, in this paper, we introduce the [image: there is no content] norm regularization and adapt it to extract correlated training samples among the whole training data set with joint sparsity, which is defined as follows:


[image: there is no content]



(7)







The [image: there is no content] norm was first introduced by Ding et al. [52], which makes the traditional principal component analysis more robust for outliers. The outliers are defined as data points that deviate significantly from the rest of data. Traditional principal component analysis optimizes the sum of squared errors, since the few data points that have large squared errors will dominate the sum. Therefore, the traditional principal component analysis is sensitive to outliers. It has been shown that minimizing the [image: there is no content] norm is more robust and can resist a larger proportion of outliers compared with quadratic [image: there is no content] norms [53]. The [image: there is no content] norm is identical to a rotational invariant [image: there is no content] norm, and the solution of [image: there is no content] norm based robust principal component analysis is the principal eigenvectors of a more robust re-weighted covariance matrix, which can alleviate the effects of outliers. In addition, the [image: there is no content] norm has the advantage of being rotation invariant compared with the [image: there is no content] norm [52,54,55], i.e., applying the same rotation to all points has no effect on its performance. Due to the above-mentioned advantages, the [image: there is no content] norm has been applied in feature selection [56], multi-task learning [57], multi-kernel learning [58], and non-negative matrix factorization [59]. Nie et al. [56] introduced the [image: there is no content] norm to feature selection, and they used [image: there is no content] norm regularization to select features across all data points with joint sparsity. The [image: there is no content] norm based loss function is used to remove outliers, and the feature selection process is proved to be effective and efficient.



Similarly, we adopt the [image: there is no content] norm regularization to select correlated training samples among the whole training data set with joint sparsity for hyperspectral image classification. Thus, the corresponding optimization problem is as follows:


X^=argminX∥Y−AX∥F2+λ∥X∥2,1,



(8)




which can be solved by the alternating direction method of multipliers in [60]. This model can be seen as an instance of the methodology in [61], which can impose sparsity across the pixels both at the group and individual levels. In addition, to make it more robust for outliers, the [image: there is no content] norm loss function is adopted. Thus, the corresponding optimization problem is as follows:


X^=argminX∥Y−AX∥2,1+λ∥X∥2,1.



(9)







Due to limited resolution of hyperspectral image sensors and the complexity of ground materials, mixed pixels can easily be found in hyperspectral images. Therefore, a hyperspectral unmixing step is needed [62,63]. Hyperspectral unmixing is a process to identify the pure constituent materials (endmembers) and estimate the proportion of each material (abundance) [64]. The linear mixture model has been prevalently used in hyperspectral unmixing, and the abundance is considered to be non-negative in a linear mixture model [65]. If we deem [image: there is no content] as the spectral library consisting of endmembers, then [image: there is no content] can be seen as the abundance matrix. Therefore, [image: there is no content] is also non-negative. When adding the non-negative constraint into the sparse representation matrix, the corresponding optimization problem is as follows:


X^=argminX≥0∥Y−AX∥F2+λ∥X∥2,1,



(10)






X^=argminX≥0∥Y−AX∥2,1+λ∥X∥2,1.



(11)







In addition, since the spectral signatures of neighboring pixels are highly correlated, which make them belong to the same material with high probability, we thus adopt the simple strategy in [47] to exploit the local continuity, and all the training and testing samples are spatially averaged with their nearest neighbors to take the spatial information into consideration, which can be seen as spatial filtering. Moreover, when N=1, it is easy to see that Equation (8) reduces to Equation (2), and Equation (9) reduces to the optimization problem as follows:


x^=argminx∥y−Ax∥1+λ∥x∥1.



(12)







To sum up, the detailed procedure of our proposed method can be seen from Figure 1. Finally, to solve the optimization problem from Equation (9) to Equation (12), Equation (10) can be solved by the alternating direction method of multipliers in [60], and Equations (9) and (12) are special cases of Equation (11). Thus, it comes down to solving Equation (11). For simplification, Equation (11) can be written as:


minX∥AX−Y∥2,1+λ∥X∥2,1+lR+(X),



(13)




where [image: there is no content] is the indicator function of nonnegative quadrant [image: there is no content], and [image: there is no content] is the i-th column of [image: there is no content]. If [image: there is no content] belongs to the nonnegative quadrant, then [image: there is no content] is zero. If not, it is [image: there is no content].


Figure 1. Flow chart of the proposed method.
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In order to solve Equation (11), the alternating direction method of multipliers [48] method is implemented. By introducing auxiliary variables [image: there is no content], [image: there is no content] and [image: there is no content], Equation (11) could be rewritten as:


minX∥P∥2,1+λ∥W∥2,1+lR+(X),s.t.AQ−Y=P,Q=W,Q=A.



(14)







A compact version of it is:


minV,Qg(V)s.t.GQ+BV=Z,



(15)




where [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] is the unit matrix. Thus, the augmented Lagrangian function could be expressed as:


[image: there is no content]



(16)




where [image: there is no content], [image: there is no content] stands for the Lagrange multipliers. In order to update [image: there is no content], we solve


Pk+1=argminP∥P∥2,1+μ2∥AQk−Y−P−Λ1k∥F2,



(17)




and its solution is the famous vector soft threshold operator [10], which updates each row independently


[image: there is no content]



(18)




where [image: there is no content], and the vect-soft-threshold function [image: there is no content]. To update [image: there is no content], we solve


Wk+1=argminWλ∥W∥2,1+μ2∥Qk−W−Λ2k∥F2,



(19)




and its solution is also the vector soft threshold operator [10]:


[image: there is no content]



(20)




where [image: there is no content].



To update [image: there is no content], we solve


Xk+1=argminXlR+(X)+μ2∥Qk−X−Λ3k∥F2=max(Qk−Λ3k,0).



(21)







To update [image: there is no content], we solve


Qk+1=argminQ∥AQ−Y−Pk+1−Λ1k∥F2+∥Q−Wk+1−Λ2k∥F2+∥Q−Xk+1−Λ3k∥F2,=(ATA+2I)−1[AT(Y+Pk+1+Λ1k)+Wk+1+Λ2k+Xk+1+Λ3k].



(22)







The stopping criterion is [image: there is no content], where ε is the error threshold, and J and K are the number of rows and columns of [image: there is no content]. μ is updated in the same way as [48], which keeps the ratio between the alternating direction method of multiplier primal norms and dual residual norms within a given positive interval. Based on this, we can get Proposition 1, whose proof of convergence is given in [48].



Proposition 1.

Function g in Equation (15) is closed, proper, and convex. If there exist solutions [image: there is no content] and [image: there is no content], then iterative sequence [image: there is no content] and [image: there is no content] converge to [image: there is no content] and [image: there is no content], respectively. If not, at least one of [image: there is no content] and [image: there is no content] diverge [48].






4. Experiments


4.1. Experimental Data


Two datasets are used in the experiment. The first dataset is Indiana Pines obtained by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) in 1992. The image size is 145 × 145, and 220 bands are taken in the spectral range from 0.4–2.5 [image: there is no content]m. After removal of water absorption bands (No. 104–108, 150–163, 220), 200 bands are used, and the ground truth image is shown in Figure 2a. There are 16 material classes in Indiana Pines and 10,249 labeled samples. In addition, 1027 samples (about 10%) are used as training data, as shown in Table 1. Thus, the rest is used for testing.


Figure 2. Ground truth image of (a) Indian Pines; (b) Pavia University.
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Table 1. Sixteen ground-truth classes in Aviris Indian Pines and the training and test sets for each class.







	
Class

	
Samples




	
No.

	
Name

	
Train

	
Test






	
1

	
Alfalfa

	
5

	
41




	
2

	
Corn-notill

	
143

	
1285




	
3

	
Corn-min

	
83

	
747




	
4

	
Corn

	
24

	
213




	
5

	
Grass/Pasture

	
48

	
435




	
6

	
Grass/Trees

	
73

	
657




	
7

	
Grass/Pasture-mowed

	
3

	
25




	
8

	
Hay-windrowed

	
48

	
430




	
9

	
Oats

	
2

	
18




	
10

	
Soybeans-notill

	
97

	
875




	
11

	
Soybeans-min

	
246

	
2209




	
12

	
Soybeans-clean

	
59

	
534




	
13

	
Wheat

	
21

	
184




	
14

	
Woods

	
127

	
1138




	
15

	
Buildings-Grass-Trees-Drives

	
39

	
347




	
16

	
Stone-Steel Towers

	
9

	
84










The second dataset is Pavia University obtained by a Reflective Optics System Imaging Spectrometer (ROSIS) in 2001 at Paiva University, Pavia, Italy. The size of the image is 610 × 340 with a spatial resolution of 1.3 m. The number of bands is 103, and the ground truth image is shown in Figure 2b. There are nine classes and 42,776 labeled samples, 426 of them (about 1%) are chosen as the training data, and the others are used as test data, as shown in Table 2.



Table 2. Nine classes in the University of Pavia and the training and test sets for each class.







	
Class

	
Samples




	
No

	
Name

	
Train

	
Test






	
1

	
Asphalt

	
66

	
6565




	
2

	
Meadows

	
186

	
18,463




	
3

	
Gravel

	
21

	
2078




	
4

	
Trees

	
31

	
3033




	
5

	
Metal sheets

	
13

	
1332




	
6

	
Bare soil

	
50

	
4679




	
7

	
Bitumen

	
13

	
1317




	
8

	
Bricks

	
37

	
3645




	
9

	
Shadows

	
9

	
938











4.2. Parameter Setting


In experiments, we mainly compare the classification performance when using the pixel-wise strategy and dealing with all the test pixels simultaneously. In addition, we also made a step-by-step comparison by adding or removing spatial filtering and/or constraints to see which step’s contribution is more important. For these methods, there are mainly five parameters: i.e., the neighbor size T, the regularization parameter λ, the Lagrange multiplier regularization parameter μ, the error tolerance ε and the maximum number of iteration. The neighbor size T and the regularization parameter λ play an important role in the proposed method, which control the size of spatial filtering and the trade-off between fidelity to the data and sparsity of the solution, respectively. While the Lagrange multiplier regularization parameter μ, the error tolerance ε and the maximum number of iteration, which have lesser impact on the efficiency of the corresponding algorithms, are set to a fixed value, i.e., [image: there is no content], [image: there is no content], and the maximum number of iteration is 1000. For the neighbor size T, we use the same parameter setting in [16]. For the Indian Pine data set, a spatial window of [image: there is no content] (T = 81) is adopted, which is due to this image consisting of mostly large homogeneous regions. For the University of Pavia data set, a spatial window of [image: there is no content] (T = 25) is used, which is due many narrow regions being present in this image. The regularization parameter λ is chosen from the given intervals {[image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]}.



Figure 3 shows the performance of overall accuracy as a function of the regularization parameter λ using the hyperspectral image of Indian Pines and Pavia University. For convenience, the “Spatial Filtering” and “Non-negative Constraint” are abbreviated as “SF” and “NC”, respectively. For example, for the “[image: there is no content]+[image: there is no content]+SF+NC”, the first “[image: there is no content]” denotes the loss function norm, the second “[image: there is no content]” denotes the regularization term norm, “SF” denotes using the spatial filtering, and “NC” denotes using the non-negative constraint. Thus, they are the same as the abbreviation of the other compared methods. It can be seen from Figure 3 that the overall accuracy remains stable when [image: there is no content]. It then decreases when [image: there is no content]. In addition, “[image: there is no content]+[image: there is no content]+SF+NC” and “[image: there is no content]+[image: there is no content]+SF” have much better overall accuracy than “[image: there is no content]+[image: there is no content]+NC” and “[image: there is no content]+[image: there is no content]”, respectively, which demonstrate that it is significant to improve the overall accuracy when taking the spatial filtering into consideration. Moreover, “[image: there is no content]+[image: there is no content]+SF+NC” and “[image: there is no content]+[image: there is no content]+NC” have better overall accuracy than “[image: there is no content]+[image: there is no content]+SF” and “[image: there is no content]+[image: there is no content]”, respectively, which demonstrate that it helps to improve the overall accuracy when taking the non-negative constraint into consideration. Furthermore, the elevation of overall accuracy when using the spatial filtering is much larger than those when using the non-negative constraint, which suggests that the spatial filtering has a larger effect on the overall accuracy than the non-negative constraint.


Figure 3. Performance of overall accuracy as a function of the parameter λ using the hyperspectral image of (a) Indian Pines; (b) Pavia University.
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4.3. Classification Performance


The experiments are performed on a desktop with 3.5 GHz Intel Core CPU, 64 GB memory and Matlab Code. To evaluate the classification performance of different methods, the overall accuracy, average accuracy and kappa statistic [16] are used to evaluate the performances of these methods. Table 3 and Table 4 show the classification performances for Indian Pines data set when using the pixel-wise strategy and dealing with all the test pixels simultaneously, respectively. It can be seen from Table 3 and Table 4 that methods using the spatial filtering generally obtain better overall accuracy, average accuracy and kappa statistics than those without spatial filtering. For example, “[image: there is no content]+[image: there is no content]+SF+NC” and “[image: there is no content]+[image: there is no content]+SF” have much better overall accuracy than “[image: there is no content]+[image: there is no content]+NC” and “[image: there is no content]+[image: there is no content]”, respectively, which demonstrates that it helps a lot to improve overall accuracy by using the spatial filtering. In addition, methods using the non-negative constraint generally obtain better overall accuracy than those without non-negative constraints. For example, “[image: there is no content]+[image: there is no content]+SF+NC” and “[image: there is no content]+[image: there is no content]+NC” have better overall accuracy than “[image: there is no content]+[image: there is no content]+SF” and “[image: there is no content]+[image: there is no content]”, respectively, which demonstrates that it helps to improve overall accuracy by using the non-negative constraint. It also can be clearly seen that the spatial filtering has a larger effect on the classification performance than the non-negative constraint. Moreover, methods using [image: there is no content] norm regularization term can generally obtain better classification performance than methods using [image: there is no content] norm regularization term, for example, “F+[image: there is no content]+SF+NC” and “F+[image: there is no content]” generally have better overall accuracy than “F+[image: there is no content]+SF+NC” and “F+[image: there is no content]”, respectively, which demonstrate that it is beneficial to select correlated training samples among the whole training data set, and can impose sparsity across the pixels both at the group and individual levels. Furthermore, methods using [image: there is no content] norm loss function can generally obtain better classification performance than methods using F norm loss function. For example, “[image: there is no content]+[image: there is no content]+SF+NC” and “[image: there is no content]+[image: there is no content]” generally have better overall accuracy than “F+[image: there is no content]+SF+NC” and “F+[image: there is no content]”, respectively, which demonstrate that the [image: there is no content] norm loss function is more robust for outliers than F norm loss function. Table 5 and Table 6 show the classification performances for Pavia University data set when using the pixel-wise strategy and dealing with all the test pixels simultaneously, respectively. We can also obtain the above-mentioned conclusion from Table 5 and Table 6 when using the Pavia University data. In addition, from Table 3, Table 4, Table 5 and Table 6, it can be observed that these methods when dealing with all the test pixels simultaneously can obtain comparable or better overall accuracy than these regression based pixel-wise sparse representation methods, and they are much faster than these pixel-wise sparse representation methods, which demonstrates that it is significant to considerer all the test pixels simultaneously. Figure 4 and Figure 5 show the classification maps for the Indian Pines and Pavia University data sets, respectively, which can give a visual comparison between different methods.


Figure 4. Classification maps for the Indian Pines data set. (a) [image: there is no content]+[image: there is no content]; (b) [image: there is no content]+[image: there is no content]+NC; (c) [image: there is no content]+[image: there is no content]+SF; (d) [image: there is no content]+[image: there is no content]+SF+NC; (e) [image: there is no content]+[image: there is no content]; (f) [image: there is no content]+[image: there is no content]+NC; (g) [image: there is no content]+[image: there is no content]+SF; (h) [image: there is no content]+[image: there is no content]+SF+NC; (i) F+[image: there is no content]; (j) F+[image: there is no content]+NC; (k) F+[image: there is no content]+SF; (l) F+[image: there is no content]+SF+NC; (m) F+[image: there is no content]; (n) F+[image: there is no content]+NC; (o) F+[image: there is no content]+SF; (p) F+[image: there is no content]+SF+NC; (q) [image: there is no content]+[image: there is no content]; (r) [image: there is no content]+[image: there is no content]+NC; (s) [image: there is no content]+[image: there is no content]+SF; (t) [image: there is no content]+[image: there is no content]+SF+NC (SFL).



[image: Sensors 17 00314 g004]





Figure 5. Classification maps for the Pavia University data set. (a) [image: there is no content]+[image: there is no content]; (b) [image: there is no content]+[image: there is no content]+NC; (c) [image: there is no content]+[image: there is no content]+SF; (d) [image: there is no content]+[image: there is no content]+SF+NC; (e) [image: there is no content]+[image: there is no content]; (f) [image: there is no content]+[image: there is no content]+NC; (g) [image: there is no content]+[image: there is no content]+SF; (h) [image: there is no content]+[image: there is no content]+SF+NC; (i) F+[image: there is no content]; (j) F+[image: there is no content]+NC; (k) F+[image: there is no content]+SF; (l) F+[image: there is no content]+SF+NC; (m) F+[image: there is no content]; (n) F+[image: there is no content]+NC; (o) F+[image: there is no content]+SF; (p) F+[image: there is no content]+SF+NC; (q) [image: there is no content]+[image: there is no content]; (r) [image: there is no content]+[image: there is no content]+NC; (s) [image: there is no content]+[image: there is no content]+SF; (t) [image: there is no content]+[image: there is no content]+SF+NC (SFL).



[image: Sensors 17 00314 g005]






Table 3. Overall Accuracy, Average Accuracy, Kappa Statistic and Time of the Indian Pines data set when using pixel-wise strategy.







	

	
Spatial Filtering

	
No

	
No

	
Yes

	
Yes

	
No

	
No

	
Yes

	
Yes




	
Method

	
Non-Negative Constraint

	
No

	
Yes

	
No

	
Yes

	
No

	
Yes

	
No

	
Yes




	

	
Norm

	
[image: there is no content]+[image: there is no content]

	
[image: there is no content]+[image: there is no content]






	

	
1

	
14.63

	
39.02

	
95.12

	
100.00

	
17.07

	
53.66

	
95.12

	
100.00




	

	
2

	
67.16

	
73.07

	
97.90

	
99.84

	
68.40

	
76.19

	
97.74

	
99.46




	

	
3

	
36.68

	
56.22

	
92.90

	
97.32

	
37.08

	
58.37

	
96.39

	
97.19




	

	
4

	
20.66

	
33.33

	
97.18

	
97.18

	
21.13

	
30.05

	
96.71

	
98.12




	

	
5

	
75.63

	
90.11

	
96.78

	
99.54

	
76.09

	
91.49

	
96.09

	
99.31




	

	
6

	
86.15

	
94.67

	
95.89

	
99.39

	
87.52

	
96.04

	
98.63

	
99.70




	

	
7

	
4.00

	
24.00

	
32.00

	
84.00

	
4.00

	
32.00

	
36.00

	
80.00




	

	
8

	
97.67

	
100.00

	
100.00

	
100.00

	
97.91

	
99.77

	
100.00

	
100.00




	
Class

	
9

	
5.56

	
11.11

	
38.89

	
55.56

	
5.56

	
16.67

	
33.33

	
83.33




	

	
10

	
38.86

	
29.14

	
95.09

	
95.43

	
38.29

	
32.80

	
96.46

	
96.34




	

	
11

	
67.22

	
80.62

	
97.96

	
97.69

	
67.90

	
81.58

	
98.28

	
98.46




	

	
12

	
49.81

	
34.46

	
97.19

	
97.38

	
49.06

	
39.89

	
97.94

	
97.75




	

	
13

	
76.09

	
81.52

	
91.30

	
94.02

	
76.63

	
88.04

	
90.22

	
95.65




	

	
14

	
96.84

	
98.59

	
99.12

	
100.00

	
97.01

	
98.95

	
99.38

	
100.00




	

	
15

	
39.77

	
31.41

	
96.54

	
96.54

	
39.48

	
36.02

	
98.56

	
98.85




	

	
16

	
91.67

	
92.86

	
85.71

	
94.05

	
91.67

	
92.86

	
91.67

	
92.86




	
Overall Accuracy (%)

	
65.63

	
71.32

	
96.64

	
98.06

	
66.07

	
73.34

	
97.44

	
98.47




	
Average Accuracy (%)

	
54.27

	
60.64

	
88.10

	
94.25

	
54.68

	
64.02

	
88.91

	
96.06




	
Kappa Statistic

	
0.603

	
0.667

	
0.962

	
0.978

	
0.608

	
0.690

	
0.971

	
0.983




	
Time (s)

	
5536

	
5613

	
4953

	
4832

	
30,168

	
31,843

	
32,643

	
32,998










Table 4. Overall Accuracy, Average Accuracy, Kappa Statistic and Time of the Indian Pines data set when dealing with all the test pixels simultaneously.







	

	
Spatial Filtering

	
No

	
No

	
Yes

	
Yes

	
No

	
No

	
Yes

	
Yes

	
No

	
No

	
Yes

	
Yes




	
Method

	
Non-Negative Constraint

	
No

	
Yes

	
No

	
Yes

	
No

	
Yes

	
No

	
Yes

	
No

	
Yes

	
No

	
Yes




	

	
Norm

	
F+[image: there is no content]

	
F+[image: there is no content]

	
[image: there is no content]+[image: there is no content]






	

	
1

	
26.83

	
14.63

	
95.12

	
100.00

	
36.59

	
31.71

	
95.12

	
100.00

	
36.59

	
80.49

	
100.00

	
100.00




	

	
2

	
49.34

	
67.00

	
98.13

	
99.84

	
65.21

	
63.42

	
97.82

	
99.30

	
69.57

	
66.54

	
99.46

	
99.47




	

	
3

	
50.87

	
34.27

	
95.72

	
97.32

	
38.96

	
44.44

	
94.78

	
96.52

	
44.18

	
69.75

	
97.19

	
97.86




	

	
4

	
14.08

	
22.54

	
97.18

	
97.18

	
22.54

	
21.60

	
98.12

	
100.00

	
27.70

	
31.46

	
97.65

	
97.65




	

	
5

	
79.77

	
76.32

	
97.47

	
99.54

	
85.98

	
83.68

	
97.01

	
98.85

	
85.06

	
91.26

	
99.31

	
99.31




	

	
6

	
93.00

	
87.21

	
97.26

	
99.39

	
93.46

	
94.22

	
98.02

	
99.54

	
95.89

	
98.48

	
99.70

	
99.85




	

	
7

	
20.00

	
4.00

	
52.00

	
84.00

	
4.00

	
16.00

	
52.00

	
84.00

	
8.00

	
40.00

	
80.00

	
92.00




	

	
8

	
99.07

	
97.91

	
100.00

	
100.00

	
99.77

	
99.53

	
100.00

	
100.00

	
100.00

	
99.53

	
100.00

	
100.00




	
Class

	
9

	
5.56

	
5.56

	
33.33

	
55.66

	
5.56

	
11.11

	
83.33

	
100.00

	
5.56

	
22.22

	
83.33

	
100.00




	

	
10

	
28.91

	
38.74

	
95.89

	
95.43

	
25.14

	
26.06

	
96.69

	
96.91

	
31.54

	
49.49

	
96.34

	
97.71




	

	
11

	
78.86

	
67.81

	
98.37

	
97.69

	
80.81

	
76.28

	
98.14

	
98.78

	
78.32

	
83.88

	
98.46

	
98.64




	

	
12

	
31.27

	
50.19

	
97.75

	
97.38

	
32.21

	
34.08

	
97.75

	
98.69

	
41.01

	
63.86

	
97.75

	
98.50




	

	
13

	
74.46

	
78.80

	
89.67

	
94.02

	
87.50

	
82.61

	
90.76

	
96.20

	
94.02

	
98.37

	
95.65

	
97.28




	

	
14

	
98.33

	
96.49

	
99.21

	
100.00

	
98.24

	
97.98

	
98.95

	
99.91

	
98.15

	
98.51

	
100.00

	
100.00




	

	
15

	
25.94

	
38.90

	
98.27

	
96.54

	
36.31

	
33.14

	
97.69

	
98.56

	
42.07

	
44.09

	
98.85

	
98.85




	

	
16

	
92.86

	
88.10

	
84.52

	
94.05

	
88.10

	
94.05

	
84.52

	
88.10

	
91.67

	
96.43

	
92.86

	
92.86




	
Overall Accuracy (%)

	
65.42

	
65.67

	
97.31

	
98.49

	
67.96

	
71.49

	
97.41

	
98.59

	
70.15

	
77.35

	
98.48

	
98.88




	
Average Accuracy (%)

	
54.34

	
54.28

	
89.37

	
94.25

	
56.27

	
56.87

	
93.07

	
97.21

	
59.33

	
70.90

	
96.03

	
98.14




	
Kappa Statistic

	
0.597

	
0.603

	
0.970

	
0.978

	
0.625

	
0.616

	
0.969

	
0.984

	
0.653

	
0.737

	
0.982

	
0.987




	
Time (s)

	
168

	
287

	
188

	
366

	
52

	
253

	
68

	
337

	
488

	
527

	
539

	
551










Table 5. Overall Accuracy, Average Accuracy, Kappa Statistic and Time of the Pavia University data set when using pixel-wise strategy.







	

	
Spatial Filtering

	
No

	
No

	
Yes

	
Yes

	
No

	
No

	
Yes

	
Yes




	
Method

	
Non-Negative Constraint

	
No

	
Yes

	
No

	
Yes

	
No

	
Yes

	
No

	
Yes




	

	
Norm

	
[image: there is no content]+[image: there is no content]

	
[image: there is no content]+[image: there is no content]






	

	
1

	
58.42

	
95.31

	
75.83

	
90.92

	
61.42

	
82.07

	
84.52

	
90.94




	

	
2

	
90.78

	
95.26

	
99.93

	
99.83

	
92.62

	
93.45

	
99.92

	
99.73




	

	
3

	
24.21

	
56.30

	
71.94

	
85.13

	
26.90

	
59.24

	
69.44

	
82.82




	

	
4

	
83.12

	
87.27

	
94.33

	
92.71

	
83.98

	
82.10

	
93.37

	
93.31




	
Class

	
5

	
99.77

	
99.77

	
100.00

	
100.00

	
99.77

	
99.70

	
100.00

	
100.00




	

	
6

	
37.26

	
49.43

	
61.92

	
86.64

	
36.96

	
62.00

	
65.74

	
86.06




	

	
7

	
10.78

	
4.48

	
80.64

	
97.72

	
9.95

	
42.90

	
56.87

	
95.44




	

	
8

	
52.18

	
38.79

	
59.92

	
67.85

	
53.83

	
39.62

	
73.85

	
73.83




	

	
9

	
62.58

	
72.49

	
42.32

	
83.90

	
60.98

	
89.02

	
49.47

	
85.39




	
Overall Accuracy (%)

	
69.50

	
79.22

	
84.63

	
92.50

	
71.01

	
79.39

	
86.85

	
92.80




	
Average Accuracy(%)

	
57.68

	
66.11

	
76.31

	
89.41

	
58.49

	
72.23

	
77.02

	
89.72




	
Kappa Statistic

	
0.587

	
0.716

	
0.792

	
0.900

	
0.606

	
0.723

	
0.822

	
0.904




	
Time (s)

	
2715

	
2788

	
2729

	
2756

	
18,218

	
18,256

	
18,273

	
18,286










Table 6. Overall Accuracy, Average Accuracy, Kappa Statistic and Time of the Pavia University data set when dealing with all the test pixels simultaneously.







	

	
Spatial Filtering

	
No

	
No

	
Yes

	
Yes

	
No

	
No

	
Yes

	
Yes

	
No

	
No

	
Yes

	
Yes




	
Method

	
Non-Negative Constraint

	
No

	
Yes

	
No

	
Yes

	
No

	
Yes

	
No

	
Yes

	
No

	
Yes

	
No

	
Yes




	

	
Norm

	
F+[image: there is no content]

	
F+[image: there is no content]

	
[image: there is no content]+[image: there is no content]






	

	
1

	
62.13

	
82.00

	
81.78

	
90.25

	
67.78

	
81.78

	
82.38

	
90.27

	
67.27

	
95.31

	
86.60

	
89.61




	

	
2

	
93.65

	
93.47

	
99.64

	
99.71

	
94.82

	
93.53

	
99.86

	
99.72

	
96.14

	
95.26

	
99.96

	
99.67




	

	
3

	
24.11

	
59.10

	
68.33

	
85.61

	
21.17

	
59.19

	
70.12

	
85.42

	
39.51

	
56.30

	
79.50

	
88.64




	

	
4

	
84.70

	
82.20

	
93.64

	
92.68

	
85.00

	
82.23

	
92.91

	
92.75

	
86.58

	
87.27

	
94.56

	
93.60




	
Class

	
5

	
99.77

	
99.70

	
100.00

	
100.00

	
99.70

	
99.70

	
100.00

	
100.00

	
99.77

	
99.77

	
100.00

	
100.00




	

	
6

	
37.76

	
61.98

	
74.05

	
88.97

	
35.87

	
61.78

	
71.92

	
89.05

	
36.77

	
49.43

	
81.34

	
89.68




	

	
7

	
3.19

	
42.52

	
40.39

	
97.11

	
2.43

	
42.52

	
43.43

	
96.74

	
18.38

	
0.38

	
95.52

	
98.03




	

	
8

	
57.53

	
39.78

	
73.39

	
70.89

	
60.52

	
40.30

	
74.10

	
70.86

	
58.93

	
38.79

	
78.74

	
72.87




	

	
9

	
43.92

	
88.70

	
51.81

	
83.80

	
43.50

	
88.91

	
55.54

	
84.54

	
57.89

	
72.49

	
65.03

	
87.53




	
Overall Accuracy (%)

	
71.72

	
79.50

	
86.75

	
92.88

	
72.57

	
79.62

	
87.09

	
92.90

	
76.10

	
81.23

	
92.29

	
93.34




	
Average Accuracy (%)

	
56.31

	
72.16

	
75.89

	
89.89

	
56.75

	
76.70

	
66.11

	
89.93

	
62.36

	
74.11

	
86.80

	
91.07




	
Kappa Statistic

	
0.608

	
0.722

	
0.821

	
0.905

	
0.624

	
0.723

	
0.824

	
0.905

	
0.656

	
0.716

	
0.887

	
0.911




	
Time (s)

	
147

	
452

	
169

	
437

	
66

	
433

	
108

	
477

	
611

	
637

	
621

	
648










We also choose other eight methods for comparison, i.e., SVM [9,66], NRS [28,67], CRT [30,67], KCRC [31,68], OMP [15], SOMP [15], JRSRC [20] and 3D-CNN [45,69]. The SVM is a very popular classifier, the 3D-CNN is a deep neural network based classifier, and the other six compared methods are collaborative representation and sparse representation based classifiers. Table 7 and Table 8 show the classification performances of the proposed SFL and eight compared methods using the Indian Pines and Pavia University data set, respectively. In addition, Figure 6 and Figure 7 show the classification maps of the Indian Pines and Pavia University data set when using the proposed SFL and eight compared methods, which can give a visual comparison between different methods. From Table 7 and Table 8, it can be clearly seen that the proposed SFL can obtain the best classification performance, which demonstrates that our proposed SFL is efficient for hyperspectral image classification. In addition, the SVM is the fastest, the reason lies in that it is implemeted in C Lagnuage which is much faster than Matlab. NRS, CRT and KCRC are very fast due to the fact that they are collaborative representation methods, and they have closed solutions, which do not need iteration. The OMP and SOMP are also very fast due to the fact that they are greedy sparse representation methods, while the JRSRC method is very time-consuming due to the fact that JRSRC is a regression based sparse representation method. In addition, the 3D-CNN is not fast because the main time-consuming aspect lies in the training. Our proposed method is also a regression based method, which takes more time than the collaborative representation methods and greedy sparse representation methods. There are several possible ways for us to improve the time consumed in the process. One way is to use C Language and graphic processing unit for fast implementation. Another way is to use the first-order primal-dual algorithm in [70] to achieve faster convergence.


Figure 6. Classification maps for the Indian Pines data set using the compared methods and the proposed method. (a) SVM; (b) NRS; (c) CRT; (d) KCRC; (e) OMP; (f) SOMP; (g) JRSRC; (h) 3D-CNN; (i) SFL.



[image: Sensors 17 00314 g006]





Figure 7. Classification maps for the Pavia University data set using the compared methods and the proposed method. (a) SVM; (b) NRS; (c) CRT; (d) KCRC; (e) OMP; (f) SOMP; (g) JRSRC; (h) 3D-CNN; (i) SFL.



[image: Sensors 17 00314 g007]






Table 7. Overall Accuracy, Average Accuracy, Kappa Statistic and Time of the Indian Pines data set when using the compared methods and the proposed methods.







	
Method

	
SVM

	
NRS

	
CRT

	
KCRC

	
OMP

	
SOMP

	
JRSRC

	
3D-CNN

	
SFL






	

	
1

	
41.46

	
60.98

	
26.83

	
36.59

	
60.98

	
68.29

	
68.29

	
75.61

	
100.00




	

	
2

	
80.39

	
51.98

	
87.24

	
72.84

	
67.32

	
94.63

	
90.97

	
84.98

	
99.77




	

	
3

	
66.93

	
26.91

	
55.02

	
55.15

	
51.67

	
86.48

	
95.31

	
72.82

	
97.86




	

	
4

	
68.54

	
30.05

	
27.70

	
24.41

	
38.50

	
89.20

	
66.67

	
66.67

	
97.65




	

	
5

	
88.51

	
88.74

	
91.95

	
83.22

	
85.98

	
95.63

	
95.17

	
89.20

	
99.31




	

	
6

	
94.67

	
94.82

	
99.24

	
98.17

	
93.15

	
99.24

	
99.39

	
96.96

	
99.85




	

	
7

	
32.00

	
48.00

	
20.00

	
24.00

	
36.00

	
12.00

	
4.00

	
40.00

	
92.00




	

	
8

	
99.53

	
100.00

	
100.00

	
100.00

	
99.53

	
100.00

	
100.00

	
99.30

	
100.00




	
Class

	
9

	
33.33

	
33.33

	
11.11

	
22.22

	
38.89

	
11.11

	
11.11

	
22.22

	
100.00




	

	
10

	
74.86

	
24.91

	
65.83

	
56.11

	
51.54

	
80.69

	
71.09

	
80.23

	
97.71




	

	
11

	
84.52

	
97.87

	
84.43

	
90.00

	
70.08

	
92.21

	
98.10

	
82.16

	
98.64




	

	
12

	
84.83

	
32.58

	
67.42

	
44.19

	
46.07

	
88.01

	
96.25

	
80.90

	
98.50




	

	
13

	
99.46

	
97.28

	
98.91

	
98.37

	
95.65

	
99.46

	
100.00

	
99.46

	
97.28




	

	
14

	
97.10

	
98.33

	
97.36

	
98.51

	
95.08

	
100.00

	
100.00

	
95.08

	
100.00




	

	
15

	
43.23

	
53.31

	
51.59

	
40.63

	
41.50

	
67.72

	
65.71

	
52.74

	
98.85




	

	
16

	
94.05

	
85.71

	
91.67

	
90.48

	
86.90

	
98.81

	
100.00

	
92.86

	
92.86




	
Overall Accuracy (%)

	
82.81

	
70.74

	
80.65

	
76.95

	
70.57

	
91.44

	
92.02

	
84.04

	
98.88




	
Average Accuracy (%)

	
73.96

	
64.05

	
67.27

	
64.68

	
66.18

	
79.52

	
78.18

	
76.95

	
98.14




	
Kappa Statistic

	
0.803

	
0.652

	
0.777

	
0.732

	
0.662

	
0.902

	
0.908

	
0.818

	
0.987




	
Time (s)

	
3

	
40

	
147

	
33

	
10

	
145

	
4231

	
1895

	
551










Table 8. Overall Accuracy, Average Accuracy, Kappa Statistic and Time of the Pavia University data set when using the compared methods and the proposed methods.







	
Method

	
SVM

	
NRS

	
CRT

	
KCRC

	
OMP

	
SOMP

	
JRSRC

	
3D-CNN

	
SFL






	

	
1

	
89.02

	
92.60

	
82.96

	
82.99

	
67.83

	
91.96

	
99.19

	
89.38

	
89.61




	

	
2

	
99.00

	
98.94

	
99.26

	
97.87

	
93.48

	
100.00

	
98.94

	
99.88

	
99.67




	

	
3

	
14.58

	
58.23

	
49.37

	
29.84

	
55.63

	
65.78

	
67.28

	
88.98

	
88.64




	

	
4

	
85.46

	
85.23

	
86.38

	
80.42

	
79.49

	
85.00

	
93.34

	
93.44

	
93.60




	
Class

	
5

	
98.35

	
98.27

	
99.62

	
97.75

	
99.62

	
100.00

	
100.00

	
100.00

	
100.00




	

	
6

	
47.96

	
52.16

	
55.11

	
34.61

	
57.96

	
63.04

	
76.64

	
86.93

	
89.68




	

	
7

	
6.45

	
43.43

	
61.96

	
60.06

	
55.28

	
86.48

	
73.58

	
98.48

	
98.03




	

	
8

	
96.84

	
87.96

	
87.22

	
91.91

	
68.23

	
71.08

	
86.26

	
68.86

	
72.87




	

	
9

	
99.68

	
91.68

	
90.72

	
100.00

	
80.70

	
80.38

	
89.23

	
86.46

	
87.53




	
Overall Accuracy (%)

	
83.27

	
86.58

	
85.80

	
81.89

	
79.02

	
88.31

	
92.34

	
92.72

	
93.34




	
Average Accuracy (%)

	
70.82

	
78.71

	
79.18

	
75.05

	
73.14

	
82.64

	
87.16

	
90.27

	
91.07




	
Kappa Statistic

	
0.770

	
0.817

	
0.807

	
0.751

	
0.719

	
0.841

	
0.897

	
0.903

	
0.911




	
Time (s)

	
3

	
60

	
110

	
56

	
15

	
369

	
1086

	
663

	
648












5. Conclusions


In this paper, we propose an SFL method for a hyperspectral image classification method based on the multichannel joint sparse recovery theory in [46], which can deal with all the test pixels simultaneously. The proposed SFL can not only obtain comparably good or better classification performance than using the pixel-wise classification strategy but also takes much less time. In addition, spatial filtering and the non-negative constraints are both adopted to improve the classification performance, and the spatial filtering has a larger effect on the classification than the non-negative constraint. Moreover, methods using [image: there is no content] norm regularization term can generally obtain better classification performance than methods using an [image: there is no content] norm regularization term, which demonstrate that it is beneficial to select correlated training samples among the whole training data set, and the [image: there is no content] norm regularization term can impose sparsity across the pixels both at the group and individual levels. Furthermore, methods using [image: there is no content] norm loss function can generally obtain better classification performance than methods using F norm loss function, which demonstrate that the [image: there is no content] norm loss function is more robust for outliers than F norm loss function. Finally, experiments on two real hyperspectral image data sets demonstrate that the proposed SFL method outperforms some other popular classifiers. In our future work, we can adopt the CNN framework to extract deep features of hyperspectral images, which can be integrated into our method to improve the classification performance.
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