
sensors

Article

All-Direction Random Routing for Source-Location
Privacy Protecting against Parasitic Sensor Networks

Na Wang and Jiwen Zeng *

School of Mathematical Science, Xiamen University, Xiamen 361005, China; wangna@stu.xmu.edu.cn
* Correspondence: jwzeng@xmu.edu.cn; Tel.:+86-189-5007-1096

Academic Editor: Leonhard M. Reindl
Received: 21 January 2017; Accepted: 15 March 2017; Published: 17 March 2017

Abstract: Wireless sensor networks are deployed to monitor the surrounding physical environments
and they also act as the physical environments of parasitic sensor networks, whose purpose is
analyzing the contextual privacy and obtaining valuable information from the original wireless
sensor networks. Recently, contextual privacy issues associated with wireless communication in
open spaces have not been thoroughly addressed and one of the most important challenges is
protecting the source locations of the valuable packages. In this paper, we design an all-direction
random routing algorithm (ARR) for source-location protecting against parasitic sensor networks.
For each package, the routing process of ARR is divided into three stages, i.e., selecting a proper
agent node, delivering the package to the agent node from the source node, and sending it to the
final destination from the agent node. In ARR, the agent nodes are randomly chosen in all directions
by the source nodes using only local decisions, rather than knowing the whole topology of the
networks. ARR can control the distributions of the routing paths in a very flexible way and it can
guarantee that the routing paths with the same source and destination are totally different from each
other. Therefore, it is extremely difficult for the parasitic sensor nodes to trace the packages back to
the source nodes. Simulation results illustrate that ARR perfectly confuses the parasitic nodes and
obviously outperforms traditional routing-based schemes in protecting source-location privacy, with
a marginal increase in the communication overhead and energy consumption. In addition, ARR also
requires much less energy than the cloud-based source-location privacy protection schemes.

Keywords: wireless sensor networks; random routing; source-location privacy protecting;
identity authentication

1. Introduction

Supported by the rapid development of information techniques, circuit engineering, sensor
technology, and artificial intelligence, wireless sensor networks (WSNs) have been widely used in the
fields of habitat monitoring, target tracking, and military surveillance [1–5]. As an example, a WSN
used to monitor pandas’ wild habitat [6] is presented in Figure 1. When detecting a panda, the sensor
nodes around the panda are always kept active and collect valuable information of the panda in a
collaborative way. Then, a stream of packages is delivered to the sink node via a proper routing
algorithm. In general, for each routing algorithm in the WSN, there is an objective function in terms
of timeliness, energy saving, robustness, or package delivery success, and so on. As an example, the
shortest path routing algorithm always tries to find the shortest path from the source node to the
sink node, in order to transmit the packages; the directed diffusion routing algorithm always selects
the path with the highest value for timeliness to deliver the packages; to deliver the packages in a
totally distributed way and improve the robustness of the routing process, the GPSR routing algorithm
always employs the Greedy Forwarding Pattern to move the package in the networks and employs

Sensors 2017, 17, 614; doi:10.3390/s17030614 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 614 2 of 18

the Perimeter Forwarding Pattern to recover the package, when Greedy Forwarding Pattern fails.
In conclusion, for all of the routing algorithms with a constant objective function in WSNs, the selection
of the next hop always obeys a constant rule and, as a result, the packages always tend to select a set of
similar routing paths if the packages have similar sources and destinations. In Figure 1, the shortest
path routing algorithm is employed to select the next hop of the packages. We can observe that, in the
process of delivering the packages generated by the nodes around the panda, all of the routing paths
are strongly related to each other. Further, in the process of delivering the packages from the source
nodes to the sink node, the routing paths are closer and closer to each other and, eventually, all of the
paths will converge to a single path.

Sensors 2017, 17, 614 2 of 17

the Perimeter Forwarding Pattern to recover the package, when Greedy Forwarding Pattern fails. In

conclusion, for all of the routing algorithms with a constant objective function in WSNs, the selection

of the next hop always obeys a constant rule and, as a result, the packages always tend to select a set

of similar routing paths if the packages have similar sources and destinations. In Figure 1, the shortest

path routing algorithm is employed to select the next hop of the packages. We can observe that, in

the process of delivering the packages generated by the nodes around the panda, all of the routing

paths are strongly related to each other. Further, in the process of delivering the packages from the

source nodes to the sink node, the routing paths are closer and closer to each other and, eventually,

all of the paths will converge to a single path.

Sensor
nodes

Relaying
nodes

Source
nodes

Sink
node

Figure 1. A scenario of target monitoring.

The inherent characteristics of traditional routing algorithms discussed previously make it

possible for the adversaries to trace the packages back to the source nodes and find the pandas. If we

always employ a constant routing algorithm in a WSN to deliver the packages from the source nodes

to the sink nodes, the routing paths will always be similar to each other and the strong adversaries

can easily trace them back to the source nodes, based on the parasitic sensor networks. Therefore, it

is unnecessary for the adversaries to deploy a very large network with a big investment and they

only need to deploy some parasitic nodes in the original network to collect the contextual privacy

information which can be used to locate the pandas. Via proper strategies, it is easy for the adversaries

to find the pandas in a short amount of time, with a very small cost. This is extremely unfair for the

owners of the network, who use a lot of effort to construct the network, and may further threaten the

safety of the valuable asset monitored by the network. As a result, it is urgent for us to solve the

source location privacy problem.

Consider an extremely large network in which a large number of sensor nodes are redundantly

scattered and a number of sink nodes are deployed. When a node detects a specific target, it sends

the packages to any one of the sink nodes, i.e., it is possible for a package to be sending them in any

direction, rather than to a constant sink node. Figure 2 presents a part of the whole network with four

sink nodes and the source node locations in the region controlled by these four sink nodes. In most

of the traditional routing algorithms, the source node will choose a sink node with the shortest

distance and send the packages to that sink node. Taking shortest path routing as an example, the

source node always sends packages to sink node 2 if a target stays around this source node for quite

a while. As a result, the parasitic nodes can easily track the package back to the source node, guided

by the red arrows, as shown in Figure 2. Besides, we can produce similar conclusions for some other

rouging algorithms, such as the GPSR and directed diffusion algorithm.

To protect source location privacy, several routing-based approaches have been proposed,

which assume that the parasitic nodes have a limited overhearing capability, e.g., similar to a sensor

node’s transmission range. This is reasonable considering that the adversaries can’t monitor the

whole network at the same time; otherwise they wouldn’t need to employ a parasitic network.

Figure 1. A scenario of target monitoring.

The inherent characteristics of traditional routing algorithms discussed previously make it possible
for the adversaries to trace the packages back to the source nodes and find the pandas. If we always
employ a constant routing algorithm in a WSN to deliver the packages from the source nodes to
the sink nodes, the routing paths will always be similar to each other and the strong adversaries
can easily trace them back to the source nodes, based on the parasitic sensor networks. Therefore,
it is unnecessary for the adversaries to deploy a very large network with a big investment and they
only need to deploy some parasitic nodes in the original network to collect the contextual privacy
information which can be used to locate the pandas. Via proper strategies, it is easy for the adversaries
to find the pandas in a short amount of time, with a very small cost. This is extremely unfair for the
owners of the network, who use a lot of effort to construct the network, and may further threaten the
safety of the valuable asset monitored by the network. As a result, it is urgent for us to solve the source
location privacy problem.

Consider an extremely large network in which a large number of sensor nodes are redundantly
scattered and a number of sink nodes are deployed. When a node detects a specific target, it sends
the packages to any one of the sink nodes, i.e., it is possible for a package to be sending them in any
direction, rather than to a constant sink node. Figure 2 presents a part of the whole network with four
sink nodes and the source node locations in the region controlled by these four sink nodes. In most of
the traditional routing algorithms, the source node will choose a sink node with the shortest distance
and send the packages to that sink node. Taking shortest path routing as an example, the source node
always sends packages to sink node 2 if a target stays around this source node for quite a while. As a
result, the parasitic nodes can easily track the package back to the source node, guided by the red
arrows, as shown in Figure 2. Besides, we can produce similar conclusions for some other rouging
algorithms, such as the GPSR and directed diffusion algorithm.

Sensors 2017, 17, 614 3 of 18

Sensors 2017, 17, 614 3 of 17

Further, the parasitic nodes are initially deployed around the sink nodes and trace back the hop-by-

hop movement of the packages to find the locations of the source nodes. Routing-based schemes

preserve the source nodes’ location privacy by delivering the packages through different paths,

instead of a set of similar paths, to improve the difficulty of tracing back the packages.

Sink
node 1

Agent
node

Source
node

Sink
node 2

Sink
node 3

Sink
node 4

Sh
or
te
st

pa
th

ro
ut
in
g

Pa
th
 1
 o
f

AR
R
ro
ut
in
g

Agent
nodePath 2 of

ARR routing

Tr
ac
in
g

ba
ck

pr
oc
es
s

Figure 2. Shortest path routing and ARR routing.

In this paper, we design a novel all-direction random routing algorithm (ARR) for source-

location protecting against parasitic sensor networks. ARR can select the routing paths in a very

flexible way, which can guarantee that the routing paths are totally dispersive and an accidental

observation of a part of a routing path is useless for the parasitic nodes. ARR is composed of three

modules, i.e., selecting a proper sink node and an agent node; delivering the packages to the agent

node from the source node; delivering the packages to the sink node from the agent node. The source

node first selects a sink node with a probability that has a reverse relationship with the distance

between the source node and the sink nodes. Then, an agent needs to be selected in an indirect way,

because the agent node may be located far from the source node and the source node doesn’t know

the topology of the whole network. In fact, the source node just needs to decide a “location” around

the sink node and the node nearest to the “location” is the agent node. Then, the packages with the

“location” destination are sent by the source node and the packages are delivered to the “location”,

based on the geographic routing algorithm. Further, we designed a perimeter-based approach to help

the packages be accurately transmitted to the agent node, even if the source node doesn’t know the

exact agent node. Once the agent node receives the packages, it can employ any routing algorithm

and sends the packages to the sink node.

For a same source node, it can choose many different routing paths to deliver the packages to

the sink nodes. What is more, the source node can control the rough shapes of the paths, based on

only local decisions, and as a result, the paths can be very different for the same source node. As

shown in Figure 2, path 1 and path 2 of ARR are totally different and it is impossible for parasitic

nodes around sink nodes to trace the packages back to the source, based on the random paths.

The main contributions of this paper can be summarized as follows: (1) we propose a new

scheme to construct shared keys between neighboring nodes, which is integrated with an identity

authentication function to defend against the joining of parasitic nodes; (2) we propose a novel all-

direction random routing approach which can significantly improve the diversities of the routing

paths, with a very marginal increase in the communication overhead; (3) we conduct a series of

experiments to evaluate the performance of the proposed routing algorithm with that of shortest path

routing, greedy perimeter stateless routing, and phantom routing.

Figure 2. Shortest path routing and ARR routing.

To protect source location privacy, several routing-based approaches have been proposed, which
assume that the parasitic nodes have a limited overhearing capability, e.g., similar to a sensor node’s
transmission range. This is reasonable considering that the adversaries can’t monitor the whole
network at the same time; otherwise they wouldn’t need to employ a parasitic network. Further, the
parasitic nodes are initially deployed around the sink nodes and trace back the hop-by-hop movement
of the packages to find the locations of the source nodes. Routing-based schemes preserve the source
nodes’ location privacy by delivering the packages through different paths, instead of a set of similar
paths, to improve the difficulty of tracing back the packages.

In this paper, we design a novel all-direction random routing algorithm (ARR) for source-location
protecting against parasitic sensor networks. ARR can select the routing paths in a very flexible way,
which can guarantee that the routing paths are totally dispersive and an accidental observation of
a part of a routing path is useless for the parasitic nodes. ARR is composed of three modules, i.e.,
selecting a proper sink node and an agent node; delivering the packages to the agent node from the
source node; delivering the packages to the sink node from the agent node. The source node first
selects a sink node with a probability that has a reverse relationship with the distance between the
source node and the sink nodes. Then, an agent needs to be selected in an indirect way, because the
agent node may be located far from the source node and the source node doesn’t know the topology
of the whole network. In fact, the source node just needs to decide a “location” around the sink
node and the node nearest to the “location” is the agent node. Then, the packages with the “location”
destination are sent by the source node and the packages are delivered to the “location”, based on the
geographic routing algorithm. Further, we designed a perimeter-based approach to help the packages
be accurately transmitted to the agent node, even if the source node doesn’t know the exact agent
node. Once the agent node receives the packages, it can employ any routing algorithm and sends the
packages to the sink node.

For a same source node, it can choose many different routing paths to deliver the packages to the
sink nodes. What is more, the source node can control the rough shapes of the paths, based on only
local decisions, and as a result, the paths can be very different for the same source node. As shown in
Figure 2, path 1 and path 2 of ARR are totally different and it is impossible for parasitic nodes around
sink nodes to trace the packages back to the source, based on the random paths.

Sensors 2017, 17, 614 4 of 18

The main contributions of this paper can be summarized as follows: (1) we propose a new
scheme to construct shared keys between neighboring nodes, which is integrated with an identity
authentication function to defend against the joining of parasitic nodes; (2) we propose a novel
all-direction random routing approach which can significantly improve the diversities of the routing
paths, with a very marginal increase in the communication overhead; (3) we conduct a series of
experiments to evaluate the performance of the proposed routing algorithm with that of shortest path
routing, greedy perimeter stateless routing, and phantom routing.

The rest of the paper is organized as follows: we first review the routing-based source-location
privacy protecting approaches in Section 2. Network and parasitic node models are presented in
Section 3, in which the attack process is also presented. To defend the attack, we design a random
routing algorithm in Section 4 and its performance is evaluated in Section 5. At last, we conclude this
paper and present our future research plan in Section 6.

2. Related Work

In recent years, source-location privacy in wireless sensor networks has gained much attention
and many approaches have been proposed in the literature. Based on the parasitic nodes’ models,
the approaches can be roughly divided into two categories, i.e., global-adversary-based schemes and
local-adversary-based schemes.

In global-adversary-based schemes, the adversaries can monitor all the traffic of the entire network
and all the collected information can be used to analyze the source locations of the packages [7].
In this case, the best choice to defend against adversaries is sending dummy packages to confuse
the adversaries and most of the existing approaches attempt to identify a good balance between the
security of the source node, the overhead of dummy packages, the package delivery delay, and the
quality of service. Shao et al. [8] proposed a statistically strong source location privacy protecting
scheme to decrease the time delay of pakages, without significantly increasing dummy packages,
in which the source node sends real packages as soon as possible, while keeping them statistically
indistinguishable from the dummy packages. Lu et al. [9] designed a location privacy scheme for
cluster-based WSNs, in which the cluster heads can filter the dummy packages to decrease the overhead
of dummy packages. Then, the cluster heads periodically send the real packages to the sink node,
resulting in a long time delay. Similar to [9], the dummy packages are also filtered in the network by a
proxy node to decrease package transmission [10], and for different proxy assign patterns, the lifetime
of the networks are discussed.

Most local-adversary-based source location protecting schemes try to design novel routing
algorithms to make it more difficult to track the routing paths. The phantom routing technique
proposed in [11] is composed of two phases, i.e., a random walking phase and a subsequent
flooding/single path routing phase. In order to avoid the steps of random walking canceling each other,
two directed random walk techniques are designed, including a sector-based directed random walk
and a hop-based directed random walk. After the random walk phase, the sensor nodes can employ
any existing routing algorithm to deliver the packages to the final destinations. However, a phantom
routing algorithm cannot control the accuracy of the location where the first phase turns to the second
phase, and as a result, some paths may be similar to each other, which can decrease the safety of the
source location. Further, the parameter k, which is preset by the users to control the walking hops
of a package in a random walking phase, is very difficult to set considering that the densities of the
nodes for different regions are very different. For densely deployed nodes, the destination of k steps
of a random walk is near to the source and cannot protect the source location very well; for sparsely
deployed nodes, a relatively smaller k is acceptable because the distances between the nodes are large
and a large k will increase the package transmission of the whole network. Wang et al. [12] formulate
the source-location privacy protecting problem as an optimization problem in terms of the average
or minimal trace back time for the adversaries to reach the source node from the sink node. Then,
a random parallel routing and a suboptimal but practical privacy-aware routing algorithm named

Sensors 2017, 17, 614 5 of 18

the weighted random stride are proposed, to protect the source-location. In [13], the packages are
modified and routed by dynamically selected nodes to make it difficult for the adversaries to trace the
packages back to the source nodes. In the scheme, a rehash seed is used to determine the intermediate
nodes, to reconstruct the packages and then send the packages to the sink node.

In addition to the routing-based schemes, some other schemes are also proposed in the literature.
Recently, a cloud-based scheme [14] for protecting source-location privacy is proposed, in which an
irregular shaped cloud filled with fake packages is constructed around the source node. Though the
adversaries can track the packages back to the boundary of the cloud, it is very difficult to find the
accurate location of the source node.

3. Network and Parasitic Node Models

We first assume an extremely large 2-D WSN composed of a large amount of homogeneous
sensor nodes, which is used to track targets and is monitored by some parasitic nodes. Each node
can locate itself in a proper manner and knows the locations of the sink nodes, which are always
the destinations of the packages. Obviously, each node can easily learn of its neighbors’ locations,
based on one communication behavior. To decrease information transmission and save energy, we
further assume that the network contains multiple sink nodes, rather than only one sink node. This is
reasonable considering that the routing paths are too long if only one sink node exists in the network,
no matter where it is located. To deploy these sink nodes, we first divide the network into squares of
the same size and then the sink nodes are deployed manually on the vertices of the squares, as shown
in Figure 2. These sink nodes are logically equivalent and the source node can send the packages to
any one of the sink nodes. Then, each pair of sink nodes can communicate with each other directly
and share information through wireless channels or wired links, which are pre-installed by the users.
The deployed network employs the k-nearest neighbors tracking approach proposed in [15], to track
different types of targets. Each node follows a sleeping schedule and keeps silent when no target is
detected. However, if a node detects a target in its duty regions, it needs to remain active until the
target moves out of its duty regions. Once a target is detected by some nodes, these corresponding
nodes immediately and accurately locate the target in a cooperative manner and send the information
of the target to any one of the sink nodes.

We assume that the adversaries try to locate the source nodes of the packages based on the
contextual information of the WSNs [16]. As an example scenario in [11,14], the hunters want to
track the source nodes and then further find the pandas, which are of great value. We assume
that the adversaries deploy several complicated parasitic nodes with supporting equipment such
as spectrum analyzers and communication models, to obtain the information of traffic distribution.
At the beginning, the parasitic nodes are uniformly deployed around the sink nodes, considering that
the locations of targets are uniformly distributed in the whole network and all the destinations of
the packages are the sink nodes. If a parasitic node observes that a package is sent from node ni, it
moves to node ni and waits until it hears another package being sent from node nj. Then, the parasitic
node moves to node nj and repeats the process until it reaches the place near to the source node.
Further, we assume that the parasitic nodes can communicate with each other and make decisions in a
collaborative way.

4. All-Direction Random Routing Algorithm

4.1. Pre-Deployment Phase

Before deploying the network, each sensor node ni needs to be loaded with a unique identifier
IDni , public key Pni , and secret key Sni , to construct secure communication links with other nodes. The
network operator first generates a cyclic multiplicative group (G,) and an element α ∈ G with an order
m. Then the secret key Sni of node ni is selected from [0, m− 1], and the corresponding public key is
computed by Pni = αSni . This is reasonable according to Discrete Logarithm Difficulty [17,18], given α

Sensors 2017, 17, 614 6 of 18

and Pni , and no algorithm can compute Sni in the expected polynomial time. Further, to defend against
the joining of parasitic nodes, each node in the network must have the ability to verify the legality of
other nodes. Therefore, we further assume that there is a trusted authority controlled by the operator
of the network, denoted by TA with a secret key STA, and a trusted verification key denoted by PTA.
It is worth noting that the trust authority is not deployed in the network and its safety is guaranteed
by the operators of the network. Then, each sensor node ni in the network is loaded with a certificate
Cert(ni) = (IDni ||Pni ||signi), where IDni is the unique identifier of node ni, Pni is node ni

′s public key,
and signi = STA(IDni ||Pni) is the signature of the TA. We present the flowchart used for verifying the
legality of each node and further constructing the shared key by node A and B, in Figure 3.

Sensors 2017, 17, 614 6 of 17

𝑇𝐴. We present the flowchart used for verifying the legality of each node and further constructing

the shared key by node 𝐴 and 𝐵, in Figure 3.

Node A Node B

Randomly select

Randomly select

Ar
AT Br

BT

ATACert),(

BTBCert),(

]1,0[mrA]1,0[mrB

)(BTA sigP

)||(AA PID

)(ATA sigP

N N

Y YEnd End

)(ATA sigP

)||(BB PID
)(BTA sigP

)||()||(BBAA s

A

r

A

s

B

r

BAB TPhTPhK

)||(ABAB SrrSh

Figure 3. Flowchart of constructing shared keys by node 𝐚 and 𝒃.

First, node 𝐴 and 𝐵 randomly select two numbers in the range of [0, m − 1], i.e., 𝑟𝐴 and 𝑟𝐵,

respectively, and they compute 𝑇𝐴 = 𝛼𝑟𝐴 and 𝑇𝐵 = 𝛼𝑟𝐵, based on 𝑟𝐴 and 𝑟𝐵. Suppose that node 𝐴

wants to verify the legal identity of node 𝐵, node 𝐴 needs to request the certificate from node 𝐵 and

then it can verify the legality of node 𝐵 by checking whether 𝑃𝑇𝐴(𝐼𝐷𝐵‖𝑃𝐵, 𝑠𝑖𝑔𝐵) = 𝑡𝑟𝑢𝑒. In the same

way, node 𝐵 can check the legality of node 𝐴. If at least one node of 𝐴 and 𝐵 is a parasitic node,

the process ends. However, if both of 𝐴 and 𝐵 are legal nodes of the network, they can further

generate the shared key 𝐾𝐴𝐵 . Node 𝐴 can compute 𝐾𝐴𝐵 = ℎ(𝑃𝐵
𝑟𝐴||𝑇𝐵

𝑆𝐴) and node 𝐵 can compute

𝐾𝐵𝐴 = ℎ(𝑃𝐴
𝑟𝐵||𝑇𝐴

𝑆𝐵). Considering that 𝑃𝐴 = 𝛼𝑆𝐴, 𝑇𝐴 = 𝛼𝑟𝐴, 𝑃𝐵 = 𝛼𝑆𝐵 and 𝑇𝐵 = 𝛼𝑟𝐵, we can ascertain

that 𝐾𝐴𝐵 = ℎ(𝛼𝑆𝐵𝑟𝐴||𝛼𝑟𝐵𝑆𝐴) = 𝐾𝐵𝐴 and the two nodes are able to successfully construct the shared

key.

Compared with traditional pairwise key construction approaches, we integrate a legality verify

function, which has been widely researched [19], into the shared key construction process, which is

used to identify the parasitic nodes and exclude them from the network. This is of great value

considering that some important information about the source nodes may be intercepted by the

parasitic nodes once they are pretending to be legal nodes in the network. In the proposed process,

the mainly employed modular exponent operations are relative time- and energy-efficiency

compared and, as a result, are suitable for WSNs.

4.2. Selection of the Sink Node and the Virtual Location 𝐿 which Defines the Agent Node

As presented in Section 3, we assume that each node knows its own location and all the locations

of the sink nodes which are destinations of the packages. Each four neighboring sink nodes define a

square with these four sink nodes as vertices, and if a source node locates in the square, the

destination of its packages can be only one of these four sink nodes. If the adversaries deploy the

same number of parasitic nodes around each sink node, the best strategy for the source node is to

send the packages to the four sink nodes with an equal probability. On the other hand, if the source

nodes send packages to the nearest sink node with a higher probability, the average energy

consumption decreases. In conclusion, there is a tradeoff between source-location privacy security

and energy-efficiency. Assume that the distances between the source node and these four sink nodes

𝑠1, 𝑠2, 𝑠3, and 𝑠4 are 𝑑1, 𝑑2, 𝑑3, and 𝑑4, then the probability of sending the package from the source

node to the sink node 𝑠𝑖 , 𝑖 = 1, 2, 3 𝑜𝑟 4 is defined as follows:

Figure 3. Flowchart of constructing shared keys by node a and b.

First, node A and B randomly select two numbers in the range of [0, m− 1], i.e., rA and rB,
respectively, and they compute TA = αrA and TB = αrB , based on rA and rB. Suppose that node
A wants to verify the legal identity of node B, node A needs to request the certificate from node B
and then it can verify the legality of node B by checking whether PTA(IDB||PB, sigB) = true. In the
same way, node B can check the legality of node A. If at least one node of A and B is a parasitic
node, the process ends. However, if both of A and B are legal nodes of the network, they can further
generate the shared key KAB. Node A can compute KAB = h(PrA

B ||T
SA
B) and node B can compute

KBA = h(PrB
A ||T

SB
A). Considering that PA = αSA , TA = αrA , PB = αSB and TB = αrB , we can ascertain

that KAB = h(αSBrA ||αrBSA) = KBA and the two nodes are able to successfully construct the shared key.
Compared with traditional pairwise key construction approaches, we integrate a legality verify

function, which has been widely researched [19], into the shared key construction process, which
is used to identify the parasitic nodes and exclude them from the network. This is of great value
considering that some important information about the source nodes may be intercepted by the
parasitic nodes once they are pretending to be legal nodes in the network. In the proposed process, the
mainly employed modular exponent operations are relative time- and energy-efficiency compared
and, as a result, are suitable for WSNs.

4.2. Selection of the Sink Node and the Virtual Location L Which Defines the Agent Node

As presented in Section 3, we assume that each node knows its own location and all the locations
of the sink nodes which are destinations of the packages. Each four neighboring sink nodes define
a square with these four sink nodes as vertices, and if a source node locates in the square, the
destination of its packages can be only one of these four sink nodes. If the adversaries deploy the

Sensors 2017, 17, 614 7 of 18

same number of parasitic nodes around each sink node, the best strategy for the source node is
to send the packages to the four sink nodes with an equal probability. On the other hand, if the
source nodes send packages to the nearest sink node with a higher probability, the average energy
consumption decreases. In conclusion, there is a tradeoff between source-location privacy security
and energy-efficiency. Assume that the distances between the source node and these four sink nodes
s1, s2, s3, and s4 are d1, d2, d3, and d4, then the probability of sending the package from the source node
to the sink node si, i = 1, 2, 3 or 4 is defined as follows:

Psi = α× 1
4
+ (1− α)× (1− di

d1 + d2 + d3 + d4
), i = 1, 2, 3 or 4. (1)

When α is equal to one, the four sink nodes have equal probabilities of being the destination of the
package and it is the very difficult for the adversaries to track the package back; with the decreasing of
α, the distances between the source node and the sink nodes increase and perform more important
roles in the probabilities; and when α is equals to zero, the probabilities are totally dependent on the
distances and it is more energy-efficient. In this paper, we attempt to effectively protect the location
privacy and we set equal probabilities for these four sink nodes.

Another challenge is selecting the agent node. Obviously, the agent node can’t be too close to
the source node or to the sink node. In such cases, the shapes of the routing paths would not change
much, compared with traditional routing approaches. In this paper, we employ a two-dimensional
normal distribution N(M1, M2, V1, V2, ρ) to randomly generate the virtual location L, which defines
the agent node in an undirected way. The agent node is the node in the network that is nearest to L.
The parameters of the normal distribution significantly affect the shape of the routing paths and we
discuss how to set the parameters in the following.

We first assume that the location of the source node is (x1, y1) and the sink node’s location is
(x2, y2) and that ρ is set to zero, which has a very limited affection on the shape of the routing paths.
Then, both M1 and M2 are set to (x1+x2

2 , y1+y2
2), which is the center of the two-dimensional normal

distribution. The variances of V1 and V2 significantly affect the distribution of the routing paths.
Consider Figure 4 as an example, where M1, M2, and V1 are set to 0, 0, and 5, respectively, and we
set V2 as 2, 7, and 20. We can observe that, with the increasing of V2, the routing paths become more
and more distributed in crosswise patterns, which makes it much harder to track the packages back.
Similarly, V1 controls the vertical distribution of the routing paths.

Intuitively, it is necessary to control the region of the agent nodes. As an example, we don’t want
to select the agent nodes which are too close to the source node and sink node, because the routing
paths would be very similar to existing routing algorithms. Further, the agent nodes can’t be too far
from the source node and sink node, which would increase the energy consumption of delivering the
packages. When we set V1 = (d/12)2 and V2 = (d/6)2, where d is the distance between the source
node and the sink node, we can infer that the target would locate in the agent region shown in Figure 5,
with a probability higher than 99% based on the Three Sigma Rule.

In our opinion, the agent region in Figure 5 is large enough to hide the routing paths. Even if the
parasitic nodes can trace the packages back to the agent node, there is no value for the adversaries to
trace this back to the source node. However, in theory, the agent node can be anywhere in the network
and it is flexible for the users of the network to set the rules of selecting the agent nodes, according
to the security requirements. Obviously, with the increasing of V1 and V2, both the size of the agent
regions and the security of the source nodes increase, and as a result, the average hops of the package
delivery increases, which also increases the energy consumption of the networks. Considering that the
agent nodes can’t be too close to either the source node or the sink node, in this paper, we always set
V1 = (d/12)2 and V2 = (d/6)2, without special declaration.

Sensors 2017, 17, 614 8 of 18

Sensors 2017, 17, 614 7 of 17

𝑃𝑠𝑖
= 𝛼 ×

1

4
+ (1 − 𝛼) × (1 −

𝑑𝑖

𝑑1 + 𝑑2 + 𝑑3 + 𝑑4
), 𝑖 = 1, 2, 3 𝑜𝑟 4. (1)

When 𝛼 is equal to one, the four sink nodes have equal probabilities of being the destination of

the package and it is the very difficult for the adversaries to track the package back; with the

decreasing of 𝛼, the distances between the source node and the sink nodes increase and perform

more important roles in the probabilities; and when 𝛼 is equals to zero, the probabilities are totally

dependent on the distances and it is more energy-efficient. In this paper, we attempt to effectively

protect the location privacy and we set equal probabilities for these four sink nodes.

Another challenge is selecting the agent node. Obviously, the agent node can’t be too close to

the source node or to the sink node. In such cases, the shapes of the routing paths would not change

much, compared with traditional routing approaches. In this paper, we employ a two-dimensional

normal distribution 𝑁(𝑀1, 𝑀2, 𝑉1, 𝑉2, 𝜌) to randomly generate the virtual location 𝐿, which defines

the agent node in an undirected way. The agent node is the node in the network that is nearest to 𝐿.

The parameters of the normal distribution significantly affect the shape of the routing paths and we

discuss how to set the parameters in the following.

We first assume that the location of the source node is (𝑥1, 𝑦1) and the sink node’s location is

(𝑥2, 𝑦2) and that 𝜌 is set to zero, which has a very limited affection on the shape of the routing paths.

Then, both 𝑀1 and 𝑀2 are set to (
𝑥1+𝑥2

2
,

𝑦1+𝑦2

2
), which is the center of the two-dimensional normal

distribution. The variances of 𝑉1 and 𝑉2 significantly affect the distribution of the routing paths.

Consider Figure 4 as an example, where 𝑀1, 𝑀2, and 𝑉1 are set to 0, 0, and 5, respectively, and we set

𝑉2 as 2, 7, and 20. We can observe that, with the increasing of 𝑉2, the routing paths become more and

more distributed in crosswise patterns, which makes it much harder to track the packages back.

Similarly, 𝑉1 controls the vertical distribution of the routing paths.

Figure 4. Distributions of agent nodes with different parameters.

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

M1=0, M2=0, V1=5, V2=2
-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

M1=0, M2=0, V1=5, V2=7

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

M1=0, M2=0, V1=5, V2=20

Figure 4. Distributions of agent nodes with different parameters.

Sensors 2017, 17, 614 8 of 17

Intuitively, it is necessary to control the region of the agent nodes. As an example, we don’t want

to select the agent nodes which are too close to the source node and sink node, because the routing

paths would be very similar to existing routing algorithms. Further, the agent nodes can’t be too

far from the source node and sink node, which would increase the energy consumption of

delivering the packages. When we set 𝑉1 = (𝑑 12⁄)
2

 and 𝑉2 = (𝑑 6⁄)
2

, where 𝑑 is the distance

between the source node and the sink node, we can infer that the target would locate in the agent

region shown in Figure 5, with a probability higher than 99% based on the Three Sigma Rule.

Figure 5. Agent region employed in this paper.

In our opinion, the agent region in Figure 5 is large enough to hide the routing paths. Even if the

parasitic nodes can trace the packages back to the agent node, there is no value for the adversaries to

trace this back to the source node. However, in theory, the agent node can be anywhere in the network

and it is flexible for the users of the network to set the rules of selecting the agent nodes, according

to the security requirements. Obviously, with the increasing of 𝑉1 and 𝑉2, both the size of the agent

regions and the security of the source nodes increase, and as a result, the average hops of the package

delivery increases, which also increases the energy consumption of the networks. Considering that

the agent nodes can’t be too close to either the source node or the sink node, in this paper, we always

set 𝑉1 = (𝑑 12⁄)
2
 and 𝑉2 = (𝑑 6⁄)

2
, without special declaration.

In conclusion, having detected a target, each source node randomly selects a sink node as the

destination of the packages and then calculates the distance to the sink node as 𝑑, as shown in

Figure 5. Based on the locations of source node, sink node, and 𝑑, the source node can easily obtain

all the parameters which are used to generate 𝐿. Note that, the whole process presented in this

subsection can only be operated by the local computing of the source nodes. Obviously, 𝐿 is a

location rather than a real sensor node and the source node needs not know whether there is a sensor

node accurately locating at 𝐿. As discussed previously, the agent node is defined as the nearest sensor

node to 𝐿 and, in this way, there is always an agent node. In the next section, we present how to

deliver the packages to the agent node, defined by 𝐿 in a distributed way.

4.3. Package Delivery from Source Node to Agent Node Defined by 𝐿

As discussed in the previous section, the source node selects the agent node in an indirect way.

It first provides a virtual location and the agent node is defined as the nearest node to the virtual

location 𝐿 in the whole network. In this section, we present the process of package delivery from the

source node to the agent node. In the initial stage of this process, the source node generates a package

of (𝑀, 𝑆𝑖 , 𝐿, 𝐷), where 𝑀 is the mode of the package including two types, i.e., delivering the package

from the source node to the agent node and from the agent node to the sink node. 𝑆𝑖 is the final

destination of the package and it must be one of the sink nodes, 𝐿 is the virtual location which is

used to find the agent node, and 𝐷 is the valuable data on the monitored targets which needs to be

sent to the sink nodes. Then, the source node sends the package to one of its neighbors.

d/2

d

Source
node

Sink node

d/
2

d/
4

d/
4

Agent
region

Agent
region

d/2

Figure 5. Agent region employed in this paper.

In conclusion, having detected a target, each source node randomly selects a sink node as the
destination of the packages and then calculates the distance to the sink node as d, as shown in Figure 5.
Based on the locations of source node, sink node, and d, the source node can easily obtain all the
parameters which are used to generate L. Note that, the whole process presented in this subsection
can only be operated by the local computing of the source nodes. Obviously, L is a location rather
than a real sensor node and the source node needs not know whether there is a sensor node accurately
locating at L. As discussed previously, the agent node is defined as the nearest sensor node to L and,
in this way, there is always an agent node. In the next section, we present how to deliver the packages
to the agent node, defined by L in a distributed way.

Sensors 2017, 17, 614 9 of 18

4.3. Package Delivery from Source Node to Agent Node Defined by L

As discussed in the previous section, the source node selects the agent node in an indirect way.
It first provides a virtual location and the agent node is defined as the nearest node to the virtual
location L in the whole network. In this section, we present the process of package delivery from
the source node to the agent node. In the initial stage of this process, the source node generates a
package of (M, Si, L, D), where M is the mode of the package including two types, i.e., delivering the
package from the source node to the agent node and from the agent node to the sink node. Si is the
final destination of the package and it must be one of the sink nodes, L is the virtual location which is
used to find the agent node, and D is the valuable data on the monitored targets which needs to be
sent to the sink nodes. Then, the source node sends the package to one of its neighbors.

For each node n receiving a package, it first checks the mode M of the package. If the package
is sent from the agent node to the sink node, the processing steps are discussed in Section 4.4. If the
package is sent from the source node to the agent node, node n first employs the Encroach Forwarding
Pattern to select the next hop of this package. Using the Encroach Forwarding Pattern, node n first scans
all its neighbors and finds all of the legal neighbors with a shorter distance to location L, compared
with the distance between n and L. In GPSR [20], the next hop is the neighbor with the shortest
distance to the destination. Considering that a constant rule for selecting the next hop is beneficial for
the adversaries to analyze the routing paths, node n randomly selects a neighbor in the set of legal
neighbors in the Encroach Forwarding Pattern.

The Encroach Forwarding Pattern may fail at a node x when a local optimal result is found, and
then. we need to employ the Perimeter Forwarding Pattern to recover it. However, the packages
can turn back from Perimeter Forwarding to Encroach Forwarding, if a closer node to L is found
compared with x. A planar graph structure has an important role in the perimeter forwarding pattern
and we first briefly introduce two planar graphs in the following. The Gabriel graph (GG) [21] and
relative neighborhood graph (RNG) [22] are two long-known planar graphs and can divide a plane
into several non-overlapping polygons. Both of these two structures can be constructed in a distributed
way, as shown in [20]. In this paper, we employ the GG structure, in which each pair of nodes can only
transmit packages to each other under the Perimeter Forwarding Pattern when the link between both
nodes is a legal edge [22].

The Perimeter Forwarding Pattern is operated on the planar graph and employs the right-hand
rule to traverse the corresponding polygon which is intersected by the line xL if x is the node in
which the package turns to the Perimeter Forwarding Pattern. As shown in Figure 6, a package with
destination L turns to the perimeter pattern at node x, because none of the neighbors has a smaller
distance to L. If the destination of L is out of the polygon, the distances between u or z to the destination
L must be smaller than that of x to the destination L. Therefore, the perimeter forwarding can always
change to the Encroach Forwarding Pattern at node u or z when L is out of the polygon, and we prove
this in Theorem 1.

Theorem 1. In the Perimeter Forwarding Pattern, if the destination of the package L locates out of the polygon
intersected by the line xL, where x is the node that the package turns to the Perimeter Forwarding Pattern, the
package can always turn to the Encroach Forwarding Pattern at one of the nodes on the polygon.

Proof. As shown in the left section of Figure 6, we assume that a package turn from an Encroach
Forwarding Pattern to Perimeter Forwarding Pattern at node x and L, locates out of polygon Puvwxyz,
which is intersected by the line xL. We further assume that line xL intersects with line uz at point o,
as shown in the right section of Figure 6. Without the loss of generality, we assume that o is closer
to u, compared with z. Considering that line uz is a legal edge in the GG graph, we can infer that
x must locate out of the circle, with uz as the diameter. Then, we can observe that xL = xo + oL >

uo + oL > uL. As a result, the perimeter pattern can turn to the Encroach Forwarding Pattern at node
u. On the other hand, if o is closer to z compared with u, the perimeter pattern can turn to the Encroach

Sensors 2017, 17, 614 10 of 18

Forwarding Pattern at node z. In conclusion, the package can always turn to the Encroach Forwarding
Pattern at one of the nodes in the polygon. �

Sensors 2017, 17, 614 9 of 17

For each node 𝑛 receiving a package, it first checks the mode 𝑀 of the package. If the package

is sent from the agent node to the sink node, the processing steps are discussed in Section 4.4. If the

package is sent from the source node to the agent node, node 𝑛 first employs the Encroach

Forwarding Pattern to select the next hop of this package. Using the Encroach Forwarding Pattern,

node 𝑛 first scans all its neighbors and finds all of the legal neighbors with a shorter distance to

location 𝐿, compared with the distance between 𝑛 and 𝐿. In GPSR [20], the next hop is the neighbor

with the shortest distance to the destination. Considering that a constant rule for selecting the next

hop is beneficial for the adversaries to analyze the routing paths, node 𝑛 randomly selects a neighbor

in the set of legal neighbors in the Encroach Forwarding Pattern.

The Encroach Forwarding Pattern may fail at a node 𝑥 when a local optimal result is found, and

then. we need to employ the Perimeter Forwarding Pattern to recover it. However, the packages can

turn back from Perimeter Forwarding to Encroach Forwarding, if a closer node to 𝐿 is found

compared with 𝑥 . A planar graph structure has an important role in the perimeter forwarding

pattern and we first briefly introduce two planar graphs in the following. The Gabriel graph (GG)

[21] and relative neighborhood graph (RNG) [22] are two long-known planar graphs and can divide

a plane into several non-overlapping polygons. Both of these two structures can be constructed in a

distributed way, as shown in [20]. In this paper, we employ the GG structure, in which each pair of

nodes can only transmit packages to each other under the Perimeter Forwarding Pattern when the

link between both nodes is a legal edge [22].

The Perimeter Forwarding Pattern is operated on the planar graph and employs the right-hand

rule to traverse the corresponding polygon which is intersected by the line 𝑥𝐿 if 𝑥 is the node in

which the package turns to the Perimeter Forwarding Pattern. As shown in Figure 6, a package with

destination 𝐿 turns to the perimeter pattern at node 𝑥, because none of the neighbors has a smaller

distance to 𝐿. If the destination of 𝐿 is out of the polygon, the distances between 𝑢 or 𝑧 to the

destination 𝐿 must be smaller than that of 𝑥 to the destination 𝐿 . Therefore, the perimeter

forwarding can always change to the Encroach Forwarding Pattern at node 𝑢 or 𝑧 when 𝐿 is out

of the polygon, and we prove this in Theorem 1.

Theorem 1. In the Perimeter Forwarding Pattern, if the destination of the package 𝐿 locates out of the polygon

intersected by the line 𝑥𝐿, where 𝑥 is the node that the package turns to the Perimeter Forwarding Pattern,

the package can always turn to the Encroach Forwarding Pattern at one of the nodes on the polygon.

Proof. As shown in the left section of Figure 6, we assume that a package turn from an Encroach

Forwarding Pattern to Perimeter Forwarding Pattern at node 𝑥 and 𝐿, locates out of polygon

𝑃𝑢𝑣𝑤𝑥𝑦𝑧, which is intersected by the line 𝑥𝐿. We further assume that line 𝑥𝐿 intersects with line 𝑢𝑧

at point 𝑜, as shown in the right section of Figure 6. Without the loss of generality, we assume that

𝑜 is closer to 𝑢, compared with 𝑧. Considering that line 𝑢𝑧 is a legal edge in the GG graph, we

can infer that 𝑥 must locate out of the circle, with 𝑢𝑧 as the diameter. Then, we can observe that

𝑥𝐿 = 𝑥𝑜 + 𝑜𝐿 > 𝑢𝑜 + 𝑜𝐿 > 𝑢𝐿. As a result, the perimeter pattern can turn to the Encroach Forwarding

Pattern at node 𝑢. On the other hand, if 𝑜 is closer to 𝑧 compared with 𝑢, the perimeter pattern

can turn to the Encroach Forwarding Pattern at node 𝑧. In conclusion, the package can always turn

to the Encroach Forwarding Pattern at one of the nodes in the polygon. □

u

v

w

x

y

z

L

u z

x

L

o

Figure 6. The destination locates out of the polygon and its simplified form. Figure 6. The destination locates out of the polygon and its simplified form.

Another possible situation is that a package turns to the Perimeter Forwarding Pattern at node x
and L locates in a polygon Px· which contains x as one of its vertices. In this condition, we prove that
the agent node defined by L is one of the vertices of polygon Px· in Theorem 2.

Theorem 2. If a package turns to the Perimeter Forwarding Pattern at node x and L locates in a polygon Px·
which contains x as one of its vertices, the agent node defined by L is one of the vertices of polygon Px.

Proof. If L locates in the polygon, as shown in the left section of Figure 7, we need to prove that one of
the nodes n′ on the polygon has the smallest distance to L among all the sensor nodes in the network.
Then, n′ is the agent node decided by L. We first assume a simplified case presented in the right section
of Figure 7. We extend point L as a circle until it touches a node x′ on the polygon Px. If the circle
directly touches the node without touching any other edge of the polygon, x′ is the closest node to L.
In some cases, the circle touches a few edges before it touches x′, as shown in the following Figure.
The areas of the circle which are outside of the polygon must be covered by the circles, with the edges
as diameters. Based on the properties of the GG graph, we can infer that no other sensor nodes have a
smaller distance to L compared with x′ and, as a result, we know that x′ is the agent node. �

Sensors 2017, 17, 614 10 of 17

Another possible situation is that a package turns to the Perimeter Forwarding Pattern at node

𝑥 and 𝐿 locates in a polygon 𝑃𝑥∙ which contains 𝑥 as one of its vertices. In this condition, we prove

that the agent node defined by 𝐿 is one of the vertices of polygon 𝑃𝑥∙ in Theorem 2.

Theorem 2. If a package turns to the Perimeter Forwarding Pattern at node 𝑥 and 𝐿 locates in a polygon

𝑃𝑥∙ which contains 𝑥 as one of its vertices, the agent node defined by 𝐿 is one of the vertices of polygon 𝑃𝑥.

Proof. If 𝐿 locates in the polygon, as shown in the left section of Figure 7, we need to prove that one

of the nodes 𝑛′ on the polygon has the smallest distance to 𝐿 among all the sensor nodes in the

network. Then, 𝑛′ is the agent node decided by 𝐿. We first assume a simplified case presented in

the right section of Figure 7. We extend point 𝐿 as a circle until it touches a node 𝑥′ on the polygon

𝑃𝑥. If the circle directly touches the node without touching any other edge of the polygon, 𝑥′ is the

closest node to 𝐿. In some cases, the circle touches a few edges before it touches 𝑥′, as shown in the

following Figure. The areas of the circle which are outside of the polygon must be covered by the

circles, with the edges as diameters. Based on the properties of the GG graph, we can infer that no

other sensor nodes have a smaller distance to 𝐿 compared with 𝑥′ and, as a result, we know that

𝑥′ is the agent node. □

u

v

w

x

y

z
L

L

x’

y’

z’

Figure 7. The destination locates out of the polygon and a simplified form.

In conclusion, the packages are always transmitted by the Encroach Forwarding Pattern if

possible and only employ the Perimeter Forwarding Pattern when the Encroach Forwarding Pattern

fails. Further, the Perimeter Forwarding Pattern turns back to the Encroach Forwarding Pattern or

the agent node if it is found successfully. Based on the previous discussion, the flow chart of

delivering a package from the source node to the agent node is presented in Figure 8, which

guarantees that we can always find the agent node based on L in a distributed way.

 Starts
Encroach
Forwarding

Encroach
forwarding
fails？

N

Perimeter
ForwardingY

Is destination
locates in the

polygon？ Y

N

The delivering
process is

overY

Travers the
polygon

The agent node
is the node
closest to L

Figure 8. The flowchart of delivering a package from the source node to the agent node.

4.4. Package Delivery from Agent Node to Sink Node

Once the agent node receives a package from the source node, it first changes the mode 𝑀 of

the package, to deliver the package from the agent node to the sink node. In this process, any existing

routing algorithm for WSNs can be employed to deliver the package. However, considering that both

GPSR and the proposed approach in this paper are geographic-based routing algorithms and they

need very similar geographic information, the best choice is choosing GPSR as the routing algorithm

of this process. In this case, the construction of the planar graph can be fully used and the whole

Figure 7. The destination locates out of the polygon and a simplified form.

In conclusion, the packages are always transmitted by the Encroach Forwarding Pattern if possible
and only employ the Perimeter Forwarding Pattern when the Encroach Forwarding Pattern fails.
Further, the Perimeter Forwarding Pattern turns back to the Encroach Forwarding Pattern or the agent
node if it is found successfully. Based on the previous discussion, the flow chart of delivering a package
from the source node to the agent node is presented in Figure 8, which guarantees that we can always
find the agent node based on L in a distributed way.

Sensors 2017, 17, 614 11 of 18

Sensors 2017, 17, 614 10 of 17

Another possible situation is that a package turns to the Perimeter Forwarding Pattern at node

𝑥 and 𝐿 locates in a polygon 𝑃𝑥∙ which contains 𝑥 as one of its vertices. In this condition, we prove

that the agent node defined by 𝐿 is one of the vertices of polygon 𝑃𝑥∙ in Theorem 2.

Theorem 2. If a package turns to the Perimeter Forwarding Pattern at node 𝑥 and 𝐿 locates in a polygon

𝑃𝑥∙ which contains 𝑥 as one of its vertices, the agent node defined by 𝐿 is one of the vertices of polygon 𝑃𝑥.

Proof. If 𝐿 locates in the polygon, as shown in the left section of Figure 7, we need to prove that one

of the nodes 𝑛′ on the polygon has the smallest distance to 𝐿 among all the sensor nodes in the

network. Then, 𝑛′ is the agent node decided by 𝐿. We first assume a simplified case presented in

the right section of Figure 7. We extend point 𝐿 as a circle until it touches a node 𝑥′ on the polygon

𝑃𝑥. If the circle directly touches the node without touching any other edge of the polygon, 𝑥′ is the

closest node to 𝐿. In some cases, the circle touches a few edges before it touches 𝑥′, as shown in the

following Figure. The areas of the circle which are outside of the polygon must be covered by the

circles, with the edges as diameters. Based on the properties of the GG graph, we can infer that no

other sensor nodes have a smaller distance to 𝐿 compared with 𝑥′ and, as a result, we know that

𝑥′ is the agent node. □

u

v

w

x

y

z
L

L

x’

y’

z’

Figure 7. The destination locates out of the polygon and a simplified form.

In conclusion, the packages are always transmitted by the Encroach Forwarding Pattern if

possible and only employ the Perimeter Forwarding Pattern when the Encroach Forwarding Pattern

fails. Further, the Perimeter Forwarding Pattern turns back to the Encroach Forwarding Pattern or

the agent node if it is found successfully. Based on the previous discussion, the flow chart of

delivering a package from the source node to the agent node is presented in Figure 8, which

guarantees that we can always find the agent node based on L in a distributed way.

 Starts
Encroach
Forwarding

Encroach
forwarding
fails？

N

Perimeter
ForwardingY

Is destination
locates in the

polygon？ Y

N

The delivering
process is

overY

Travers the
polygon

The agent node
is the node
closest to L

Figure 8. The flowchart of delivering a package from the source node to the agent node.

4.4. Package Delivery from Agent Node to Sink Node

Once the agent node receives a package from the source node, it first changes the mode 𝑀 of

the package, to deliver the package from the agent node to the sink node. In this process, any existing

routing algorithm for WSNs can be employed to deliver the package. However, considering that both

GPSR and the proposed approach in this paper are geographic-based routing algorithms and they

need very similar geographic information, the best choice is choosing GPSR as the routing algorithm

of this process. In this case, the construction of the planar graph can be fully used and the whole

Figure 8. The flowchart of delivering a package from the source node to the agent node.

4.4. Package Delivery from Agent Node to Sink Node

Once the agent node receives a package from the source node, it first changes the mode M of the
package, to deliver the package from the agent node to the sink node. In this process, any existing
routing algorithm for WSNs can be employed to deliver the package. However, considering that both
GPSR and the proposed approach in this paper are geographic-based routing algorithms and they
need very similar geographic information, the best choice is choosing GPSR as the routing algorithm
of this process. In this case, the construction of the planar graph can be fully used and the whole
random routing approach can be fully operated in a distributed way. Note that, a stream of packages
coming from the same source node may be delivered to different sink nodes and each sink node cannot
observe the whole picture of the monitored target. Therefore, once the package is received by one of
the sink nodes, the node needs to share the package with its neighbors to construct the whole picture,
which is meaningful to the users.

4.5. Analysis and Discussion of ARR

In this paper, only one agent node is selected in the process of delivering a package from the source
node to the sink node. Intuitively, ARR can be easily updated and used in some other applications
through different methods of choosing numbers of agent nodes when delivering a package. Consider
the application scenario shown in Figure 9. We assume that the red nodes are compromised by the
adversaries and the regions occupied by these nodes are called dangerous regions. When delivering
packages, the dangerous regions should be avoided, considering that the compromised nodes may
extract valuable information from the packages. Because the dangerous regions have high dynamics,
most of the existing routing algorithms can’t solve this problem very well, without a significant increase
in the energy consumption.

Sensors 2017, 17, 614 11 of 17

random routing approach can be fully operated in a distributed way. Note that, a stream of packages

coming from the same source node may be delivered to different sink nodes and each sink node

cannot observe the whole picture of the monitored target. Therefore, once the package is received by

one of the sink nodes, the node needs to share the package with its neighbors to construct the whole

picture, which is meaningful to the users.

4.5. Analysis and Discussion of ARR

In this paper, only one agent node is selected in the process of delivering a package from the

source node to the sink node. Intuitively, ARR can be easily updated and used in some other

applications through different methods of choosing numbers of agent nodes when delivering a

package. Consider the application scenario shown in Figure 9. We assume that the red nodes are

compromised by the adversaries and the regions occupied by these nodes are called dangerous

regions. When delivering packages, the dangerous regions should be avoided, considering that the

compromised nodes may extract valuable information from the packages. Because the dangerous

regions have high dynamics, most of the existing routing algorithms can’t solve this problem very

well, without a significant increase in the energy consumption.

Agent
node

Agent
node

Agent
node

Source
node

Sink node

Figure 9. Updated ARR applied in WSNs with dangerous regions.

However, we can slightly modify ARR to easily solve the problem. Knowing the accurate

geographic locations of the whole dangerous region, the source node can roughly select an agent

node away from the dangerous region that has a closer distance to the sink node. Note that, the

distance between a node and the sink node is not the Euclidean Distance, considering that the

packages need to be delivered around the dangerous region and the distance is the hops of

successfully delivering the package to the sink node, without crossing the dangerous region. Then,

each agent node chooses the next agent node in the same way, until the packages can be directly

transmitted to the sink node with a very low possibility of crossing the dangerous region. With a

proper number of agent nodes, the routing paths can tightly cling to the dangerous region and it is

the optimal routing algorithm to solve the dangerous region problem.

5. Performance Analysis and Evaluation

In this section, we use NS-3 discrete events simulator to evaluate ARR in terms of source nodes’

location privacy preservation, average time delay of delivering a package from the source node to

the sink node and average energy consumption in Sections 5.1, 5.2, and 5.3, respectively. As discussed

in Section 3, the whole monitoring region is divided into squared regions and each region is

controlled by four sink nodes locating at the four corners of the region. As a result, the whole network

Figure 9. Updated ARR applied in WSNs with dangerous regions.

Sensors 2017, 17, 614 12 of 18

However, we can slightly modify ARR to easily solve the problem. Knowing the accurate
geographic locations of the whole dangerous region, the source node can roughly select an agent node
away from the dangerous region that has a closer distance to the sink node. Note that, the distance
between a node and the sink node is not the Euclidean Distance, considering that the packages need to
be delivered around the dangerous region and the distance is the hops of successfully delivering the
package to the sink node, without crossing the dangerous region. Then, each agent node chooses the
next agent node in the same way, until the packages can be directly transmitted to the sink node with
a very low possibility of crossing the dangerous region. With a proper number of agent nodes, the
routing paths can tightly cling to the dangerous region and it is the optimal routing algorithm to solve
the dangerous region problem.

5. Performance Analysis and Evaluation

In this section, we use NS-3 discrete events simulator to evaluate ARR in terms of source nodes’
location privacy preservation, average time delay of delivering a package from the source node to the
sink node and average energy consumption in Sections 5.1–5.3, respectively. As discussed in Section 3,
the whole monitoring region is divided into squared regions and each region is controlled by four
sink nodes locating at the four corners of the region. As a result, the whole network is composed of
many similar squared regions and for the sake of convenience, we conduct our experiments on just
one squared region of the whole network. This is reasonable considering that the simulation results
of the whole network are the sum of that of all the squared regions and all the squared regions have
similar simulation results, in theory. Therefore, in our experiments, we uniformly randomly scatter
10,000 sensor nodes in a 4000 m× 4000 m squared field and deploy four sink nodes at the four corners
of the squared region. The parasitic nodes are initially deployed around the sink nodes and they try
to track back to the source nodes, step by step. The monitoring target is randomly generated in each
simulation and it employs a random walk model with a speed of 1 m/s. In the simulation, the WSN
employs the k-nearest neighbors tracking approach [15] to monitor the targets and sends the collected
information to sink nodes once a target is monitored.

The simulation parameters are summarized in Table 1 as follows.

Table 1. Simulation parameters.

Parameter Value

Size of the network 4000 m × 4000 m
Number of nodes 10,000
Number of sinks 16

Number of targets 1
Rc 30 m

Adversaries’ hearing range 30 m
Number of parasitic nodes Np

V1 (d/12)2

Target monitoring scheme k-nearest neighbors tracking
Event transmission rate 1 s

Length of data in package S 1024 bit
Length of the head of a package 32 bit

We compare the performance of the proposed approach with that of shortest path routing
algorithm, phantom routing algorithm, and the cloud-based scheme. The random routing hops
of the phantom routing algorithm are set to 20% of the hops between the source node and the sink
node. The number of nodes contained in the cloud for the cloud-based scheme is set to six times the
number of the hops between the source node and the sink node. Therefore, with the increase of the
distance between the source node and the sink node, the cloud also increases, and this is intuitive. We
end the simulation if the distance between a parasitic node and the source node is smaller than 50 m or

Sensors 2017, 17, 614 13 of 18

10,000 packages, i.e., the monitoring process lasts for 10,000 s, are successfully delivered to the sink
nodes. Each simulation is operated 100 times and the average simulation results are presented.

5.1. Source Node’s Location Privacy Protection

In this section, two metrics called the source detection probability and the false positive probability
are employed, to evaluate the performance of the proposed approach in terms of privacy preservation.
The source detection probability is defined as the probability that the parasitic nodes can locate the
source nodes successfully. In our simulation, it is measured by the number of times that the parasitic
nodes locate the source nodes to the total number of simulation runs. The false positive probability is
defined as the probability that the parasitic nodes falsely identified a node as the source node, and it is
measured by the number of times that the parasitic nodes identified a node as a source node to the
total number of times that the parasitic nodes suspected that a node was a source node. The decrease
of source detection probability and increase of false positive probability indicate a stronger protection
of the schemes. With a different number of parasitic nodes, the source detection probabilities and false
positive probability are presented in Figures 10 and 11, respectively.

Sensors 2017, 17, 614 13 of 17

the same source node and sink node. As a result, it is very easy for the adversaries to trace back to

the source node and when the adversaries deploy 32 parasitic nodes, they can find the source node

with a probability higher than 90%. The phantom random routing algorithm significantly

outperforms the shortest path routing algorithm, which can be explained by the fact that a random

walking process is employed to confuse the adversaries. However, Phantom can’t provide a strong

enough protection of the source-location, because the adversaries can find the source nodes with a

probability of 40% when they deploy more than 16 parasitic nodes. Both the cloud-based scheme and

ARR provide very strong protection to the source-location privacy. In the cloud-based scheme, the

parasitic nodes can be close to the boundaries of the cloud, but they can’t locate the source node

accurately, considering a large amount of fake packages. ARR performs well, because its routing

paths are very different to each other, even for the same source node and sink node. Considering that

the parasitic nodes can move forward one step when they detect a package and the next path of

another package would be very far away, the trace back process would be interrupted and the

parasitic nodes can’t get any information from a single package. As a result, the adversaries can’t find

the source nodes, though they locate the source nodes several times in a random way.

Figure 10. Source detection probability with different numbers of parasitic nodes.

Figure 11. Source detection false positive probability with different numbers of parasitic nodes.

As shown in Figure 11, with the increasing number of parasitic nodes, the false positive

probabilities decrease for all the four schemes, indicating that the adversaries can locate the source

node with an increasing accuracy. This is reasonable considering that the monitored information of

all the parasitic nodes can be fully used by the adversaries. However, the cloud-based scheme and

ARR routing perform much better than the other two schemes. In conclusion, ARR and the cloud-

based scheme demonstrate a similar performance in terms of protecting the source-location privacy

and they perform much better than the other two schemes.

4 8 12 16 20 24 28 32
0

0.2

0.4

0.6

0.8

1

Number of parasitic nodes

S
o
u

rc
e
 d

e
te

c
ti
o

n
 p

ro
b

a
b

il
it
y

Shortest path routing

Phantom routing

Cloud-based scheme

ARR routing

4 8 12 16 20 24 28 32
0

0.2

0.4

0.6

0.8

1

Number of parasitic nodes

F
a
ls

e
 p

o
s
it
iv

e
 p

ro
b
a

b
il
it
y

Shortest path routing

Phantom routing

Cloud-based scheme

ARR routing

Figure 10. Source detection probability with different numbers of parasitic nodes.

Sensors 2017, 17, 614 13 of 17

the same source node and sink node. As a result, it is very easy for the adversaries to trace back to

the source node and when the adversaries deploy 32 parasitic nodes, they can find the source node

with a probability higher than 90%. The phantom random routing algorithm significantly

outperforms the shortest path routing algorithm, which can be explained by the fact that a random

walking process is employed to confuse the adversaries. However, Phantom can’t provide a strong

enough protection of the source-location, because the adversaries can find the source nodes with a

probability of 40% when they deploy more than 16 parasitic nodes. Both the cloud-based scheme and

ARR provide very strong protection to the source-location privacy. In the cloud-based scheme, the

parasitic nodes can be close to the boundaries of the cloud, but they can’t locate the source node

accurately, considering a large amount of fake packages. ARR performs well, because its routing

paths are very different to each other, even for the same source node and sink node. Considering that

the parasitic nodes can move forward one step when they detect a package and the next path of

another package would be very far away, the trace back process would be interrupted and the

parasitic nodes can’t get any information from a single package. As a result, the adversaries can’t find

the source nodes, though they locate the source nodes several times in a random way.

Figure 10. Source detection probability with different numbers of parasitic nodes.

Figure 11. Source detection false positive probability with different numbers of parasitic nodes.

As shown in Figure 11, with the increasing number of parasitic nodes, the false positive

probabilities decrease for all the four schemes, indicating that the adversaries can locate the source

node with an increasing accuracy. This is reasonable considering that the monitored information of

all the parasitic nodes can be fully used by the adversaries. However, the cloud-based scheme and

ARR routing perform much better than the other two schemes. In conclusion, ARR and the cloud-

based scheme demonstrate a similar performance in terms of protecting the source-location privacy

and they perform much better than the other two schemes.

4 8 12 16 20 24 28 32
0

0.2

0.4

0.6

0.8

1

Number of parasitic nodes

S
o
u

rc
e
 d

e
te

c
ti
o

n
 p

ro
b

a
b

il
it
y

Shortest path routing

Phantom routing

Cloud-based scheme

ARR routing

4 8 12 16 20 24 28 32
0

0.2

0.4

0.6

0.8

1

Number of parasitic nodes

F
a
ls

e
 p

o
s
it
iv

e
 p

ro
b
a

b
il
it
y

Shortest path routing

Phantom routing

Cloud-based scheme

ARR routing

Figure 11. Source detection false positive probability with different numbers of parasitic nodes.

We can observe that, with the increasing number of parasitic nodes, the source detection
probabilities increase for all the four schemes. The shortest path routing algorithm can’t provide
protection to the source-location privacy, considering that it always chooses similar routing paths for
the same source node and sink node. As a result, it is very easy for the adversaries to trace back to the
source node and when the adversaries deploy 32 parasitic nodes, they can find the source node with a
probability higher than 90%. The phantom random routing algorithm significantly outperforms the

Sensors 2017, 17, 614 14 of 18

shortest path routing algorithm, which can be explained by the fact that a random walking process is
employed to confuse the adversaries. However, Phantom can’t provide a strong enough protection
of the source-location, because the adversaries can find the source nodes with a probability of 40%
when they deploy more than 16 parasitic nodes. Both the cloud-based scheme and ARR provide very
strong protection to the source-location privacy. In the cloud-based scheme, the parasitic nodes can be
close to the boundaries of the cloud, but they can’t locate the source node accurately, considering a
large amount of fake packages. ARR performs well, because its routing paths are very different to each
other, even for the same source node and sink node. Considering that the parasitic nodes can move
forward one step when they detect a package and the next path of another package would be very far
away, the trace back process would be interrupted and the parasitic nodes can’t get any information
from a single package. As a result, the adversaries can’t find the source nodes, though they locate the
source nodes several times in a random way.

As shown in Figure 11, with the increasing number of parasitic nodes, the false positive
probabilities decrease for all the four schemes, indicating that the adversaries can locate the source
node with an increasing accuracy. This is reasonable considering that the monitored information of all
the parasitic nodes can be fully used by the adversaries. However, the cloud-based scheme and ARR
routing perform much better than the other two schemes. In conclusion, ARR and the cloud-based
scheme demonstrate a similar performance in terms of protecting the source-location privacy and they
perform much better than the other two schemes.

5.2. Average Time Delay with Different Hops

As discussed in Section 4.2, the size of the agent region has a direct influence on the average
lengths of the routing paths and we present the simulation results in Figure 12. We first set V2 = (d/6)2

and change the standard deviation
√

V1 from 0 to 0.2d. As shown in the top of Figure 12, with the
increasing of

√
V1, the average time delay increases very slowly and the average time delay increases

by about 15% when we increase
√

V1 from 0 to 0.2d. This result indicates that, although V1 can
significantly affect the diversity of the routing paths, it has a very limited affection on the lengths of
the routing paths.

We then set V1 = (d/12)2 and change
√

V2 from 0 to 0.5d. The simulation results presented in the
bottom of Figure 12 illustrate that with the increasing of

√
V2, the average time delay of delivering

a package from the source node to the sink node monotonously and significantly increases. The
average time delay increases by about 150% when we increase

√
V2 from 0 to 0.5d. This is reasonable

considering that V2 has a much larger affection on the average lengths of the routing paths. In the
following simulations, we assume V1 = (d/12)2 and V2 = (d/6)2.

The average time delays for different schemes are presented in Figure 13. The source-sink distance
in hops is defined as the number of hops when delivering a package from the source node to the
sink node through the shortest path routing algorithm. We can observe that the shortest path routing
algorithm can always deliver the packages to the sink node with the smallest time delay. This is
reasonable because of its objective function when designing the routing algorithm. The Phantom
routing algorithm and ARR exhibit similar performances in terms of the average time delay. Both
of them slightly extend the lengths of the routing paths to confuse the parasitic nodes. Fortunately,
because these two routing algorithms can be operated in a distributed manner and perform well in
dynamic networks, they perform better than the cloud-based scheme. In the cloud-based scheme,
considering that the clouds need to be updated periodically and the locations of the fake source nodes
can’t be controlled by the source node, the average time delay is the largest out of all the four schemes.

Sensors 2017, 17, 614 15 of 18

Sensors 2017, 17, 614 14 of 17

5.2. Average Time Delay with Different Hops

As discussed in Section 4.2, the size of the agent region has a direct influence on the average

lengths of the routing paths and we present the simulation results in Figure 12. We first set

𝑉2 = (𝑑 6⁄)2 and change the standard deviation √𝑉1 from 0 to 0.2𝑑. As shown in the top of Figure 12,

with the increasing of √𝑉1, the average time delay increases very slowly and the average time delay

increases by about 15% when we increase √𝑉1 from 0 to 0.2𝑑. This result indicates that, although 𝑉1

can significantly affect the diversity of the routing paths, it has a very limited affection on the lengths

of the routing paths.

We then set 𝑉1 = (𝑑 12⁄)2 and change √𝑉2 from 0 to 0.5𝑑. The simulation results presented in

the bottom of Figure 12 illustrate that with the increasing of √𝑉2, the average time delay of delivering

a package from the source node to the sink node monotonously and significantly increases. The

average time delay increases by about 150% when we increase √𝑉2 from 0 to 0.5𝑑. This is reasonable

considering that 𝑉2 has a much larger affection on the average lengths of the routing paths. In the

following simulations, we assume 𝑉1 = (𝑑 12⁄)2 and 𝑉2 = (𝑑 6⁄)2.

Figure 12. Average time delay with different standard deviation √𝑉1 and √𝑉2.

The average time delays for different schemes are presented in Figure 13. The source-sink

distance in hops is defined as the number of hops when delivering a package from the source node

to the sink node through the shortest path routing algorithm. We can observe that the shortest path

routing algorithm can always deliver the packages to the sink node with the smallest time delay. This

is reasonable because of its objective function when designing the routing algorithm. The Phantom

routing algorithm and ARR exhibit similar performances in terms of the average time delay. Both of

them slightly extend the lengths of the routing paths to confuse the parasitic nodes. Fortunately,

because these two routing algorithms can be operated in a distributed manner and perform well in

dynamic networks, they perform better than the cloud-based scheme. In the cloud-based scheme,

considering that the clouds need to be updated periodically and the locations of the fake source nodes

can’t be controlled by the source node, the average time delay is the largest out of all the four schemes.

0 0.05 0.1 0.15 0.2
1.9

1.95

2

2.05

2.1

Standard deviation (d)

A
ve

ra
g
e

 t
im

e
 d

e
la

y
(s

)

0 0.125 0.25 0.375 0.5
1

1.5

2

2.5

3

3.5

4

Standard deviation (d)

A
ve

ra
g
e

 t
im

e
 d

e
la

y
(s

)

Figure 12. Average time delay with different standard deviation
√

V1 and
√

V2.Sensors 2017, 17, 614 15 of 17

Figure 13. Average time delay with different hops.

5.3. Energy Consumption

Another very important concern in WSNs is energy consumption, which has a strong relation

with the amount of data transmission and the complexities of algorithms executed by the sensor

nodes. We first present the average amount of data transmission per round, as seen in Figure 14. In

our simulation, a round is defined as the whole process of monitoring a target, generating a package,

and successfully delivering the package to the sink node. All the data transmitted in the whole

network are taken into consideration. Further, we present the average energy consumption per round

in Figure 15.

As shown in Figure 14, the three routing-based schemes, including shortest path routing,

Phantom routing, and ARR routing, transmit much less data than the cloud-based scheme. In the

cloud-based scheme, many fake packages are transmitted in the cloud to make the real package

indistinguishable. In most cases, the number of fake packages is much larger than that of the real

packages, and as a result, most of the energy is consumed by the fake packages. In our simulation,

the average amount of energy consumed in the cloud-based scheme is about five to seven times that

of the other three schemes. Though the three routing-based schemes exhibit similar performances,

ARR and the Phantom routing algorithm transmit slightly more data compared with the shortest

routing algorithm. This can be explained by the fact that the packages have a slightly longer path in

ARR and the Phantom routing algorithm.

Figure 14. Average amount of data transmission per round.

The simulation results of average energy consumption are presented in Figure 15. With the

increase in the distance between the source node and the sink node, the average energy consumption

increases. Similar to the data transmission, the cloud-based scheme consumes much more energy

than the other three schemes, because of the fake packages. ARR and the Phantom routing algorithm

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

Source-sink distance in hops

A
ve

ra
g
e

 t
im

e
 d

e
la

y
(s

)

Shortest path routing

Phantom routing

Cloud-based scheme

ARR routing

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14
x 10

4

Source-sink distance in hops

A
ve

ra
g
e

 a
m

o
u
n

t
o

f
d

a
ta

 t
ra

n
s
m

is
s
io

n
 (

b
it

s
)

Shortest path routing

Phantom routing

Cloud-based scheme

ARR routing

Figure 13. Average time delay with different hops.

5.3. Energy Consumption

Another very important concern in WSNs is energy consumption, which has a strong relation
with the amount of data transmission and the complexities of algorithms executed by the sensor nodes.
We first present the average amount of data transmission per round, as seen in Figure 14. In our
simulation, a round is defined as the whole process of monitoring a target, generating a package, and
successfully delivering the package to the sink node. All the data transmitted in the whole network are
taken into consideration. Further, we present the average energy consumption per round in Figure 15.

Sensors 2017, 17, 614 16 of 18

Sensors 2017, 17, 614 15 of 17

Figure 13. Average time delay with different hops.

5.3. Energy Consumption

Another very important concern in WSNs is energy consumption, which has a strong relation

with the amount of data transmission and the complexities of algorithms executed by the sensor

nodes. We first present the average amount of data transmission per round, as seen in Figure 14. In

our simulation, a round is defined as the whole process of monitoring a target, generating a package,

and successfully delivering the package to the sink node. All the data transmitted in the whole

network are taken into consideration. Further, we present the average energy consumption per round

in Figure 15.

As shown in Figure 14, the three routing-based schemes, including shortest path routing,

Phantom routing, and ARR routing, transmit much less data than the cloud-based scheme. In the

cloud-based scheme, many fake packages are transmitted in the cloud to make the real package

indistinguishable. In most cases, the number of fake packages is much larger than that of the real

packages, and as a result, most of the energy is consumed by the fake packages. In our simulation,

the average amount of energy consumed in the cloud-based scheme is about five to seven times that

of the other three schemes. Though the three routing-based schemes exhibit similar performances,

ARR and the Phantom routing algorithm transmit slightly more data compared with the shortest

routing algorithm. This can be explained by the fact that the packages have a slightly longer path in

ARR and the Phantom routing algorithm.

Figure 14. Average amount of data transmission per round.

The simulation results of average energy consumption are presented in Figure 15. With the

increase in the distance between the source node and the sink node, the average energy consumption

increases. Similar to the data transmission, the cloud-based scheme consumes much more energy

than the other three schemes, because of the fake packages. ARR and the Phantom routing algorithm

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

Source-sink distance in hops

A
ve

ra
g
e

 t
im

e
 d

e
la

y
(s

)

Shortest path routing

Phantom routing

Cloud-based scheme

ARR routing

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14
x 10

4

Source-sink distance in hops

A
ve

ra
g
e

 a
m

o
u
n

t
o

f
d

a
ta

 t
ra

n
s
m

is
s
io

n
 (

b
it

s
)

Shortest path routing

Phantom routing

Cloud-based scheme

ARR routing

Figure 14. Average amount of data transmission per round.

Sensors 2017, 17, 614 16 of 17

consume slightly more energy than the shortest routing algorithm, because of their longer routing

paths.

Figure 15. Average energy consumption per round.

In conclusion, ARR and the cloud-based scheme can provide much stronger source-location

privacy protection than the shortest routing and Phantom routing algorithms. However, the time

delay of the cloud-based scheme is the largest of all the four schemes. In addition, the other three

routing-based schemes are much more energy-efficient compared with the cloud-based scheme. ARR

performs very well in all of the three metrics including source-location protection, the time delay of

packages, and energy-efficiency.

6. Conclusion and Future Work

In this paper, we proposed an all-direction random routing algorithm to defend against parasitic

sensor networks which are employed to trace packages back to the source nodes. Our scheme can be

operated in a distributed way and each node needs to make local decisions. The source nodes have

the highest authority to control the routing paths of packages, considering that they know all the

historical routing paths and can make the best choices. A source node controls the shape of a routing

path by first selecting a virtual location which further defines the agent node in an indirect way, i.e.,

the sensor node nearest to the virtual location in the whole network. Then, a complicated mechanism

is designed to deliver the packages from the source node to the agent node, and finally, the packages

are delivered from the agent node to the sink node. It is extremely difficult for the parasitic nodes to

trace this activity back to the source nodes, because the agent nodes are carefully selected and they

are very dispersive. Therefore, with the same source node and sink node, the routing paths are totally

different with each other. Simulation results illustrate that the proposed approach can provide very

strong source-location protection, with an acceptable increase in the total package transmission of the

whole network.

In our future research, we will attempt to design a two-fold source location privacy protecting

scheme in which an anonymity cloud is first constructed around the source nodes to hide the source

nodes and a distributed random routing algorithm is then designed, based on the geographic

information, to send the packages from the fake source nodes to the sink nodes. This approach will

provide all-around protection to source-location privacy in WSNs.

Acknowledgments: This paper is supported by National Natural Science Foundation of China (Grant No.

11261060) and Fundamental Research Funds for the Central Universities (2015YJS027).

Author Contributions: In this paper, the idea and primary algorithm were proposed by Na Wang. Jiwen Zeng

and Na Wang conducted the simulation and analysis of the paper together.

Conflicts of Interest: The authors declare no conflict of interest.

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

Source-sink distance in hops

A
ve

ra
g
e

 e
n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

μ
J
)

Shortest path routing

Phantom routing

Cloud-based scheme

ARR routing

Figure 15. Average energy consumption per round.

As shown in Figure 14, the three routing-based schemes, including shortest path routing, Phantom
routing, and ARR routing, transmit much less data than the cloud-based scheme. In the cloud-based
scheme, many fake packages are transmitted in the cloud to make the real package indistinguishable.
In most cases, the number of fake packages is much larger than that of the real packages, and as a
result, most of the energy is consumed by the fake packages. In our simulation, the average amount
of energy consumed in the cloud-based scheme is about five to seven times that of the other three
schemes. Though the three routing-based schemes exhibit similar performances, ARR and the Phantom
routing algorithm transmit slightly more data compared with the shortest routing algorithm. This
can be explained by the fact that the packages have a slightly longer path in ARR and the Phantom
routing algorithm.

The simulation results of average energy consumption are presented in Figure 15. With the
increase in the distance between the source node and the sink node, the average energy consumption
increases. Similar to the data transmission, the cloud-based scheme consumes much more energy
than the other three schemes, because of the fake packages. ARR and the Phantom routing
algorithm consume slightly more energy than the shortest routing algorithm, because of their longer
routing paths.

In conclusion, ARR and the cloud-based scheme can provide much stronger source-location
privacy protection than the shortest routing and Phantom routing algorithms. However, the time
delay of the cloud-based scheme is the largest of all the four schemes. In addition, the other three
routing-based schemes are much more energy-efficient compared with the cloud-based scheme. ARR

Sensors 2017, 17, 614 17 of 18

performs very well in all of the three metrics including source-location protection, the time delay of
packages, and energy-efficiency.

6. Conclusions and Future Work

In this paper, we proposed an all-direction random routing algorithm to defend against parasitic
sensor networks which are employed to trace packages back to the source nodes. Our scheme can
be operated in a distributed way and each node needs to make local decisions. The source nodes
have the highest authority to control the routing paths of packages, considering that they know all the
historical routing paths and can make the best choices. A source node controls the shape of a routing
path by first selecting a virtual location which further defines the agent node in an indirect way, i.e.,
the sensor node nearest to the virtual location in the whole network. Then, a complicated mechanism
is designed to deliver the packages from the source node to the agent node, and finally, the packages
are delivered from the agent node to the sink node. It is extremely difficult for the parasitic nodes to
trace this activity back to the source nodes, because the agent nodes are carefully selected and they are
very dispersive. Therefore, with the same source node and sink node, the routing paths are totally
different with each other. Simulation results illustrate that the proposed approach can provide very
strong source-location protection, with an acceptable increase in the total package transmission of the
whole network.

In our future research, we will attempt to design a two-fold source location privacy protecting
scheme in which an anonymity cloud is first constructed around the source nodes to hide the
source nodes and a distributed random routing algorithm is then designed, based on the geographic
information, to send the packages from the fake source nodes to the sink nodes. This approach will
provide all-around protection to source-location privacy in WSNs.

Acknowledgments: This paper is supported by National Natural Science Foundation of China (Grant No.
11261060) and Fundamental Research Funds for the Central Universities (2015YJS027).

Author Contributions: In this paper, the idea and primary algorithm were proposed by Na Wang. Jiwen Zeng
and Na Wang conducted the simulation and analysis of the paper together.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fu, J.-S.; Liu, Y. Random and Directed Walk-Based Top-Queries in Wireless Sensor Networks. Sensors 2015,
15, 12273–12298. [CrossRef] [PubMed]

2. Sohraby, K.; Minoli, D.; Znati, T. Wireless Sensor Networks: Technology, Protocols, and Applications; John Wiley &
Sons: Hoboken, NJ, USA, 2007.

3. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw.
2002, 38, 393–422. [CrossRef]

4. Arora, A.; Dutta, P.; Bapat, S.; Kulathumani, V.; Zhang, H.; Naik, V.; Choi, Y.R. A line in the sand: A wireless
sensor network for target detection, classification, and tracking. Comput. Netw. 2004, 46, 605–634. [CrossRef]

5. Fu, J.S.; Liu, Y.; Chao, H.C.; Zhang, Z.J. Green alarm systems driven by emergencies in industrial wireless
sensor networks. IEEE Commun. Mag. 2016, 54, 16–21. [CrossRef]

6. WWWF-The Conservation Organization. Available online: http://www.panda.org/ (accessed on
3 January 2017).

7. Bushnag, A.; Abuzneid, A.; Mahmood, A. Source Anonymity in WSNs against Global Adversary Utilizing
Low Transmission Rates with Delay Constraints. Sensors 2016, 16, 957. [CrossRef] [PubMed]

8. Shao, M.; Yang, Y.; Zhu, S.; Cao, G. Towards statistically strong source anonymity for sensor networks.
In Proceedings of the IEEE 27th Conference on Computer Communications (INFOCOM 2008), Phoenix, AZ,
USA, 13–18 April 2008.

9. Yang, Y.; Shao, M.; Zhu, S.; Urgaonkar, B.; Cao, G. Towards event source unobservability with minimum
network traffic in sensor networks. In Proceedings of the First ACM Conference on Wireless Network
Security, Alexandria, VA, USA, 31 March–2 April 2008.

http://dx.doi.org/10.3390/s150612273
http://www.ncbi.nlm.nih.gov/pubmed/26016914
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1016/j.comnet.2004.06.007
http://dx.doi.org/10.1109/MCOM.2016.7588224
http://www.panda.org/
http://dx.doi.org/10.3390/s16070957
http://www.ncbi.nlm.nih.gov/pubmed/27355948

Sensors 2017, 17, 614 18 of 18

10. Bicakci, K.; Gultekin, H.; Tavli, B.; Bagci, I.E. Maximizing lifetime of event-unobservable wireless sensor
networks. Comput. Stand. Interfaces 2011, 33, 401–410. [CrossRef]

11. Kamat, P.; Zhang, Y.; Trappe, W.; Ozturk, C. Enhancing source-location privacy in sensor network routing.
In Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICDCS’05),
Columbus, OH, USA, 6–10 June 2005.

12. Wang, H.; Sheng, B.; Li, Q. Privacy-aware routing in sensor networks. Comput. Netw. 2009, 53, 1512–1529.
[CrossRef]

13. Pongaliur, K.; Xiao, L. Maintaining source privacy under eavesdropping and node compromise attacks.
In Proceedings of the IEEE Conference on Computer Communications, Shanghai, China, 10–15 April 2011.

14. Mahmoud, M.M.; Shen, X. A cloud-based scheme for protecting source-location privacy against
hotspot-locating attack in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 1805–1818.
[CrossRef]

15. Liu, Y.; Fu, J.S.; Zhang, Z. k-Nearest neighbors tracking in wireless sensor networks with coverage holes.
Pers. Ubiquitous Comput. 2016, 20, 431–446. [CrossRef]

16. Abuzneid, A.S.; Sobh, T.; Faezipour, M.; Mahmood, A.; James, J. Fortified anonymous communication
protocol for location privacy in WSN: A modular approach. Sensors 2015, 15, 5820–5864. [CrossRef]
[PubMed]

17. Schoof, R. The Discrete Logarithm Problem. In Open Problems in Mathematics; Springer: Basel, Switzerland,
2016; pp. 403–416.

18. Galbraith, S.D.; Gaudry, P. Recent progress on the elliptic curve discrete logarithm problem. Des. Codes
Cryptogr. 2016, 78, 51–72. [CrossRef]

19. Pecori, R. A comparison analysis of trust-adaptive approaches to deliver signed public keys in P2P systems.
In Proceedings of the 7th International Conference on New Technologies, Mobility and Security (NTMS),
Paris, France, 27–29 July 2015.

20. Karp, B.; Kung, H.-T. GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings
of the 6th Annual International Conference on Mobile Computing and Networking, Boston, MA, USA,
6–11 August 2000.

21. Matula, D.W.; Robert, R.S. Properties of Gabriel graphs relevant to geographic variation research and the
clustering of points in the plane. Geogr. Anal. 1980, 12, 205–222. [CrossRef]

22. Jaromczyk, J.W.; Toussaint, G.T. Relative Neighborhood Graphs and Their Relatives. Proc. IEEE 1992, 80,
1502–1517. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.csi.2011.01.001
http://dx.doi.org/10.1016/j.comnet.2009.02.002
http://dx.doi.org/10.1109/TPDS.2011.302
http://dx.doi.org/10.1007/s00779-016-0918-8
http://dx.doi.org/10.3390/s150305820
http://www.ncbi.nlm.nih.gov/pubmed/25763649
http://dx.doi.org/10.1007/s10623-015-0146-7
http://dx.doi.org/10.1111/j.1538-4632.1980.tb00031.x
http://dx.doi.org/10.1109/5.163414
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Network and Parasitic Node Models
	All-Direction Random Routing Algorithm
	Pre-Deployment Phase
	Selection of the Sink Node and the Virtual Location L Which Defines the Agent Node
	Package Delivery from Source Node to Agent Node Defined by L
	Package Delivery from Agent Node to Sink Node
	Analysis and Discussion of ARR

	Performance Analysis and Evaluation
	Source Node’s Location Privacy Protection
	Average Time Delay with Different Hops
	Energy Consumption

	Conclusions and Future Work

