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Abstract: Defocus of the reconstructed image of synthetic aperture radar (SAR) occurs in the presence
of the phase error. In this work, a phase error correction method is proposed for compressed sensing
(CS) radar imaging based on approximated observation. The proposed method has better image
focusing ability with much less memory cost, compared to the conventional approaches, due to the
inherent low memory requirement of the approximated observation operator. The one-dimensional
(1D) phase error correction for approximated observation-based CS-SAR imaging is first carried out
and it can be conveniently applied to the cases of random-frequency waveform and linear frequency
modulated (LFM) waveform without any a priori knowledge. The approximated observation
operators are obtained by calculating the inverse of Omega-K and chirp scaling algorithms for
random-frequency and LFM waveforms, respectively. Furthermore, the 1D phase error model is
modified by incorporating a priori knowledge and then a weighted 1D phase error model is proposed,
which is capable of correcting two-dimensional (2D) phase error in some cases, where the estimation
can be simplified to a 1D problem. Simulation and experimental results validate the effectiveness of
the proposed method in the presence of 1D phase error or weighted 1D phase error.

Keywords: phase error correction; compressed sensing; approximated observation; radar imaging

1. Introduction

The synthetic aperture radar (SAR) is able to achieve image reconstruction with high resolution in
both range and azimuth direction. However, higher range resolution of SAR requires wider bandwidth
of signal, and thereby a higher sampling rate. Similarly, higher azimuth resolution requires longer
synthetic aperture and higher sampling rate in azimuth direction. When both higher range and azimuth
resolutions are expected, much higher sampling rate and larger volume of sampled data are required.
It is thus a great challenge to design a high-resolution radar system hardware with limited cost.

Based on the theory of compressed sensing (CS) [1,2], both the sampling rate and the volume of
sampled data can be reduced, if the reconstructed scene is sparse or compressible. The assumption
made in the image reconstruction algorithm is that the observation matrix is known exactly.
The observation matrix, however, depends on the mathematical model of the observation process.
The uncertainties of the observation position will lead to the mismatch of the mathematical model
and the observation matrix, which will cause phase error of the raw data, and thus the defocus of the
reconstructed image.

The autofocus techniques, which are developed for correcting the phase error, are still attracting
the interests of scientists. Chen et al. [3] proposed a method of SAR motion compensation based on
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parametric sparse representation to achieve autofocus of high-resolution SAR image, which assumed
that the motion parameters of the radar were constant in each subaperture. Then the trajectory error
can be corrected by the estimated motion parameters. Mao et al. [4] proposed a knowledge-aided
two-dimensional (2D) autofocus approach, but the method did not utilize the CS theory or sparse
regularization method to enhance the feature of the reconstructed image.

Many methods were proposed to deal with the model error in the case of CS-based radar imaging.
Önhon et al. [5] proposed a sparsity-driven method for joint SAR imaging and phase error correction,
which can remove either one-dimensional (1D) or 2D phase error. Kelly et al. [6] proposed a stable
algorithm, which corrects phase error and reconstructs SAR image with compressively sampled data.
An approach was proposed in [7], which can solve a joint optimization problem to achieve model error
parameter estimation and SAR image formation simultaneously. Yang et al. [8] reported a method that
can estimate the observation position error accurately and thus the quality of reconstructed image is
improved significantly.

Up to now, the existing methods correcting the phase error of CS-based radar imaging were
achieved by solving a two-step optimization problem, i.e., image formation processing and phase
error estimation. The frameworks of CS-based image formation processing in [5,7,8] were formulated
using exact observation functions, which were inefficient to be applied to the high-dimensional
cases. The method proposed in [6] made a small aperture angle approximation, which hampered the
application of high-resolution radar.

In [9,10], the approximated observation operators were proposed, which reduce the computational
complexity and memory cost dramatically, and thus can be applied in high-dimensional cases efficiently.
The approximated observation-based method proposed in [9] was called “range-azimuth decoupled
method” in [10].

The intent of this paper is twofold. First, we propose a method to correct 1D phase error
for approximated observation-based CS-SAR imaging by replacing the exact observation with the
mentioned approximated observation in the two-step optimization framework. Then, a modified 1D
phase error model is proposed to make the phase error model more precise, while the number of the
unknowns does not increase in the phase error model.

The method proposed in this paper is capable of correcting the phase error in the case of
approximated observation-based CS-SAR imaging. Compared with the existing methods mentioned
above, the proposed method reduces the memory cost. The proposed method is achieved by solving
a two-step optimization problem. In the step of image formation processing, the approximated
observations can be derived from the inverse of Omega-K [11] and chirp scaling [12] algorithms
for random-frequency waveform and linear frequency modulated (LFM) waveform, respectively.
The images can thus be reconstructed by conducting the iterative thresholding algorithm (ITA) [9].
In the step of phase error estimation, the 1D phase error model, which can be conveniently applied to
the cases of random-frequency and LFM waveforms without any a priori knowledge, is utilized first,
and a weighted 1D phase error model is then proposed, which is able to model the phase error more
precisely. When incorporating the a priori knowledge of the phase error structures, the method using
the proposed weighted 1D phase error model can compensate the 2D phase error by solving a 1D
problem. Accordingly, the weighted 1D phase error model achieves a better performance compared
to the 1D phase error model, while the number of unknowns keeps the same. Furthermore, data
redundancy will not be decreased for the weighted 1D phase error estimation compared with 1D phase
error estimation.

This paper is organized as follows. Section 2 describes the signal models of radar imaging,
along with model expressions for random-frequency and LFM waveforms. The inherent relationships
between the geometric models and the phase error models are also introduced. In Section 3, a phase
error correction method is proposed for approximated observation-based CS-SAR imaging, including
the target reconstruction method, the phase error estimation approach, the memory cost analysis,
the convergence analysis, and the computational complexity analysis. The simulation and experimental
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results are presented in Section 4 to validate the effectiveness of the proposed method. We conclude
the work in Section 5.

Notation: We will use the subsequent notations in this paper. Vectors, matrices and operators will
be denoted by bold lower case, bold upper case and roman upper case, respectively, e.g., f is a vector,
S is a matrix, and M is an operator. Superscripts ST , S∗ and SH denote the transpose, conjugate and
Hermitian transpose of S, respectively.

2. Radar Imaging Model

2.1. Signal Model

In applications of strip-map SAR, wide bandwidth signals are always used to achieve the high range
resolution. In this paper, we consider two types of signal waveforms, namely the random-frequency
waveform [13] and the LFM waveform [8,12].

2.1.1. Random-Frequency Waveform

To overcome the limitations of the stepped-frequency SAR system, a random-frequency SAR
imaging scheme was proposed in [13]. In the strip-map SAR using stepped-frequency waveform [11],
the demodulated baseband echo signal for a point target can be expressed as

s(n) = g · exp
[
−j4π fc

(
n
)

R/c
]

(1)

where n = 1, 2, · · · , N is the n-th frequency point in one sequence, g is reflectivity coefficient of the
point target, fc(n) is the frequency value of the n-th frequency, R is the range from radar to the point
target, and c is the velocity of light. The stepped-frequency points are denoted as

fc(n) = fc + n∆ f , n = 1, 2, · · · , N (2)

where ∆ f is the frequency interval and fc is the starting frequency.
The received signal of a radar is the superposition of echoes from all scatterers in the scene.

Based on Equation (1), the received signal of the n-th pulse in the m-th sequence is given by

s(m, n) =
x

G0

g(x, y) exp
[
−j

4π fc(n)R(m, x, y)
c

]
dxdy (3)

where m = 1, 2, · · · , M denotes the m-th observation position, (x, y) is the coordinate of a target, g(x, y)
is reflectivity coefficient of the target on (x, y), R(m, x, y) is the range from the radar to the target in
the m-th observation position, and G0 is the area illuminated by the wave beam. Here, referring to [8],
we also assume that the transmitting period for each frequency is relatively short. Thus, the range
from the radar to the scene is not changed in one observation.

There is a trade-off between resolution and imaging width [11]. If the scene is sparse or
compressible, it is found [13] that the frequency points can be reduced and the imaging width
can be increased, while the range and azimuth resolutions remain the same based on the theory
of CS. The difference between stepped-frequency waveform and random-frequency waveform is the
frequency interval. In the strip-map SAR using random-frequency waveform, fc(n) will be substituted
by f ′c(ns), ns = 1, 2, · · · , Ns, and the sequence f ′c(ns) is selected from the sequence fc(n) randomly.
Ns is generally much smaller than N. The relationship between the stepped-frequency points and the
random-frequency points is expressed in matrix form as:

f′c = fcΘr (4)
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where f′c ∈ C1×Ns and fc ∈ C1×N denote the set of random-frequency and stepped-frequency points,
respectively, and Θr ∈ CN×Ns is the sampling matrix.

Substituting fc(n) by f ′c(ns) in Equation (3), the received signal of the random-frequency SAR is
expressed as:

s(m, ns) =
x

G0

g(x, y) exp
[
−j

4π f ′c(ns)R(m, x, y)
c

]
dxdy. (5)

We consider that the scene consists of a series of point scatterers. Based on Equation (5), the
received signal of the random-frequency SAR will be rewritten as:

s(m, ns) =
K

∑
k=1

g(k) exp
[
−j

4π f ′c(ns)R(m, k)
c

]
(6)

where K is the number of point scatterers, g(k) is reflectivity coefficient of the k-th point, and R is the
range from the radar to the k-th point in the m-th observation position.

2.1.2. LFM Waveform

The LFM waveform is another kind of signal waveform, which can achieve wide bandwidth.
Transmitted LFM waveform can be expressed as:

sT(t) = p(t) exp(j2π fct) (7)

where t is fast time, fc is the carrier frequency, and p(t) is denoted as:

p(t) = rect
(

t
T

)
exp

(
jπγt2

)
(8)

where rect(·) is the time window, and γ is the chirp rate.
In the strip-map SAR using LFM waveform, the demodulated baseband echo signal for a point

target is given by:
s(t) = g · p(t− 2R/c) exp(−j4π fcR/c) (9)

where g is reflectivity coefficient of the point target, R is the range from the radar to the point target,
and c is the velocity of light.

The received data are the superposition of echoes from all scatterers in the scene. Based on
Equation (9), the demodulated echo data in the m-th observation will be expressed as:

s(m, t) =
x

G0

g(x, y)p
[

t− 2R(m, x, y)/c
]

exp
[
−j

4π fcR(m, x, y)
c

]
dxdy. (10)

where g(x, y) is reflectivity coefficient of the target, R(m, x, y) is the range from radar to the target, and
G0 is the area of imaging. We consider that the scene is discretized, and then the received signal will be
rewritten as:

s(m, t) =
K

∑
k=1

g(k)p
[

t− 2R(m, k)/c
]

exp
[
−j

4π fcR(m, k)
c

]
(11)

where K is the number of scatterers. In practice, the continuous signal should be discretized. Then, the
echo signal using LFM waveform is given by

s(m, n) =
K

∑
k=1

g(k)p
[

t(n)− 2R(m, k)/c
]

exp
[
−j

4π fcR(m, k)
c

]
. (12)
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2.2. Phase Error Model

After reviewing the existing signal models, the phase error models are analyzed as follows. In the
SAR system, a radar transmits a series of pulse signals, and receives a series of echo data scattered
from the illuminated scene. Considering 2-D slant-range plane [3], geometry of a SAR system is shown
in Figure 1. The curved line indicates the real radar path, and the vertical axis indicates the known
radar path, also nominated as “nominal path” in [3]. P is the real radar position, and P′ is the known
radar position. T0 is the reference point of the scene, and Tk is the k-th target in the illuminated scene.
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Figure 1. SAR imaging model.

Under the far-field assumption [14,15], range from the known radar position to the k-th target can
be approximated as: ∣∣P′Tk

∣∣ ≈ ∣∣P′T0
∣∣+ →

T0Tk

→
P′T0

|P′T0|
(13)

where
→

P′T0 and |P′T0| denote the direction vector and the range from P′ to T0, respectively.
Furthermore, radar platform position uncertainties will result in the difference between the known

radar positon and the real radar position. Therefore, applying the far-field approximation, the range
from the real radar position to the k-th target will be given by:

|PTk| ≈
∣∣P′T0

∣∣+ →
T0Tk

→
P′T0

|P′T0|
+
→

P′P

→
T0P′

|T0P′| . (14)

The third item on the right side in Equation (14) arises from the radar position uncertainties,
which will result in phase error of echo data. Note that the third item is a common parameter for all
the scatterers.

Considering the random-frequency waveform, the received signal of the random-frequency SAR
can be expressed as Equation (6). Due to the radar position uncertainties, the received signal with
model error must be modified as:

sε(m, ns) =
K

∑
k=1

g(k) exp
[
−j

4π f ′c(ns)[R(m, k) + ∆R(m, k)]
c

]
(15)

where ∆R(m, k) arises from the radar position uncertainties. Referring to Equation (14), Equation (15)
is approximated as:
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sε(m, ns) ≈
K
∑

k=1
g(k) exp

[
−j

4π f ′c(ns)
[

R(m,k)+∆R(m)
]

c

]
= exp

[
−j 4π f ′c(ns)∆R(m)

c

]
K
∑

k=1
g(k) exp

[
−j 4π f ′c(ns)R(m,k)

c

]
= exp

[
−j 4π f ′c(ns)∆R(m)

c

]
s(m, ns)

(16)

where exp[−j4π f ′c(ns)∆R(m)/c] arises from the radar position uncertainties, which will result in
phase error in echo data and must be corrected in the phase error correction process. During the
compensation of phase error, ∆R(m) must be estimated. Equation (16) is expressed in matrix form as:

Sε = DW1D � S (17)

where DW1D ∈ CM×Ns denotes the phase error, � denotes the Hadamard product, and Sε ∈ CM×Ns

and S ∈ CM×Ns denote the echo data with phase error and without phase error, respectively. The phase
error arising from radar position uncertainties is

DW1D = exp

{[
jφW1D(1), jφW1D(2), . . . , jφW1D(M)

]T [
f ′c(1), f ′c(2),..., f ′c(Ns)

]
fc

}
= exp

(
jφW1D

Tw
) (18)

where φW1D ∈ C1×M denotes the fundamental phase error, and w ∈ R1×Ns denotes the weight.
The vectors and matrix are given by:

φW1D(m) = − 4π fc∆R(m)
c , m = 1, 2, . . . , M (19)

w(ns) =
f ′c(ns)

fc
, ns = 1, 2, . . . , Ns (20)

DW1D(m, ns) = exp
[

jφW1D(m)w(ns)
]

= exp
[
−j 4π∆R(m) f ′c(ns)

c

] . (21)

The function exp(·) in Equation (18) is defined as follows:

exp(G) =


eG1,1 eG1,2 · · · eG1,N

eG2,1 eG2,2 · · · eG2,N

...
...

...
eGM,1 eGM,2 · · · eGM,N

 (22)

where G = [Gi,j] ∈ CM×N is an arbitrary matrix. In Equation (19), φW1D(m) is proportional to ∆R(m),
which is unknown and must be estimated in the phase error correction method.

For the narrow bandwidth system, the frequency interval ∆ f can be neglected, i.e., n · ∆ f << fc.
Therefore, Equation (20) can be approximated as

w(ns) ≈ 1, ns = 1, 2, . . . , Ns (23)

Based on Equation (17), the received signal using random-frequency waveform with model error
for the narrow bandwidth system will be expressed as:
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Sε = DW1D � S

= exp
(

jφW1D
Tw
)
� S

≈ exp

[jφ1D(1), jφ1D(2), . . . , jφ1D(M)]T

1, 1, . . . , 1︸ ︷︷ ︸
Ns


� S

= exp{diag[jφ1D(1), jφ1D(2), . . . , jφ1D(M)]} · S

= diag
[
ejφ1D(1), ejφ1D(2), · · · , ejφ1D(M)

]
· S

= D1DS

. (24)

Comparing Equation (18) to Equation (24), the 1D phase error model is an approximation of the
weighted 1D phase error model in the case of the narrow bandwidth system. Note that the former can
only correct 1D phase error, while the latter can correct 2D phase error.

Similarly, the received signal using LFM waveform with model error for the narrow bandwidth
system can also be written as:

Sε = D1DS (25)

where Sε ∈ CM×N and S ∈ CM×N denote the echo data with and without phase error, respectively.

3. Phase Error Correction for Approximated Observation-Based CS-SAR Imaging

In this section, we will formulate the method to correct phase error for approximated
observation-based CS-SAR imaging. First, some preliminary knowledge of approximated observation
is reviewed. Then, a method is proposed to correct phase error for approximated observation-based
CS-SAR imaging.

3.1. Approximated Observation

3.1.1. Random-Frequency Waveform

Referring to [9,10], the approximated observation operators will be obtained by calculating
the inverse of matched filtering (MF)-based algorithm. The Omega-K algorithm, which is a type of
MF-based algorithm, can be used to achieve the stepped-frequency SAR imaging [11]. In this paper,
the Omega-K algorithm is also used to achieve the imaging procedure of the random-frequency SAR,
which can be expressed as:

M(S) = FH
a

{
C
[
(FaS)�HcΘT

r �Hre f

]
FH

r

}
(26)

where S ∈ CM×Ns is the echo data without model error, C is the Stolt interpolation operator, Hc is
the range difference compensation function, and Hre f is the reference function. The details of Hc and
Hre f can be seen in [11]. F and FH are DFT matrix and inverse DFT matrix, respectively. The lower
notation a and r are the azimuth and range direction, respectively. Θr can be found in Equation (4).
The function M : CM×Ns → CM×N is the imaging procedure.

Based on the above exposition, the approximated observation operator I is obtained by calculating
the inverse of imaging procedure as:

I(G) = FH
a

{
C−1

[
(FaG)Fr

]
�H∗re f Θr �H∗c

}
(27)
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where G ∈ CM×N is the matrix form of g(x, y) in Equation (3), and C−1 is the inverse of Stolt
interpolation operator. The notation I : CM×N → CM×Ns denotes the approximated observation
operator.

Based on Equation (27), we acquire the approximated observation-based CS-SAR model (named
as CS-Omega-K [16,17]) as follow:

min
G

{
‖S− I(G)‖2

F + λ‖G‖1,1

}
(28)

where ‖ · ‖F is the Frobenius norm of a matrix, and λ > 0 is a regularization parameter.
‖G‖1,1 = ‖vec(G)‖1 is the l1,1 (pseudo) matrix norm [18]. The regularization item ‖G‖1,1 also can be
substituted by ‖vec(G)‖q

q to enhance feature of imaging when 0 ≤ q ≤ 1. In this paper, we simply set
q = 1, since the widely used soft-thresholding corresponds to q = 1 and the soft-thresholding operator
can be analytically specified.

3.1.2. LFM Waveform

In [10,19], the chirp scaling algorithm, which is also a type of MF-based algorithm, was used to
achieve the LFM SAR imaging. In this paper, the chip scaling algorithm is used to achieve the imaging
procedure of the LFM SAR, which can be expressed as:

M(S) = FH
a

{
H3 �

{
H2 � [H1 � (FaS)Fr]FH

r

}}
(29)

where S ∈ CM×N denotes the echo data without model error. H1, H2 and H3 are the standard
phase functions of the chirp scaling [19] (Φ1,Φ2 and Φ3). The function M : CM×N → CM×N is the
imaging procedure.

Based on the above exposition, the approximated observation I is obtained by calculating the
inverse of imaging procedure as:

I(G) = FH
a

{
H∗1 �

{
H∗2 � [H∗3 � (FaG)Fr]FH

r

}}
(30)

where G ∈ CM×N is the matrix form of g(x, y) in Equation (10). The notation I : CM×N → CM×N

denotes the approximated observation operator.
Based on Equation (30), we are able to acquire the approximated observation-based CS-SAR

model (named as CS-chirp scaling [10]) as follow:

min
G

{
‖S− I(G)‖2

F + λ‖G‖1,1

}
. (31)

The aim of briefing the published research is to suggest a new phase error correction method,
which will be formulated as follows and can achieve the phase error correction for approximated
observation-based CS-SAR imaging.

3.2. 1D Phase Error Correction for Approximated Observation-Based CS-SAR Imaging

Thus far, we have derived the inexact (nominal) observation model, but the model error is still
unknown. Thus, CS-SAR imaging models must be modified. Considering the 1D phase error models
in Equations (24) and (25), the CS-SAR imaging models in Equation (28) using random-frequency
waveform and in Equation (31) using LFM waveform will be modified as:

min
G,D1D

{
‖Sε −D1DI(G)‖2

F + λ‖G‖1,1

}
. (32)
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The cost function is denoted by:

J(G, D1D) = ‖Sε −D1DI(G)‖2
F + λ‖G‖1,1 (33)

where the phase error D1D is written, referring to Equation (24), as:

D1D = diag
[
ejφ1D(1), ejφ1D(2), · · · , ejφ1D(M)

]
. (34)

By solving Equation (32), both the image and the 1D phase error can be jointly obtained. Using
similar methods proposed in the [5,8], both the image and phase error are estimated by solving
a two-step optimization problem. In the first step, G is estimated by minimizing the cost function
Equation (33) using the given D1D. In the second step, D1D is obtained by minimizing the cost function
using the estimated G. By iteratively updating G and D1D as described above, both the image and the
1D phase error can be jointly estimated. The algorithm flow is outlined as Algorithm 1. Initially, let

D1D = diag

1, 1, · · · , 1︸ ︷︷ ︸
M

, (35)

i.e., φ1D(m) = 0, m = 1, 2, . . . , M .

Algorithm 1. 1D Phase Error Correction for Approximated Observation-Based CS-SAR Imaging.

Initialize: i = 0, D0
1D = diag[1, 1, . . . , 1]

Step 1: Image reconstruction Gi+1 = argminGJ
(

G, Di
1D

)
Step 2: Phase error estimation Di+1

1D = argminD1D
J
(

Gi+1, D1D

)
Step 3: Let i = i + 1 and return to step 1.

Terminate when i is equal to a preset threshold Imax.

Steps 1 and 2 are the major steps of Algorithm 1. In Step 1, the image is reconstructed by the given
phase error. The optimization problem is expressed as:

Gi+1 = argminGJ
(
G, Di

1D
)

= argminG

{
‖Sε −Di

1DI(G)‖2
F + λ‖G‖1,1

} (36)

Since Di
1D is a diagonal matrix, seen in Equation (34), Equation (36) can be rewritten as:

Gi+1 = argminG

{
‖Di

1D
∗
Sε − I(G)‖

2
F + λ‖G‖1,1

}
(37)

Then, due to the linearity of I, we solve the optimization problem efficiently by iterative
thresholding algorithm (ITA) [9,10,20]. Let G0 = 0, and the optimal solution is obtained by using
the iteration:

Gi+1 = E1,λµ

(
Gi + µM

(
Di

1D
∗
Sε − I

(
Gi
)))

(38)

where µ is step size, which controls the convergence of the ITA. In Equation (38), E1,λµ is a thresholding
operator, which is defined as:
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E1,λµ(G) =


E1,λµ(G1,1) E1,λµ(G1,2) · · · E1,λµ(G1,N)

E1,λµ(G2,1) E1,λµ(G2,2) · · · E1,λµ(G2,N)
...

...
...

E1,λµ(GM,1) E1,λµ(GM,2) · · · E1,λµ(GM,N)

 (39)

where soft-thresholding operator E1,λµ is analytically specified as:

E1,λµ(x) =

{
sign(x)(|x| − λµ), if |x| ≥ λµ,

0, otherwise.
(40)

In the proposed method, we simply set µ = 1 (0 < µ < ‖I‖2
2 [9]). With fixed parameter µ, the

parameter λ will depend on the sparsity parameter K0. We set λ = |G|K0+1/µ (|G|K0
is the K0-th

largest component of G in magnitude).
In Step 2, the phase error is estimated by the reconstructed image. The optimization problem is

expressed as:
Di+1

1D = argminD1D
J
(
Gi+1, D1D

)
= argminD1D

{
‖Sε −D1DI

(
Gi+1)‖2

F + λ‖Gi+1‖1,1

} . (41)

Since λ‖Gi+1‖1,1 is a constant, Equation (41) is rewritten as:

Di+1
1D = argminD1D

‖Sε −D1DI
(

Gi+1
)
‖

2

F
. (42)

From Equations (34) and (42), it is quite obvious that the data error of the m-th observation
position is only related to φ1D(m). Then, the optimization problem Equation (42) is divided into a set
of independent optimization problems as follows:

φi+1
1D (m) = argminφ1D(m)

∥∥∥[Sε]m − ejφ1D(m)
[
I
(

Gi+1
)]

m

∥∥∥2

2
(43)

where notation [·]m denotes the m-th row of the matrix. The phase error φi+1
1D (m) and/or Di+1

1D (m, m)

can be obtained as follows (the details can be found in the Appendix A):

φi+1
1D (m) = angle

(
[Sε]m ·

[
I
(

Gi+1
)]H

m

)
(44)

Substituting Equation (44) into Equation (34), Step 2 of Algorithm 1 can be implemented
straightforwardly.

3.3. Weighted 1D Phase Error Correction for Approximated Observation-Based CS-SAR Imaging

Considering the SAR imaging system using random-frequency waveform without narrow
bandwidth approximation, the SAR imaging model (28) is modified as:

min
G,DW1D

{
‖Sε −DW1D � I(G)‖2

F + λ‖G‖1,1

}
. (45)

The cost function is denoted by
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J(G, DW1D) = ‖Sε −DW1D � I(G)‖2
F + λ‖G‖1,1 (46)

where DW1D ∈ CM×Ns can be seen in Equation (18). By solving Equation (45), both the image and
the weighted 1D phase error will be estimated jointly. The method is similar to Algorithm 1, and the
algorithm flow is outlined in Algorithm 2. In the initialization, let

DW1D = ones(M, Ns) =


1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

, (47)

i.e., φW1D(m) = 0, m = 1, 2, · · · , M .

Algorithm 2. Weighted 1D Phase Error Correction for Approximated Observation-Based CS-SAR Imaging.

Initialize: i = 0, D0
W1D = ones(M, Ns)

Step 1: Image reconstruction Gi+1 = argminGJ
(

G, Di
W1D

)
Step 2: Phase error estimation Di+1

W1D = argminDW1D
J
(

Gi+1, DW1D

)
Step 3: Let i = i + 1 and return to step 1.

Terminate when i is equal to a preset threshold Imax.

In Step 1, the optimization problem is expressed as:

Gi+1 = argminGJ
(
G, Di

W1D
)

= argminG

{
‖Sε −Di

W1D � I(G)‖2
F + λ‖G‖1,1

}
= argminG

{
‖Di

W1D
∗ � Sε − I(G)‖2

F + λ‖G‖1,1

} . (48)

Let G0 = 0, and use the iteration

Gi+1 = E1,λµ

(
Gi + µM

(
Di

W1D
∗ � Sε − I

(
Gi
)))

(49)

Then, the optimization problem (48) is efficiently solved by the same method as Algorithm 1.
In Step 2, the optimization problem is expressed as:

Di+1
W1D = argminDW1D

J
(
Gi+1, DW1D

)
= argminDW1D

{∥∥Sε −DW1D � I
(
Gi+1)∥∥2

F + λ
∥∥Gi+1

∥∥
1,1

}
= argminDW1D

∥∥Sε −DW1D � I
(
Gi+1)∥∥2

F

. (50)

From Equations (18) and (50), it can be seen that the data error of the m-th observation position is
only related to φW1D(m). Then, the optimization problem in Equation (50) can also be divided into a
set of independent optimization problems as follows:

φi+1
W1D(m) = argminφW1D(m)

∥∥∥[Sε]m − exp(jφW1D(m) ·w)�
[
I
(

Gi+1
)]

m

∥∥∥2

2
. (51)
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The weight w, which is a priori knowledge, must be obtained before solving Equation (51).
Equation (51) is an unconstrained optimization problem, which can be solved using gradient-based
optimization method [8]. In Equation (51), there is only one unknown φW1D(m) to be estimated and it
belongs to a real number. Hence, the optimal solution is able to be obtained by line search [21].

3.4. Memory Cost

The proposed method consists of a two-step optimization problem. In the first step, the image
is reconstructed. In the second step, the phase error is estimated and compensated. The second step
is divided into a set of independent optimization problems. Thus the biggest matrix will appear in
the first step. There are some notations to be denoted as follows. M, N and K denote the number of
azimuth samples, the number of range samples, and the number of scatterer points after discretizing
the scene, respectively. The size of the sensing matrix in the phase error correction for exact observation
based CS-SAR imaging is MN × K complex numbers, but the size of the matrix in the proposed
method is M× N complex numbers. Therefore, the proposed method can reduce the memory cost
and the hardware requirement significantly.

3.5. Convergence

The proposed method is achieved by calculating a two-step optimization problem. The cost
function of 1D phase error correction or weighted 1D phase error correction for approximated
observation-based CS-SAR imaging can be denoted as J(G, D).

In the first step, Gi+1 = argminGJ
(
G, Di), and thus J

(
Gi+1, Di) ≤ J

(
Gi, Di).

In the second step, Di+1 = argminDJ
(
Gi+1, D

)
, i.e., J

(
Gi+1, Di+1) ≤ J

(
Gi+1, Di).

Combining the two steps, there will be J
(
Gi+1, Di+1) ≤ J

(
Gi, Di), and then the cost function

J(G, D) is a monotonous decrease function. Since J(G, D) ≥ 0, the convergence of this process can
be guaranteed.

3.6. Computational Complexity

In order to calculate the computational complexity, we have defined some notations, which are
the number of azimuth samples M, the number of range samples N, the number of required iteration
in the first step I1, and the number of required iteration in algorithm Imax.

In the first step, the image is reconstructed. This process is an iterative process. One-step
iteration includes the calculations of imaging procedure, approximated observation procedure, and
thresholding operation. Both imaging procedure and approximated observation procedure have the
same computational complexity of O[MN log2(MN)]. The complexity of thresholding operator is
order O(MN). Thus, the complexity of the first step is at the order O[I1MN log2(MN)].

In the second step, the phase error is estimated and compensated. The optimal solution of the
second step in Algorithm 1 can be analytically expressed. The complexity of this procedure is order
O(MN). The optimal solution of the second step in Algorithm 2 is able to be obtained by line search.
The complexity of this procedure is order O(I2MN), where I2 denotes the number of iteration in
line search.

Based on the above exposition, the computational complexities of Algorithms 1 and 2 are at the
order O[Imax I1MN log2(MN)] and O{ImaxMN[I1 log2(MN) + I2]}, respectively.

4. Simulation and Experimental Results

In this section, we will present a series of simulation and experimental results to verify the
effectiveness of the proposed method. All experiments are performed using MATLAB R2015a on a PC
equipped with an Intel Core i5-4590 CPU (3.30 GHz and 8 GB memory, University of Science and
Technology of China, Hefei, China).
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4.1. 1D Phase Error Correction for Approximated Observation-Based CS-SAR Imaging

4.1.1. Simulation Results

The simulation parameters for the random-frequency waveform are shown in Table 1. We then
choose a sparse imaging scene consisting of four-point scatterers, the positions of which are shown in
Table 2. In order to make each observation position have the same data volume to estimate phase error,
the random-frequency points are selected as follows: in one observation position, the frequency points
are selected randomly from stepped-frequency points, and then this selecting scheme is utilized in
each observation position. The raw data are first generated in the time domain by exact observation.
Then, we add the Gaussian noise and the 1D phase error to the data. The signal-to-noise ratio (SNR)
is 20 dB. Two types of phase error are 1D quadratic phase error and 1D random phase error. The 1D
quadratic phase error is distributed in [−π/2, +π/2], and the 1D random phase error is uniformly
distributed in [−0.8π, +0.8π].

Table 1. Simulation parameters for the random-frequency waveform.

Paramater Value

Center Frequency 5 GHz
Bandwidth 512 MHz
Frequency Interval 0.33 MHz
Frequency Number 1536
Pulse Time Interval 4 × 10−6 s
Radar Velocity 50 m/s
Azimuth Beam Width 4.3◦

Squint Angle 0◦

Scene Center Range 400 m
Number of Sequences 98
Number of Selected Frequencies 154

Table 2. Target positions.

Azimuth (m) Range (m)

Target 1 0 354.9
Target 2 0.9 354.9
Target 3 0 355.8
Target 4 0.9 355.8
Scene Center 0 400

Figure 2 shows the phase error distribution and the imaging results for the random-frequency
waveform. Figure 2a shows the results of the 1D quadratic phase error, and Figure 2b shows the results
of the 1D random phase error. The top subfigures show the 1D phase error added to the raw data.
The middle subfigures show the results of approximated observation-based CS-SAR imaging (named
as CS-Omega-K [16,17]) without phase error correction. The bottom subfigures show the results of
Algorithm 1. For both imaging methods, the approximated observation operator is acquired from the
inverse of Omega-K algorithm, and the sparsity is set to K0 = 12, which determines the threshold
of ITA.

In the middle subfigures, the images of point targets are defocused in the azimuth direction due
to the 1D phase error. In the bottom subfigures, the results show the effectiveness of Algorithm 1,
which can correct the 1D phase error and focus the images better in the azimuth direction.

Then, we conduct experiments to compare the performance of the proposed method with the
existing method [8]. The SNR is 20 dB, and the extent of 1D random phase error is 0.1π.
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Figure 2. Results for the random-frequency waveform. (Top) 1D quadratic phase error and 1D random
phase error. (Middle) Results of CS-Omega-K without phase error correction. (Bottom) Results of
Algorithm 1. (a) Results for 1D quadratic phase error; and (b) results for 1D random phase error.

Figure 3 shows the imaging results of the proposed method and other existing methods. Figure 3a
shows the reconstruction result without phase error correction. Figure 3b shows the reconstruction
result with compensation of observation position errors [8]. Figure 3c shows the result of the proposed
method (Algorithm 1). In Figure 3a, it can be seen that the 1D phase error will defocus the reconstructed
image in the azimuth direction without phase error correction. Both the proposed method and the
existing method can correct phase error and focus image better in Figure 3b,c, but the proposed
method requires much less memory cost referring to Section 3.4. In the simulation of the proposed
method, the numbers of azimuth samples and range samples are M = 98 and N = 1536, respectively.
Thus, the size of the matrix in the proposed method is M× N = 98× 1536 complex numbers, and
the memory requirement is 1.15 MB. In the simulation of the existing method, the scene needs to be
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discretized, which is taken as 40× 40. Thus, the number of scatterer points after discretizing the scene
is K = 1600. Therefore, the size of the matrix in the existing method is MN × K = 98× 1536× 1600
complex numbers, and the memory requirement is 1.79 GB.
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Figure 3. Imaging results of the different methods: (a) reconstruction result without phase
error correction; (b) reconstruction result with compensation of observation position errors; and
(c) reconstruction result of the proposed method (Algorithm 1).

Next, we perform a series of one-point simulations for investigating the influence of the sparsity
parameter K0 and the noise size to the proposed algorithm. The imaging scene is composed of one
point scatterer. Then, the target-to-background ratio (TBR) [5] can be used as a criterion to evaluate the
performance of the proposed method conveniently. The TBR of a reconstructed image can be given
as follows:

TBR(X) = 20 log10

(
maxi∈T |Xi|
1
IB

∑j∈B
∣∣Xj
∣∣
)

(52)

where T and B denote the pixel indices for the target and the background regions, respectively. IB is
the number of background pixels.

The extent of 1D random phase error is varied from [−0.2π,+0.2π] to [−0.5π,+0.5π]. First, the
sparsity parameter K0 is changed from 3 to 11. The SNR is 20 dB. Second, we simulate the cases of
different SNR from 0 dB to 30 dB. The sparsity parameter K0 is set to 4. Other simulation parameters
are the same as Table 1.

Figure 4 shows the behavior of TBR values with respect to the sparsity parameter and the noise size,
respectively. In Figure 4a, the TBR decreases with the increase of sparsity parameter. Therefore, exact
prior knowledge can contribute to the choice of sparsity parameter positively. In Figure 4b, the TBR
increases as the SNR increases. Note that there is an insignificant difference between different phase
error sizes in the case of high SNR.
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4.1.2. Experimental Results

The RADARSAT-1 is a well-known satellite SAR using LFM waveform, and the raw data were
collected on 16 June 2002 about Vancouver region. The experimental parameters for the LFM waveform
are shown in Table 3 [9,12].

In the region of English Bay, there are four sparsely distributed vessels, thus the region is a typically
sparse scene. Then, the proposed method (Algorithm 1) can be applied to reconstruction of the scene.
First, the chirp scaling algorithm, which is one type of MF-based algorithm, is applied to reconstruction
of the region of English Bay. Second, approximated observation-based CS-SAR imaging method
(named as CS-chirp scaling [10]) without phase error correction is applied, where the approximated
observation operator is acquired from the inverse of chirp scaling algorithm. We set the sparsity to
K0 = 10, 000. Third, Algorithm 1 is utilized to reconstruct the scene, where the same approximated
observation operator and the same sparsity are used.

Table 3. Experimental parameters for the RADARSAT-1.

Paramater Value

Sampling Rate 32.317 MHz
Range FM Rate 0.72135 MHz/µs
Pulse Duration 41.74 µs

Radar Center Frequency 5.300 GHz
Pulse Repetition Frequency 1256.98 Hz

Effective Radar Velocity 7062 m/s
Azimuth FM Rate 1733 Hz/s

Figure 5a,b shows the results of the three methods and the enlarged region, respectively. In the top
subfigures of Figure 5, the chirp scaling algorithm reconstructs the scene with serious sidelobes. In the
middle subfigures, it can be seen that CS-chirp scaling can suppress sidelobes and improve resolution.
In the bottom subfigures, the reconstructed scene can be focused better in the azimuth direction.
Thus, Algorithm 1 can not only suppress sidelobes, but also achieve phase error compensation.
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Figure 5. Results for the LFM waveform. (Top) Results of MF-based algorithm (chirp scaling).
(Middle) Results of CS-chirp scaling without phase error correction. (Bottom) Results of Algorithm 1.
(a) Application results on RADARSAT-1 (region of English Bay). (b) Detailed comparison on the
selected area.

We further use the image entropy [22] as a criterion to quantitatively evaluate the performance of
the three methods. The entropy of an image is defined as follows:

Entropy(X) = −∑
i

pi log2(pi) (53)

where pi is the histogram of the recovered gray level image.
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The entropy values of the reconstructed images by the three methods are shown in Table 4. It can
be seen that the proposed method (Algorithm 1) has a lower entropy, and thereby exhibits a better
performance of image reconstruction. In Table 4, there is no significant difference in entropy between
CS-chirp scaling method and the proposed method (Algorithm 1), since the estimated phase error
(shown in Figure 6) is not too large. The trajectory of the satellite is much more stable than that of
an airplane, and thus the phase error is smaller. If the phase error arising from observation position
uncertainties is large enough, there will be a significant difference.

Table 4. Entropy values by different methods.

Chirp Scaling CS-Chirp Scaling Algorithm 1

Entropy 1.94780 8.792 × 10−2 8.717 × 10−2
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4.2. Weighted 1D Phase Error Correction for Approximated Observation-Based CS-SAR Imaging

Furthermore, with narrow bandwidth approximation, the phase error of echo data along range time
is constant for one observation position, which can be seen in Equation (34). However, considering the
SAR imaging system using random-frequency waveform without narrow bandwidth approximation,
the phase error of echo data along range time is different for one observation position, which can be
seen in Equation (18). The number of unknowns for weighted 1D phase error model is also M, which
is the same as the 1D phase error model. The simulation parameters are the same as Table 1. We then
set one point scatterer. The position of the target is shown in Table 5. The raw data are first generated
in the time domain by exact observation. Then, we add the Gaussian noise and the weighted 1D phase
error to the data. The SNR is 20 dB. Two types of phase error φW1D ∈ CM×1 are utilized in simulations.
The extent of the error is 1/8 of the wavelength so that the weighted 1D quadratic phase error is
distributed in [−π/8,+π/8], and the weighted 1D random phase error is uniformly distributed in
[−π/8,+π/8]. The weight w ∈ C1×Ns depends on the selected frequency points.

Table 5. Target positions.

Azimuth (m) Range (m)

Target 0 355.8
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The imaging scene is composed of one point scatterer. Then, the TBR can also be used as a criterion
to evaluate the performance of the two methods conveniently.

The images are reconstructed by the two imaging methods with sparsity K0 = 5. TBR values of
the reconstructed images by the Algorithm 1 and Algorithm 2 are listed in Table 6. It can be seen that
the Algorithm 2 has a higher TBR than Algorithm 1, and thereby Algorithm 2 has a better performance.

Table 6. TBR values by different methods.

Algorithm 1 Algorithm 2 Difference between Two Methods

Quadratic phase error 1.2936 × 102 1.2947 × 102 0.11
Random phase error 1.3149 × 102 1.3161 × 102 0.12

For presenting the effect of the weight w ∈ C1×Ns , we change the frequency interval from 0.33 MHz
to 0.66 MHz, and then the bandwidth will be changed to 1024 MHz. Other simulation parameters are
the same as Table 1. TBR values with larger frequency interval are given in Table 7. Comparing Table 6
with Table 7, it can be observed that there will be more significant difference under the case of the larger
frequency interval. Accordingly, the weighted 1D phase error correction for CS-SAR imaging will be
more effective in the case of large frequency interval.

Table 7. TBR values by different methods with larger frequency interval.

Algorithm 1 Algorithm 2 Difference between Two Methods

Quadratic phase error 1.1562 × 102 1.1592 × 102 0.30
Random phase error 1.1596 × 102 1.1628 × 102 0.32

Further, we increase the extent of phase error and then conduct the simulations. The weighted
1D quadratic phase error is distributed in [−π/2,+π/2], and the weighted 1D random phase error is
uniformly distributed in [−π/2,+π/2]. The simulation parameters are the same as Table 1. TBR values
with a larger extent of phase error are shown in Table 8. Comparing Table 6 with Table 8, it can be
observed that there is a more significant difference under the case with a larger extent of phase error.

Table 8. TBR values by different methods with a larger extent of phase error.

Algorithm 1 Algorithm 2 Difference between Two Methods

Quadratic phase error 1.0736 × 102 1.2967 × 102 22.31
Random phase error 1.2698 × 102 1.3128 × 102 4.30

5. Conclusions

In this paper, we proposed a phase error correction method for approximated observation-based
CS-SAR imaging. The proposed method yields a clear advantage in term of memory cost over
conventional CS-based autofocus algorithms. The 1D phase error model, which can be conveniently
utilized in autofocus technique without any a priori knowledge, is based on narrow bandwidth
approximation. We also analyzed the inherent relationship between the geometric model and the
phase error model in the case of random-frequency waveform. By incorporating a priori knowledge,
the weighted 1D phase error model was proposed, which corrects the 2D phase error by estimating
a 1D problem. The proposed weighted 1D phase error model is more precise than the 1D phase error
model, thus has a better performance.

Although the weighted 1D phase error correction method proposed in this work can be applied
only in the case of random-frequency waveform rather than the LFM one, since different waveforms
have different geometry and signal models, it would be possible to apply the weighted 1D phase error
correction to LFM waveform with appropriate modification, and this will be our future effort.
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Appendix A

In this appendix, we will derive Equation (44) from Equation (43). The optimization problem,
Equation (43), is as follows:

φi+1
1D (m) = argminφ1D(m)

∥∥∥[Sε]m − ejφ1D(m)
[
I
(

Gi+1
)]

m

∥∥∥2

2

For simplifying the notations, let a = [Sε]m ∈ C1×N , θ = φ1D(m) and b =
[
I
(
Gi+1)]

m ∈ C1×N .
Then, the cost function can be simplified as:∥∥∥[Sε]m − ejφ1D(m) ·

[
I
(
Gi+1)]

m

∥∥∥2

2
=
∥∥a− ejθb

∥∥2
2

=
(
a− ejθb

)(
a− ejθb

)H

= aaH + bbH − ejθbaH − a
(
ejθb

)H

= aaH + bbH − 2Re
[
a
(
ejθb

)H
]

= aaH + bbH − 2Re
[

e−jθabH
]

Since argmaxθRe
[
e−jθabH] = angle

(
abH), the equation becomes

argminθ‖a− ejθb‖2
2 = angle

(
abH

)
Finally, we can get

φi+1
1D (m) = argminφ1D(m)

∥∥∥[Sε]m − ejφ1D(m)
[
I
(
Gi+1)]

m

∥∥∥2

2

= angle
(
abH)

= angle
(
[Sε]m ·

[
I
(
Gi+1)]H

m

)
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