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Abstract: The neutral axis position (NAP) is a key parameter of a flexural member for structure
design and safety evaluation. The accuracy of NAP measurement based on traditional methods
does not satisfy the demands of structural performance assessment especially under live traffic loads.
In this paper, a new method to determine NAP is developed by using modal macro-strain (MMS).
In the proposed method, macro-strain is first measured with long-gauge Fiber Bragg Grating (FBG)
sensors; then the MMS is generated from the measured macro-strain with Fourier transform; and
finally the neutral axis position coefficient (NAPC) is determined from the MMS and the neutral axis
depth is calculated with NAPC. To verify the effectiveness of the proposed method, some experiments
on FE models, steel beam and reinforced concrete (RC) beam were conducted. From the results, the
plane section was first verified with MMS of the first bending mode. Then the results confirmed the
high accuracy and stability for assessing NAP. The results also proved that the NAPC was a good
indicator of local damage. In summary, with the proposed method, accurate assessment of flexural
structures can be facilitated.

Keywords: neutral axis position; dynamic macro-strain; modal macro-strain; long-gauge FBG sensors;
structural performance assessment

1. Introduction

Flexural structures such as beams are the most common structures in civil engineering. However,
they are often damaged due to severe environment, over loading, original structural flaws, earthquake,
typhoon or other factors. Therefore, it is important to ensure the safety of these structures.
For addressing this issue, the concept of structural health monitoring (SHM) has been proposed
and widely studied for structural maintenance and management in the last 30 years [1–4]. In the SHM
systems, some key structural parameters should be selected to be monitored and assessed.

The neutral axis is the axis about which bending occurs in a beam or a composite section. As a
key parameter, the neutral axis position (NAP) is so important that it is needed in most theories of
structural design. Moreover, the neutral axis position serves as a potential indicator of the structure’s
safety condition. For instance, Griffin et al. [5] measured the neutral axis locations of two strengthened
bridges, from which the retrofitting effects were verified as the neutral axis moved as expected
after reinforcement.

Many other researchers have already investigated how to determine the neutral axis position
from static or live traffic loading tests [6–13]. The static loading test generally costs much labor and
time, and it is not suitable for long-term structural monitoring. Therefore, attention has been focused

Sensors 2017, 17, 411; doi:10.3390/s17020411 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 411 2 of 20

on live traffic loading tests for neutral axis position determination. Gutiérrez et al. [6] identified the
neutral axis location of a bridge beam with reinforced concrete decks and carbon Fiber reinforced
polymer (CFRP) box girders directly using the dynamic strain data. The results showed that the
identified neutral axis position fluctuated very much especially when the excitation is not strong
enough. Elhelbawey et al. [7] evaluated the neutral axis locations by using the static and dynamic
strains measured at the girder’s bottom, middle and top with four methods. There were obvious
variations in results from different methods. Chakraborty and Dewolf [8] estimated the neutral axis
locations through the traffic loading test, the results of which also showed large variations when using
different time windows of the test data. Gangone et al. [9] obtained the neutral axis location with
strains measured by wireless strain sensors under live truck loading, which passed the bridge at about
16.1~24.1 km/h. The neutral axis location was found to have a strong relationship with the loading
position. Similar work has also been performed with a conclusion that the dynamic effect was a likely
reason to induce the result variation [10,11].

It is seen from the literature review that the biggest problem in determining the neural axis
position from the dynamic strain is that the results have obvious variations. Different explanations
have been brought forward: (1) the uncertainty for strain measurements is obvious especially when
the absolute value of the measured strain is small [9]; (2) force types influence the strain distribution
along the cross section, such as dynamic effects, torsion effects and axial forces [8]; (3) the loading
magnitude and loading location change the composite action between the girders and the deck, which
affects the neutral axis position [7]; and (4) nonlinear structure performance influences the neutral axis
location as well when large strain occurs [12,13]. Researchers have also proposed strategies to improve
the accuracy of the neural axis position estimation: (1) the maximum strain was used to evaluate the
neutral axis location as it was considered to be more reliable [8]; (2) the average value was selected [9];
(3) the root-mean square (RMS) value was proposed with a relatively good stability [7].

Some improvements have indeed been achieved with these methods. However, reliability and
accuracy of the neural axis position assessment using dynamic strain still needs further exploration.
Therefore, a new method is developed to determine the neutral axis position in this paper. In the
proposed method, the dynamic strain is first acquired with the long-gauge macro-strain sensors,
considered as a useful way to detect local damage. Then the modal macro-strain (MMS) is generated
from strain time histories and is used to calculate the neutral axis location. The proposed method has
the merit of high stability as it uses the MMS which is robust to loading situations and noises. Finally,
some experiments are conducted to verify the effectiveness of the proposed method.

2. Dynamic Method of Neutral Axis Position Determination

2.1. Strain Measurement with Long-Gauge Fiber Optic Sensors

There are many methods to measure strain, of which the strain gauge is the most common type
of sensors. Usually the gauge length is only several centimeters, so the measurement is often named
as point measurement. It means that the strain reflects only the deformation at some point on the
monitored structure. It may not easy to locate some local damage directly with the strain gauge, such
as concrete crack as shown in Figure 1. In actual measurement the strain gauge hardly locates at the
same position due to the random distribution of the damage, so it usually needs some additional
complicated techniques to locate the damage.
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Figure 1. Strain measurement with strain gauge: (a) strain gauge locates at the crack; and (b) strain 
gauge locates at some distance away from the crack. Figure 1. Strain measurement with strain gauge: (a) strain gauge locates at the crack; and (b) strain

gauge locates at some distance away from the crack.
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Compared with the point sensing, area sensing is proposed along with application of long-gauge
sensors [14]. The parameter measured by the long-gauge sensor is the average strain of the gauge
length, named as macro-strain. The gauge length can be up to 1 m ~2 m, much larger than that of the
common strain gauge. Then the damage information can be obtained by the measured macro-strain if
the damage locates within the sensor. The probability to capture the damage is greatly increased when
several long-gauge sensors are applied at the same time (Figure 2) because the monitored area can be
enlarged to cover the entire area.
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Figure 2. Area sensing with long-gauge sensors.

Due to its excellent accuracy, high data acquisition speed and the multiplexing performance,
the Fiber Bragg Grating (FBG) sensor is used to develop the long-gauge macro-strain sensor (Figure 3).
Every point in the gauge length presents the same mechanical behavior and hence the strain obtained
from FBG can represent the average strain over the gauge length, termed as macro-strain. To actualize
the long-gauge concept for real sensors, the FBG sensor is fixed at the two ends of a plastic tube
surrounded by a fiber sheath impregnated with epoxy resin. The diameter of the packaged sensor is
about 1 mm. Meanwhile, the gauge length can be set from 0.1 m to 2 m.
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2.2. Macro-Strain Modal Analysis

Like the point strain, the macro-strain measurement can also be used for strain modal analysis
and extraction of the macro-strain mode [15].
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Figure 4. Macro-strain measurements for beam structure.

In Figure 4, a typical beam model is taken as an example. The strain εm is measured by the strain
sensor covering the zone from the ith node to jth node, namely, the gauge length Lm, when force f is
applied at the pth node. The εm can be expressed as

εm =
hm

Lm

(
vj − vi

)
= ηm

(
vj − vi

)
(1)

Then, the equation in the frequency domain is

εm(ω) = ηm
[
vj(ω)− vi(ω)

]
(2)
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In Equations (1) and (2), vi and vi (w) are the rotational displacement for the ith node in the time
and frequency domain, respectively. hm is the distance from the strain sensor to the neutral axis.

Frequency response function (FRF) is considered to be related with structure properties only.
For the macro-strain FRF Hε

mp(ω), it can be achieved by

Hε
mp(ω) =

εm(ω)

fp(ω)
=

ηm
[
vj(ω)− vi(ω)

]
fp(ω)

= ηm(Hd
jp(ω)− Hd

ip(ω)) (3)

The Hd
ip(ω) is the traditional rotational displacement FRF, which can be expressed as

Hd
ij(ω) =

N

∑
r=1

ϕir ϕjr

Mr(ω2
r −ω2 + 2iξrωrω)

(4)

where ϕir is the rth rotational displacement mode at the ith node. Mr and ωr are the mass and resonant
frequency for the rth order mode, respectively. ξr = Cr/(2Mrωr), while Cr is damping efficient for the
rth mode. Finally, the macro-strain FRF can be expressed as

Hε
mp(ω) =

N

∑
r=1

ηm(ϕjr − ϕir)ϕpr

Mr(ω2
r −ω2 + 2iξrωrω)

=
N

∑
r=1

δmr ϕpr

Mr(ω2
r −ω2 + 2iξrωrω)

(5)

Compared with Equation (4), the similarity is found in Equation (5) except parameter δmr.
The absolute value at the peak for the rth order mode can be written as∣∣∣r Hε

mp(ω = ωr)
∣∣∣ = ∣∣∣∣ ϕpr

2Mrξrω2
r

δmr

∣∣∣∣ (6)

Here, for a given mode and a given excited point, ϕpr/(2Mrξrω2
r ) is a constant. Therefore, δmr is

the parameter determining the macro-strain mode shape.
As is well known, using the Fourier Transform (FT), the relationship can be obtained at the rth

order mode as
ϕir
ϕjr

=
vi(ωr)

vj(ωr)
(7)

It is written to be as Equation (8) for the macro-strain mode.

δmr

δnr
=

εm(ωr)

εn(ωr)
(8)

where εm(wr) is the modal macro-strain (MMS) for the mth monitored element at the rth mode, namely
the absolute value of the magnitude in the frequency spectrum when the frequency is wr.

Therefore, the macro-strain modal analysis can be implemented as the traditional displacement
modal analysis using the macro-strain measurements.

2.3. Neutral Axis Position Determination with MMS

As shown in Figure 5, the plane section assumption is used in each beam-like structure. It means
that there are linear relationships among the strains along the section depth which are determined by
the structure property itself. Based on this assumption, the neutral axis position coefficient (NAPC) ψ

is applied to express the linear relationship

ε(t) = ψε′(t) (9)

where ε(t) and ε′(t) are the strains at different depths in the same section. Besides the section, it is
easily understood that the plane section can be also applied to analyze some small part of the flexural



Sensors 2017, 17, 411 5 of 20

structure. In other words, the strain distributes linearly with an averaged neutral axis for all parts.
Then the strains ε(t) and ε′(t) here are the macro-strains.Sensors 2017, 17, 411 5 of 20 
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Figure 5. Strain distribution along the cross section with sensors installed at: (a) different sides of the
neutral axis; and (b) the same side of the neutral axis.

The neutral axis depth h (Figure 5) can be easily obtained by some basic geometrical knowledge.
There are two cases for the strain measurement: (1) sensors installed at different sides of the neutral
axis; and (2) sensors installed at the same side of the neutral axis. For these two cases, the equations to
calculate the neutral axis depth are Equations (10) and (11), in which H means the vertical distance
between the two sensors.

h =
ψ

ψ + 1
H (10)

h =
ψ

ψ− 1
H (11)

NAPC should be first solved to determine the neutral axis location. In Equations (12) and (13),
with the Fourier transform (FT), the NAPC can be expressed by the modal macro-strain (MMS) ε(wr).

ε(ω) =
+∞w

−∞

ε(t)e−iωtdt =
+∞w

−∞

ψε′(t)e−iωtdt = ψ

+∞w

−∞

ε′(t)e−iωtdt = ψε′(ω) (12)

ψ =
ε(wr)

ε′(wr)
(13)

The NAPC ψ contains enough spatial information of the neutral axis. If damage occurs within the
monitored zone, the neutral axis will move and the NAPC ψ will change as well. Therefore, it has the
potential to be a new index to detect structural damage.

In this paper, only the first bending mode is applied to implement the method as it can be easily
and accurately identified. Moreover, in the first bending mode, the structure is in a perfect bending
state, improving the accuracy of the proposed method by ignoring the influence from some factors,
such as torsion. Most of the measurement noise is also naturally filtered during the modal analysis
process with the Fourier transform. Lastly the macro-strain mode is of no relationship with the loading
magnitude and position and hence the MMS based method is not influenced by the loading. Therefore,
compared with the traditional methods based on the strain in time domain, the proposed method
offers a better assessing performance.

3. Verification with FE Models

3.1. FE Model Description

Solid45 was selected to establish simply-supported Finite Element (FE) beam model with ANSYS.
The detailed model information is shown in Figure 6. From the direction along the beam length, the
element length was 100 mm, while it was 50 mm for the other two directions. The five elements along
the width at the middle span, shown in Figure 6c, were selected as damaged elements by changing the
elastic modulus. The damage cases are listed in Table 1, where ‘Stiffness loss’ only means the relative
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stiffness loss of the damaged elements. In the experiments the strain measuring gauge length was
300 mm, 3 times as long as the element length, completely covering the damaged zone. The dynamic
loads were implemented at the point on the beam up-surface.Sensors 2017, 17, 411 6 of 20 
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Table 1. The damage case for FE models.

Damage Case I D1 D2 D3

Stiffness loss (%) 0 30 70 100

3.2. Neutral Axis Position

Through modal analysis, the MMS can be obtained with Equation (6). In this paper, only the
first bending mode is used to do structural analysis. Then with the MMS of the upside element and
the downside element, the neutral axis position can be determined with Equation (13). The results of
neutral axis position coefficient (NAPC) were listed in Table 2. For comparison, the results of NAPC
with static analysis were also listed in the table. From these results, the proposed dynamic method is
verified with a good accuracy as the largest relative deviation between the modal analysis and static
analysis is less than 1%.

Table 2. The results of neutral axis position coefficient (NAPC).

Damage Case I D1 D2 D3

Modal analysis 1.007 1.047 1.144 1.334
Static analysis 1.000 1.042 1.141 1.330

Relative deviation (%) 0.7 0.5 0.3 0.3

3.3. Damage Identification

As a new index to assess damage, damage sensitivity of the NAPC should be investigated and
compared with some acknowledged indices, such as resonant frequency, strain mode and curvature
mode. In Table 3, the relative change of the above four indices and neutral axis depth have been
obtained from the simulation results with different damage cases. The results show the largest relative
changes for strain mode. In other words, the strain mode method presents the highest damage
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sensitivity. Then it is the proposed NAPC, close to the value of the strain mode. The NAPC results
are calculated with the MMS from the down-surface and up-surface. The damage sensitivity of the
NAPC is much better than the curvature mode, which is accepted as an index sensitive to local damage.
The neutral axis depth is not as sensitive as the NAPC, but it is still much more sensitive than the
resonant frequency as the resonant frequency hardly changes under the simulated local damage.
Moreover, compared with the strain mode and curvature mode methods, there is no need to select an
intact referenced element for the proposed method. If some damage happens within the referenced
element, the methods may fail to implement damage identification. Therefore, the proposed NAPC is
a promising indicator to identify local damage, such as a concrete crack.

Table 3. Comparison results of damage sensitivity (%).

Damage
Case

Resonant Frequency (Bending Mode) Neutral
Axis Depth NAPC

Strain
Mode [16]

Curvature
Mode [17]First Second Third Fourth Fifth

D1 −0.1 0.0 −0.1 0.0 0.0 1.9 4.0 4.2 2.3
D2 −0.3 0.0 −0.3 0.0 −0.1 6.3 13.6 15.3 8.5
D3 −0.8 0.0 −0.8 0.0 −0.4 13.9 32.5 39.2 22.2

The factors influencing the damage sensitivity are also investigated with the FE modeling results.
In the proposed method the sensor gauge length and sensor installation position are the two main
factors. It can be easily understood that the smaller the sensor gauge is, the higher is the damage
sensitivity if the sensor can cover the damage zone. Therefore, the influence from the sensor installation
not sensor gauge length is only studied.

As shown in Figure 7a, the distance “X” between the two sensors is taken as the variable to
investigate the damage sensitivity of the NAPC. As the sensor can be easily installed on the beam
bottom, Sensor 1 is considered fixed. The results are shown in Figure 7b. The strain is too small near
the neutral axis, so the “X” of 250 mm was not investigated as the neutral axis location was in the
range from 210 mm to 290 mm under the damage cases. From the results it is found that a much higher
sensitivity can be obtained when the two sensors are installed on different sides of the neutral axis.
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3.4. Performance under Noise

Performance under noise is another issue to be investigated. As shown in Figure 8, the white
noise was input into the strain results for investigation. The results of the proposed method are shown
in Figure 9. The conclusion is that the added noise shows no influence on the proposed method even
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when the noise is up to 5%. However, the results will be influenced greatly by the noise when the
strain is directly used to calculate the neutral axis position with the traditional method as Equation (9).
Strain larger than 30 µεwas only applied in the calculation to reduce the assessment error caused by
the strain measurement accuracy. From the results in Figure 10, the traditional method can hardly be
implemented to assess the neutral axis position even with 2% noise, while it works well without noise.
Therefore, the proposed method is a perfect choice to be applied in neutral axis position measuring
under live traffic loads especially.Sensors 2017, 17, 411 8 of 20 
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Figure 8. Typical strain results at Case I: (a) the whole time history; and (b) local part focused. 
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4. Verification with a Steel Beam

4.1. Experiment Description

A steel beam (Figure 11) was prepared for some tests to verify the assessment accuracy of the
proposed method. Considering the experience from the above RC beam tests, the damage was
simulated by cutting some parts away from the downside flange as shown in Figure 12, guaranteeing
the same neutral axis location during the dynamic and static tests.
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Figure 12. The steel beam experiment field: (a) dynamic test and data logger; and (b) damage simulation.

In Figure 11a, the steel beam is 5.6 m long with an “I” type cross section, divided into 28 elements
with an element length of 200 mm. The 8 elements, E1 to E8, were selected as monitored parts with
long-gauge FBG sensors bonded on both up-surface (F13 to F83) and down-surface (F11 to F81). One
more sensor, F32, was installed on the beam side surface to verify the plane section hypothesis. The
reflected wavelength of FBG ranges from 1525 nm to 1580 nm with the sensitivity of about 1.2 pm/µε.

In Figure 11b, static load was applied with some steel block, while the dynamic force was input
by using the hammer to knock at the beam’s top surface. Besides the four points in the figure, the
hammer was also used to knock at some random positions at one measure time to simulate the random
dynamic cases. During the dynamic tests the strain was measured by SM-130 (Micron Optics Inc.,
Atlanta, GA, USA) with a sampling frequency of 1000 Hz as shown in Figure 12a. Table 4 presents the
damage cases, D1 to D8, where the damage quantity is the relative loss of the element flexural-stiffness.
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Table 4. Damage cases for the steel beam test.

Damage Case I D1 D2 D3 D4 D5 D6 D7 D8

Damage quantity of E3 (%) 0 3 5 15 18 18 18 18 18
Damage quantity of E7 (%) 0 0 0 0 0 3 5 15 18

4.2. Experiment Results

Figure 13 presents the typical macro-strain results under the single-point and random excitation,
while the macro-strain based frequency spectrum near the first bending mode is obtained with FFT to
get MMS to implement the proposed method (Figure 14).Sensors 2017, 17, 411 10 of 20 

 

0 1 2 3 4 5

-20

-10

0

10

20

S
tr

ai
n 

(
)

Time (s)

 

0 3 6 9 12 15 18

-20

-10

0

10

20

S
tr

ai
n 

(
)

Time (s)

 

(a) (b)

Figure 13. Typical macro-strain results for the steel beam test under: (a) single-point excitation; and 
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Figure 15. Modal macro-strain (MMS) distribution along the depth of the element E3 of the steel beam 
at Case: (a) I; and (b) D8. 

Figure 14. Typical results of macro-strain based frequency spectrum for the steel beam test.

With the obtained MMS, the plain section is verified at first (Figure 15). Then the NAPC is
extracted from the results (Figure 16). In the figures all the linear correlation coefficients are larger than
0.99, indicating excellent stability of the NAPC obtained with the proposed dynamic method. The
NAPC results are included in Figure 17 for all the monitored elements. From the relative change in
Figure 17b especially the damaged elements can be detected easily even when the element stiffness
loss is only 3%, proving the NAPC is an effective index to identify local damage.
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Figure 15. Modal macro-strain (MMS) distribution along the depth of the element E3 of the steel beam 
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With the obtained NAPC the neutral axis depth was calculated (Table 5). For the undamaged
elements except E4 and E8, the relative measurement change is smaller than 1%, verifying the
effectiveness of the proposed method. However, it is a little larger for E4 and E8, about 2%. The
process of cutting steel parts to make damage caused some small damage within the two elements.

Table 5. The results of neutral axis depth with modal analysis (mm).

Damage Case I D1 D2 D3 D4 D5 D6 D7 D8

E1 50.0 50.2 50.2 50.2 50.3 50.3 50.1 50.4 50.3
E2 49.5 49.7 50.0 49.8 49.8 49.7 49.6 49.9 49.8
E3 49.9 51.5 52.3 56.3 57.4 57.4 57.3 57.4 57.4
E4 50.0 50.2 50.3 50.3 50.7 50.8 50.5 50.8 50.7
E5 49.7 49.8 49.8 49.7 49.8 49.8 49.8 49.8 49.8
E6 50.1 50.3 50.5 50.3 50.4 50.2 50.2 50.5 50.3
E7 49.7 49.8 49.7 49.7 49.8 51.5 52.1 56.6 57.4
E8 50.6 50.8 50.7 50.8 50.9 50.8 50.9 51.5 51.5

Then the results from the dynamic method are compared with the results from the static tests, as
shown in Table 6. From the results, the largest absolute value of the relative difference is 2.6% for E5 at
D5. It means that the relative error is less than 3% for the proposed dynamic method. Thus the high
accuracy has been verified for assessing the neutral axis position with the proposed method.

Table 6. The relative difference compared with static tests (%).

Damage Case I D1 D2 D3 D4 D5 D6 D7 D8

E1 0.6 0.5 −0.2 0.8 0.5 1.0 −1.1 −0.6 −0.3
E2 −0.4 0.1 0.2 0.7 0.0 0.4 −1.2 −0.7 −0.2
E3 0.5 0.5 −0.1 1.8 1.2 1.7 −0.2 0.3 0.8
E4 −0.7 0.1 0.1 0.7 0.1 0.7 −1.4 −0.2 −0.1
E5 1.0 1.5 1.0 2.2 1.7 2.6 0.6 0.5 1.2
E6 0.3 1.0 1.1 1.7 1.4 1.5 −0.3 0.8 0.9
E7 0.3 1.0 0.0 1.0 0.5 1.7 −0.5 0.4 0.5
E8 1.0 1.8 1.2 2.2 1.8 2.4 0.8 1.8 1.7

5. Verification with a Reinforced Concrete Beam

5.1. Experiment Description

One reinforced concrete (RC) beam as shown in Figure 18a is prepared to investigate the actual
performance of the proposed method. The total beam length is 4100 mm, while the length between the
two supports is 3600 mm. The rectangle section’s width is 120 mm, while the depth is 240 mm. The
section is reinforced with two steel rebars with a diameter of 14 mm at downside and two of 12 mm at
upside. Some other detailed information can be found in Figure 18a.

In Figures 18b and 19b, long-gauge FBG sensors (Figure 3) were installed to measure the
macro-strain. F11~F51 were bonded at the beam bottom, while F13~F53 were at the beam side 20 mm
away from the top. One more sensor F32 was installed at the beam side of the monitored element E3,
60 mm away from the bottom to prove the plane section. The gauge length is 300 mm, same for all the
11 sensors. The data logger is SM-130 made by Micron Optics Inc. (Atlanta, GA, USA) with a sampling
frequency of 1000 Hz applied in the tests as shown in Figure 19a.
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Figure 18. Experiment setup (Unit: mm): (a) reinforced concrete (RC) beam; (b) long-gauge FBG sensor
distribution; and (c) loading positions.
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Figure 19. Experiment field: (a) beam specimen, loader and data logger; and (b) long-gauge
FBG sensors.

In Figure 18c, static load was applied to cause some structural damage, while the dynamic force
was input by using the hammer to knock at the beam’s top surface. Besides the four points in the
figure, the hammer was also used to knock at some random positions at one measure time to simulate
the random dynamic cases.

The experiments were implemented in the following five cases: (1) Case I, dynamic test for the
intact beam; (2) Case D1, static loading up to concrete cracking and unloading, then dynamic test;
(3) Case D2, static loading to make concrete crack up to 1/4 beam depth and unloading, then dynamic
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test; (4) Case D3, static loading to make concrete crack up to 1/2 beam depth and unloading, then
dynamic test; and (5) Case D4, static loading to make the monitored macro-strain up to 1000 µε and
unloading, then dynamic test. The actual concrete crack distribution is shown in Figure 20, in which
the cracks were identified by visual inspection and measured by rules from one side of the beam. Due
to the difficulty to induce the initial damage, the damage is much larger than the plan for Case D1,
while the other three cases are implemented as per the plan.
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Figure 20. Concrete crack distribution at Case: (a) D1; (b) D2; (c) D3; and (d) D4. 
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Figure 21. Typical macro-strain results under: (a) single-point excitation; and (b) random excitation. 
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Figure 22. Typical results of macro-strain based frequency spectrum. 

  

Figure 20. Concrete crack distribution at Case: (a) D1; (b) D2; (c) D3; and (d) D4.

5.2. Experiment Results

5.2.1. Macro-Strain and Macro-Strain Based Frequency Spectrum

Figure 21 presents the typical dynamic macro-strain results under the single-point excitation and
random excitation. To extract the modal information, the measured dynamic macro-strain was first
transformed into frequency domain using the classic fast Fourier transform (FFT) method. In Figure 22,
the typical results are obtained near the first bending mode frequency, 33.25 Hz, where the magnitude
peak value is the MMS for the measurement. Then the proposed method can be applied to extract the
information of the neutral axis position.
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Figure 22. Typical results of macro-strain based frequency spectrum.

5.2.2. Verification of Plane Section Hypothesis

It is easy to theoretically prove the plane section with the MMS as Equation (12). However, it is
most important to implement the verification of the plane section hypothesis with the experimental
MMS results. From the results of the element E3 in Figure 23, the MMS distributes linearly at all the
cases with one rotation center where the MMS value is zero. Therefore, the plane section has been
verified when the MMS is applied. Moreover, the neutral axis lies at the rotation center, as per the
definition. From the results in Figure 23, it is obvious that the neutral axis is moving up step by step
with loading.

5.2.3. Neutral Axis Position Coefficient

As shown in Figure 24 the line was fit between the MMSs from the two sensors at up-surface
and down-surface (e.g., long-gauge FBG sensors F31 and F33 for E3 as shown in Figure 18b) to obtain
the neutral axis position coefficient (NAPC) ψ. The fitting line slope is just the NAPC, increasing
obviously with the damage developing in the figures. The perfect linear correlation has also been
found from all the results as all the fitting correlation coefficients are larger than 0.99. In other words,
it has been proved that the new index NAPC presents excellent stability, which is of great importance
for long-term SHM.

In Figure 25a and Table 7, results of NAPC for all the five monitored elements are included,
for all the cases. At Case I the NAPC of all the five elements are close to each other as there is no
damage happening, while the NAPC increases obviously with the damage developing. Because the
damages are different for each element, there are differences among the NAPC results. For damage
assessment, the relative change of NAPC is calculated as shown in Figure 25b. In the early stage of
development of the concrete crack, the index change is up to 10%, sensitive enough to identify the
damage happening, while it is over 50% for the larger damage. However, the detailed investigation of
the damage sensitivity will be a future work, especially to detect initial damages that occur at the real
structures through their service lives.

The resonant frequency is often taken as a useful index to identify structural damage. To explain
the sensitivity of the proposed method, the resonant frequency of the first bending mode has also
been extracted, namely, 33.25 Hz, 32.38 Hz, 30.42 Hz, 29.33 Hz and 28.87 Hz for the five cases. The
relative change is 2.6%, 8.5%, 11.8% and 13.2% for Case D1, D2, D3 and D4. Considering the results in
Figure 25b, the damage sensitivity of NAPC is much larger than the resonant frequency, which has
also proved that the NAPC is a good local damage index.
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Figure 23. MMS distribution along the depth of the element E3 at Case: (a) I; (b) D1; (c) D2; (d) D3; 
and (e) D4. 

  

Figure 23. MMS distribution along the depth of the element E3 at Case: (a) I; (b) D1; (c) D2; (d) D3; and
(e) D4.

Table 7. The results of NAPC.

Damage Case I D1 D2 D3 D4

E1 1.007 1.026 1.347 1.439 1.454
E2 1.023 1.126 1.318 1.403 1.410
E3 1.020 1.048 1.233 1.321 1.371
E4 1.068 1.103 1.511 1.635 1.640
E5 1.069 1.121 1.216 1.300 1.339
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Figure 24. NAPC extracting from dynamic tests for: (a) E1; (b) E2; (c) E3; (d) E4; and (e) E5. 
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5.2.4. Neutral Axis Depth

The neutral axis depth can be calculated by taking the NAPC results (Table 7) and the vertical
distance between the two sensors (Table 8) into Equation (10), as shown in Figure 26a and Table 9. The
results show the trend that the neutral axis moves towards the compressive zone with as the concrete
cracks develop within the tensile zone. However, the relative change of the neutral axis is about 50%
smaller than that of the NAPC (Figure 25b) as shown in Figure 26b.

Table 8. The vertical distance between the two sensors (mm).

Element Number E1 E2 E3 E4 E5

Distance 223 216 220 214 222
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Table 9. The results of neutral axis depth with the proposed method (mm).

Damage Case I D1 D2 D3 D4

E1 112 113 128 132 132
E2 109 114 123 126 126
E3 111 113 121 125 127
E4 111 112 129 133 133
E5 115 117 122 125 127

The neutral axis depth has also been obtained from the static tests (Table 10) for further verification
of accuracy of the proposed method. Table 11 shows results of the comparison between the neutral axis
depth results obtained from the dynamic and the static tests. From the results, the smallest difference,
not over 2.5%, is present at Case I, indicating the excellent accuracy of the proposed dynamic method.
However, the difference increases greatly after the cracks happening. Another trend is that the neutral
axis depth obtained with the proposed dynamic method is about 20% smaller than that from the static
tests. The likely reason is that the crack closes after the static load is unloaded. Meanwhile the dynamic
load is not large enough to make the crack open. Therefore, the actual neutral axis location is different
at the dynamic and static loading cases.

Table 10. The results of neutral axis depth with the static method (mm).

Damage Case I D1 D2 D3 D4

E1 111 150 155 156 166
E2 110 145 149 149 161
E3 112 149 152 153 166
E4 112 149 153 153 161
E5 115 149 152 153 160
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Table 11. The comparison results with the static method (%).

Damage Case I D1 D2 D3 D4

E1 1.2 −24.8 −17.6 −15.6 −20.5
E2 −1.1 −21.0 −17.7 −15.6 −21.3
E3 −0.7 −24.5 −20.3 −18.3 −23.2
E4 −2.2 −24.5 −16.0 −13.3 −17.4
E5 1.0 −21.1 −20.1 −18.2 −20.8

6. Conclusions and Remarks

In this paper, a new method is proposed to determine neutral axis position and identify local
damage for flexural structures using modal macro-strain. Based on the research, the following
conclusions can be drawn:

(1) The linear relationships also exist as the traditional plane section assumption when the modal
macro-strain (MMS) of the first bending mode is applied for long-gauge monitored element.

(2) The neutral axis position can be determined with high accuracy by using the MMS based method.
For example, the neutral depth assessment error is not larger than 2.5% for the Case I of RC beam
experiment and all the cases of the steel beam experiment. Meanwhile, the proposed method
offers excellent stability because all the correlation coefficients of the fitting lines are larger than
0.99 for all the tests reported in this paper.

(3) The neutral axis position coefficient (NAPC) is potentially a good indicator for local damage
identification, such as concrete crack, as it presents an excellent damage sensitivity and assessing
robustness even under 5% noise. The two sensors used to measure dynamic macro-strain need to
be installed at each side of the neutral axis to obtain the best sensitivity.

However, there is still some work to be done in the future to make the proposed method more
useful and applicable. Firstly, different types of beam sections and actual bridge models should be
investigated to further verify the proposed method as the studied models in this paper are too simple.
Secondly, field tests should be implemented to verify the proposed method under live traffic loads.
Thirdly, except concrete crack some other damages, such as steel corrosion, should be considered to
verify the effectiveness of the proposed method. In a word, there is a lot of research to be implemented
to apply the proposed new method. Therefore, the work in this paper is just the beginning. Due to the
excellent properties, a positive future can be expected, especially for the application of the proposed
method in concrete infrastructures.
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