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Abstract: The existing temperature sensors using carbon nanotubes (CNTs) are limited by low
sensitivity, complicated processes, or dependence on microscopy to observe the experimental results.
Here we report the fabrication and successful testing of an ionization temperature sensor featuring
non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively
low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the
safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs,
the collecting current exhibited an exponential increase with temperature rising from 20 ◦C to
100 ◦C. Additionally, a higher temperature coefficient of 0.04 K−1 was obtained at 24 V voltage
applied on the extracting electrode, higher than the values of other reported CNT-based temperature
sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the
temperature change directly into an electrical signal. It shows a high temperature coefficient and
good application potential.
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1. Introduction

Temperature sensors are among the most-widely used sensors in consumer and industrial
temperature measurement. The development goal of a temperature sensor usually includes high
sensitivity, small footprint, and low power consumption. The potential of a carbon nanotubes (CNTs)
based temperature sensor offers great opportunities towards extreme miniaturization and low power
consumption [1–5], thanks to the unique nanoscale structure and electrical property [6–11]. Recent
studies showed that CNTs could be used to construct temperature sensors. For example, a thermometer
can be realized by measuring the thermal expansion of gallium inside a CNT [1], since the height
of a continuous unidimensional column of liquid gallium inside a carbon nanotube varies linearly
and reproducibly in the temperature range 50–500 ◦C. Nevertheless, this methodology requires
microscopic measurement of the height of the gallium. Alternatively, the CNT-based temperature
sensors [2–5] can also be implemented by measuring the conductivity variation of CNT induced by
the thermal interaction. However, the application of this type of sensor is potentially limited by its
complex fabrication process and low sensitivity. A novel ionization temperature sensor based on
CNTs electrodes [12] was capable of overcoming the limitations of the above two types of temperature
sensors, but it was only used to detect temperature in N2 at 100 V extracting voltage; meanwhile,

Sensors 2017, 17, 473; doi:10.3390/s17030473 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 473 2 of 7

its carbon nanotubes have large diameter and small spaces between nanotubes (see supplementary
material Figure S1), which results in small field enhancement factor, small output current, and low
sensitivity—especially below 70 ◦C (see supplementary material Tables S1 and S2, Figure S2). In this
paper, a triple-electrode CNT-based ionization temperature sensor is fabricated. Differently, the CNTs
array is grown by a low-temperature thermal chemical vapor deposition (TCVD) process, enabling
small diameters and larger spaces between nanotubes. As a result, the electric field around CNT
tips and the emission current density of the tips can be enhanced [13]. In addition, the decrease of
the electrode separation can increase the electric field strength of the sensor. The fabricated CNT
temperature sensor is capable of detecting temperature in ambient atmosphere at low working voltage.
The temperature sensing mechanism of the CNT sensor is explained in terms of the emission of CNT
and the discharge properties of air.

2. Materials and Methods

Figure 1 shows the schematic illustration of the presented CNT-based temperature sensor. The
sensor is comprised of three electrode plates; i.e., a CNT-based cathode, an extracting electrode, and a
collecting electrode. The two ventilating holes in the cathode make the gas diffuse more easily [11].
A hole in the extracting electrode is used to extract discharge particles. A rectangular ditch in the
collecting electrode could reduce reflection-induced loss of positive ions and collect more. In operation,
the extracting voltage Ue is set higher than the collecting voltage Uc, where the potential of the cathode
is 0 V. In this configuration, two electric fields E1 and E2 are generated with reversed field direction.
The currents Ic and Ie were recorded by two high-precision digital multimeters (NI PXI-4071, National
Instruments Corporation, Austin, TX, USA). One minute after the voltages are applied to the electrodes
and the discharge of air is stable, ten current values of Ic and ten current values of Ie are recorded and
averaged as currents Ic and Ie, respectively.

The presented CNT temperature sensor was fabricated according to the following steps. Three Si
substrates were firstly patterned by photolithograph to form the pattern of the cavity with different
sizes. The patterned substrates were then etched by an inductively coupled plasma (ICP) etcher. The
etched structure included the cathode with two circular holes of 4 mm in diameter, the extracting
electrode with a circular hole of 6 mm in diameter, and the collecting electrode with a rectangular
ditch structure with the size of 8 mm × 6 mm × 200 µm (length × width × depth) (Figure 1a–c).
A metallization layer of Ti/Ni/Au was then sputtered on both sides of the extracting electrode and the
inner walls of the cathode and collecting electrode. Vertically aligned multi-walled carbon nanotubes
(MWCNTs) were subsequently grown by thermal chemical vapor deposition (TCVD) on one side
of the cathode at 700 ◦C [14], with around 20 nm in diameter, 5 µm in length, and separated with a
distance of 200 nm in between (Figure 1d). The three electrodes were assembled with 50 µm-thick
polyester films.
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Figure 1. Scheme of the triple-electrode carbon nanotube (CNT)-based sensor. (a) the cathode after 
substrate patterning, Ti/Ni/Au sputtering, and CNT growing; (b) the extracting electrode and (c) the 
collecting electrode after substrate patterning and Ti/Ni/Au sputtering; (d) Scanning electron 
microscope image of the CNT film; (e) The test set-up. 

3. Results 

The effect of temperature on the discharge current of air was studied as depicted in Figure 1e. 
The fabricated sensor was placed inside a test chamber filled with ambient air heated by a resistive 
wire. The temperature inside the chamber was closed-loop controlled by tuning the voltage of the 
resistive heating wire and measuring the temperature using a k-type thermocouple 
(chromel–nisiloy). The steady state of the temperature was realized within the time of 1 min, in a 
range of 20 °C to 100 °C. After the temperature reached steady state, Uc of 1 V and Ue with values 
between 24 and 100 V were applied, and the discharge current Ic and Ie were measured respectively 
for the detection temperature and the study of emission properties of the CNTs cathode. When 
temperature T rose from 20 °C to 100 °C, currents Ic and Ie exhibited an exponential increase with T 
(Figure 2a,b). When extracting voltage Ue increased from 24 V to 100 V, currents Ic and Ie exhibited 
an increase with Ue. Sensitivity curves to temperature show very similar shape, as shown in Figure 
2. This indicates that the sensor is sensitive to temperature and is thus capable of detecting 
temperature change. Values of Ie were almost twice of those of Ic. The temperature coefficients of 
Figure 2a were calculated according to equation S = ΔI/(ΔT·IFS), where ΔT is the variation of 
temperature, ΔI is the variation of Ic, and IFS is the full scale range of Ic. The highest coefficient Smax 
was obtained as 0.04 K−1 at 100 °C and 24 V Ue (Table 1), higher than the values of other reported 
CNT-based temperature sensors [1–5]. 

Table 1. Performance comparison of the temperature sensors. 

No. Test Range (°C) Highest Temperature Coefficient (K−1) Reference 
This paper 20–100 4.0 × 10–2 - 
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Figure 1. Scheme of the triple-electrode carbon nanotube (CNT)-based sensor. (a) the cathode
after substrate patterning, Ti/Ni/Au sputtering, and CNT growing; (b) the extracting electrode and
(c) the collecting electrode after substrate patterning and Ti/Ni/Au sputtering; (d) Scanning electron
microscope image of the CNT film; (e) The test set-up.

3. Results

The effect of temperature on the discharge current of air was studied as depicted in Figure 1e.
The fabricated sensor was placed inside a test chamber filled with ambient air heated by a resistive
wire. The temperature inside the chamber was closed-loop controlled by tuning the voltage of the
resistive heating wire and measuring the temperature using a k-type thermocouple (chromel–nisiloy).
The steady state of the temperature was realized within the time of 1 min, in a range of 20 ◦C to 100 ◦C.
After the temperature reached steady state, Uc of 1 V and Ue with values between 24 and 100 V were
applied, and the discharge current Ic and Ie were measured respectively for the detection temperature
and the study of emission properties of the CNTs cathode. When temperature T rose from 20 ◦C to
100 ◦C, currents Ic and Ie exhibited an exponential increase with T (Figure 2a,b). When extracting
voltage Ue increased from 24 V to 100 V, currents Ic and Ie exhibited an increase with Ue. Sensitivity
curves to temperature show very similar shape, as shown in Figure 2. This indicates that the sensor is
sensitive to temperature and is thus capable of detecting temperature change. Values of Ie were almost
twice of those of Ic. The temperature coefficients of Figure 2a were calculated according to equation
S = ∆I/(∆T·IFS), where ∆T is the variation of temperature, ∆I is the variation of Ic, and IFS is the full
scale range of Ic. The highest coefficient Smax was obtained as 0.04 K−1 at 100 ◦C and 24 V Ue (Table 1),
higher than the values of other reported CNT-based temperature sensors [1–5].

Table 1. Performance comparison of the temperature sensors.

No. Test Range (◦C) Highest Temperature Coefficient (K−1) Reference

This paper 20–100 4.0 × 10–2 -
Article 1 50–500 2.2 × 10–3 [1]
Article 2 −269–147 −7.0 × 10–4 [2]
Article 3 20–70 −1.3 × 10–2 [3]
Article 4 20–75 −1.7 × 10–2 [4]
Article 5 20–60 −5.0 × 10–3 [5]

The relationship between the logarithm lnje (je is the cathode current density and is obtained by
je = Ie/Sarea) and the reciprocal –1/T was studied (Figure 2c). Sarea is the total cross-sectional area
of all nanotubes on the film, and was calculated according to Figure 1d (Figure S3 in reference [15]);
Sarea = 3.04 × 10−6 m2. Eight least squares straight lines were fitted to the curves of lnje−1/T at
different Ue, and the coefficients R-Sq were calculated (Figure 2c)

R-Sq = 1 − (Σ(yi − f i)2)/(Σ(yi − yav)2) (1)
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where yi denotes lnje, f i denotes the fitting value to lnje, yav denotes the mean value of all lnje, and
subscript i denotes the sequence number. The coefficients R-Sq show that the straight lines are the
best fit line to the curves at various Ue, indicating a thermal emission behavior of the sensor. The
relationship between current density je and the average electric field E0 was also obtained (Figure 2d),
E0 = Ue/d, where d denotes electrode separation between cathode and extracting electrode. je increased
with E0, showing a field-assisted thermal emission behavior [16].
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Figure 2. Effect of temperature on current at different Ue. (a) Collecting current–temperature
characteristic and (b) Cathode current–temperature characteristic at 24–100 V Ue; (c) lnje increased
linearly with −1/T at 24–100 V Ue, suggesting the thermal emission behavior and a considerable effect
of temperature on current density; (d) je increased with E0, suggesting the field emission behavior.

4. Discussion

This section analyzes the experimental results to understand the temperature sensing mechanism
of the present CNT temperature sensor. When Ue is applied, electrons are emitted from the nanotube
tips and collide with the gas molecules, generating positive ions [17]. A fraction of the generated
positive ions are extracted from the cathode region through the extracting hole towards the collecting
electrode and form the collecting current Ic. Consequently, Ic is a part of the discharge current I [18],
given by:

I = eN0eαd (2)
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where e is the electron charge, N0 is the number of electrons leaving the cathode in one second, and
α is the first ionization coefficient. Emission electrons and secondary emission electrons of the CNT
cathode contribute to N0. In the non-self-discharge state, N0 is mainly determined by the emission
electrons [18]. It is known that only those electrons with energies greater than the sum of Fermi energy
EF and work function Φ can be emitted by the carbon nanotubes. When Ue is applied, the work
function of electrons emitted by the CNT is reduced from Φ to Φeff. Φeff is the effective work function,
and it decreased with increasing E1 at a given temperature (Figure 3a). More electrons with energies
greater than EF + Φeff could be emitted by CNTs. It is well known that when temperature rises to
T2 and T3 from T1 (100 ◦C ≥ T3 > T2 > T1), respectively, the probability of an electron gaining more
energy increases (Figure 3b) [16]. As a result, more electrons leave the cathode at higher temperature
and higher Ue, and form larger emission currentI0 (I0= eN0) [19].The emission current density JSchottky
could be expressed as follows [16]:

JSchottky = B0T2exp(−Φeff/kT) (3)

where B0 is the Richardson constant and k is the Boltzmann constant. Since JSchottky is the main source
of je, it is approximated in this work that JSchottky ≈ je, and exponential increase Ie with temperature
could be obtained. The higher the temperature and Ue are, the larger are the cathode currents. The
experimental results in Figure 2 are in good agreement with the above analysis.
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Figure 3. (a) The effects of the E1 on Φeff; (b) The effect of temperature on the probability of an electron
gaining energy.

Additionally, the first ionization coefficient α was also affected by temperature [17],

α = exp(−Ui/(Eλ))/λ (4)

where λ is the mean free path of an electron, Ui is the first ionization potential of a gas molecule, and E
is electric field.

λ = kT/(πr2P) (5)

where k is the Boltzmann constant, r is the radius of gas molecules, P is gas pressure. α denotes the
impact ionization ability of an electron with a gas molecule, which depends on E, λ, and Ui. Here,
E does not change when electrode separation and applied voltage are given, and the first ionization
potential Ui is a constant for a certain gas. As a result, α changes with λ. Since pressure P increases with
temperature T at a fixed volume of the test chamber, λ does not change with temperature according
to Equation (5). Therefore, rising temperature could not affect α in the experiment of this work. If
the temperature sensor operates in an open environment, λ increases with temperature T at constant
pressure P, and then the effect of temperature on α and discharge current should be considered.
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5. Conclusions

In summary, a triple-electrode CNT-based ionization sensor was fabricatedby using micro
fabrication technology. A vertically aligned multi-walled nanotube array was grown by thermal
chemical vapor deposition on one side of the cathode. The relationship of currents Ic and Ie versus
temperature was investigated in a wider test range of 20–100 ◦C and at 24–100 V Ue. The sensor in this
work had a sensitivity of 0.04 K−1 at 24 V Ue, which is the highest sensitivity compared to the existing
CNT-based resistive temperature sensors. The discharge current Ie and Ic increased with temperature,
due to the increased number of electron emission at a given volume of gas mixture.

Supplementary Materials: The Supplementary Materials are available online at http://www.mdpi.com/1424-
8220/17/3/473/s1.
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