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Abstract: A fast direction of arrival (DOA) estimation method using a real-valued cross-correlation
matrix (CCM) of coprime subarrays is proposed. Firstly, real-valued CCM with extended aperture
is constructed to obtain the signal subspaces corresponding to the two subarrays. By analysing the
relationship between the two subspaces, DOA estimations from the two subarrays are simultaneously
obtained with automatic pairing. Finally, unique DOA is determined based on the common results
from the two subarrays. Compared to partial spectral search (PSS) method and estimation of signal
parameter via rotational invariance (ESPRIT) based method for coprime arrays, the proposed
algorithm has lower complexity but achieves better DOA estimation performance and handles
more sources. Simulation results verify the effectiveness of the approach.
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1. Introduction

Direction of arrival (DOA) estimation via a sensor array is an important issue for radar, sonar,
and wireless communication systems [1–4], and many well-known DOA estimation algorithms have
been established [5–12]. Multiple signal classification (MUSIC)-based methods [5,6] obtain the DOA
estimation via a peak search, which is highly computational. To reduce the complexity, root-MUSIC
based methods [7,8] were proposed to estimate the DOA via polynomial root finding instead of the
peak search. Estimation of signal parameters via the rotational invariance technique (ESPRIT)-based
methods [9,10] exploit the invariance property within the signal subspace to obtain closed-form
DOA solutions, and generalized ESPRIT [11] can be suitable for arbitrary geometries. The support
vector classifier-based method proposed in [12] can obtain DOA estimation with a low complexity by
exploiting a multi-scaling procedure. These methods all can provide accurate DOA estimations by
using arrays whose inter-element distances are no larger than a half-wavelength to avoid the ambiguity
problem of angle estimation. However, the compact arrays they used have many limitations, e.g., the
high estimation error bound and the mutual coupling problem [13,14].

As a new concept for array geometry, coprime arrays use two sparse uniform linear arrays
(ULAs) with coprime antenna numbers and coprime inter-element distances to achieve high resolution
DOA estimation and reduce mutual coupling influence [15–17]. To overcome the ambiguity problem
of DOA estimation using sparse arrays, the common peaks of the MUSIC spectra obtained from
the two coprime subarrays are selected to uniquely determine the DOA estimations [18], but the
high-computational peak searches are required. Thereafter, in order to reduce the complexity involved
in the peak search of whole angular space, a partial spectral search (PSS) MUSIC method was proposed
in [19] to reduce the search range, and an ESPRIT-based method was proposed in [20] to estimate
the DOA without peak search. However, these methods all process the subarrays separately, and the
obtained results from the two subarrays are mis-pairing, which result in angular interference between
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different sources and degradation of the DOA estimation performance, especially with low signal to
noise ratio (SNR). To deal with this problem, Ref. [20] proposed an additional processing procedure
relying on peak search and angle difference chosen, but this makes the algorithm inefficient.

In this paper, a low-complexity DOA estimation method using real-valued cross correlation
matrix (CCM) of coprime arrays is proposed. Based on the uniformity of the subarrays, the smaller
aperture between the two coprime subarrays can be extended and real-valued CCM can be constructed.
After singular value decomposition (SVD) of the real-valued CCM, the relationship between the two
subspaces of the subarrays is analysed, and then the closed-form solutions of the DOA estimations
corresponding to the two subarrays can be simultaneously obtained with automatically pairing.
The automatically paired solutions make it simple and accurate to determine the unique DOA
estimation. Compared to the PSS method in [19] and ESPRIT-based method in [20], the proposed
algorithm requires lower complexity, achieves better DOA estimation performance and handles more
sources. Multiple simulations are conducted to verify the effectiveness of our approach.

Notation 1. (.)T , (.)∗, (.)H , (.)−1, and (.)+ denote the operations of transpose, conjugate, conjugate-transpose,
inverse, and pseudo-inverse, respectively. E[.] is the expectation operator. Re (.) and Im (.) represent the real
and imaginary parts of the complex, respectively.

2. Data Model

As Figure 1 shows, coprime arrays consist of two sparse ULAs, where subarray 1 has M elements
with Nd being the inter-element spacing and subarray 2 has N elements with Md being the inter-element
spacing. M and N are coprime integers, and d is generally set as d = λ/2, where λ denotes the
signal wavelength.
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Figure 1. The structure of coprime arrays.

Assume that there are K far-field uncorrelated signals impinging on the arrays, and use θk to
denote the DOA of the kth signal with respect to the array normal, then the outputs of the two
subarrays are:

x1(t) = A1s(t) + n1(t) (1a)

x2(t) = A2s(t) + n2(t) (1b)

where s(t) = [s1(t), ..., sK(t)]T is the baseband signal vector. n1(t) and n2(t) are the noise vectors, which
are assumed to be uncorrelated to each other and independent to the signals. A1 = [a1(θ1), ..., a1(θK)]

and A2 = [a2(θ1), ..., a2(θK)] are the direction matrices of subarray 1 and subarray 2, respectively.
The steering vectors corresponding to the k-th signal are:

a1(θk) =

[
1, e−jNπ sin θk , ..., e−j(M−1)Nπ sin θk

]T

(2a)
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a2(θk) =

[
1, e−jMπ sin θk , ..., e−j(N−1)Mπ sin θk

]T

(2b)

3. Proposed DOA Estimation Method

In this section, the proposed DOA estimation method will be presented. Sections 3.1–3.3 contain
the three major steps of the method, and Section 3.4 includes the algorithm summaries, algorithm
comparison, and remarks.

3.1. Construction of Real-Valued CCM with Extended Aperture

In this section, we will construct a real-valued CCM with extended aperture. As the maximum
number of detectable source depends on the minimum aperture of the two subarrays, we consider
extending the smaller aperture between the two subarrays. In the following section, we assume
subarray 1 has smaller aperture than subarray 2, i.e., M < N (refer to remark 1 for the situation when
M > N).

Realize that the subarrays are sparse, but still uniform, which means that their manifolds are
symmetrical and do not exhibit inclination [21]. Define unitary matrices as:

Q2k =
1√
2

[
Ik jIk
Πk −jΠk

]
(3a)

Q2k+1 =
1√
2

 Ik 0 jIk
0
√

2 0
Πk 0 −jΠk

 (3b)

where IK and ΠK are K × K identity matrix and reverse identity matrix (90◦ rotation of IK), respectively.
Assume N is odd, then the steering vector of subarray 2 is transformed as:

a2r(θk) = QH
Na2(θk)

= e(−j (N−1)
2 Mπ sin θk)

√
2×

[
cos

(
(N−1)

2 Mπ sin θk

)
, · · · cos

(
(N−3)

2 Mπ sin θk

)
, cos

(
Mπ sin θk

)
,

1/
√

2, sin
(

N−1
2 Mπ sin θk

)
, · · · sin

(
Mπ sin θk

)]T

= vkh2(θk)

(4)

where vk = e(−j (N−1)
2 Mπ sin θk) is a scalar. According to Equation (4), the steering vector can be

transformed into a real-valued vector h2(θk) multiplied by a scalar vk.
Construct the CCM of the two outputs in Equation (1) as:

Rc = E
[
x1(t)xH

2 (t)
]
= A1RsAH

2 (5)

where Rs = diag(σ2
1 , ..., σ2

K) is a real-valued diagonal matrix composed of signal powers [22].
According to Equation (4), transform CCM in Equation (5) as:

Rcr = RcQN = A1RsAH
2 QN

= A1RsΨv
∗H2

T = A1Ψv
∗RsH2

T (6)

where H2 = [h2(θ1), ..., h2(θK)] is the real-valued direction matrix of subarray 2, and
Ψv = diag(v1, ..., vK) is a diagonal matrix, which means the orders of Ψv

∗ and Rs can be exchanged
(has been shown in Equation (6)). Based on the real-valued property of H2, construct extended CCM as:
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Rz =

[
ΠMRcr

Rcr
∗

]
=

[
ΠMA1Ψv

∗RsH2
T

A1
∗ΨvRsH2

T

]
=

[
ΠMA1Ψv

∗

A1
∗Ψv

]
︸ ︷︷ ︸

A1E

RsH2
T (7)

where ΠM is used in Equation (7) to make the extended direction matrix A1E conjugate symmetric.
Now the virtual aperture of subarray 1 is 2M, and its steering vector (i.e., the column of A1E) can be
expressed as:

a1E(θk) =

[
e−j(M−1)Nπ sin θk vk

∗, e−j(M−2)Nπ sin θk vk
∗, ..., vk

∗, vk, vkejNπ sin θk , ..., vkej(M−1)Nπ sin θk

]T

(8)

Due to the conjugate symmetric property, the steering vector in Equation (8) can also be
transformed into a real-valued one, which is h1(θk) = QH

2Ma1E(θk). So the real-valued CCM with
extended aperture is constructed:

Rh = QH
2MRz = H1RsH2

T (9)

where H1 = [h1(θ1), ..., h1(θK)] = QH
2MA1E ∈ R2M×K is the extended real-valued direction matrix of

subarray 1.

3.2. Ambiguous DOA Estimation

To obtain the signal subspaces of the two subarrays, SVD of the CCM in Equation (9) is performed:

Rh = UΛVT (10)

where U and V are left and right singular vectors, respectively. Λ is a K × K diagonal matrix composed
of singular values. The real-valued signal subspaces U and V satisfy,

U = H1T1 (11a)

V = H2T2 (11b)

where T1 and T2 are two non-singular matrices.
Before the usage of the signal subspaces, we briefly review the properties of the direction

matrices. Based on the Vandermonde structures of the direction matrices shown in Equations (2b)
and (8), we define selecting matrices as J1 = I2 ⊗ [0(M−1)×1, I(M−1)], J2 = I2 ⊗ [I(M−1), 0(M−1)×1],
J3 = [I(N−1), 0(N−1)×1], and J4 = [0(N−1)×1, I(N−1)], then the direction matrices satisfy:

J1A1EΦ1 = J2A1E (12a)

J3A2Φ2 = J4A2 (12b)

where Φ1 = diag(e−jNπ sin θ1 , ..., e−jNπ sin θ2) and Φ2 = diag(e−jMπ sin θ1 , ..., e−jMπ sin θ2) are diagonal
matrices. As now the direction matrices are all transformed into real-valued ones (H1 and H2), then
the relationships in Equation (12) are also transformed into real-valued forms [10]:

K1H1Ω1 = K2H1 (13a)

K3H2Ω2 = K4H2 (13b)

where K1 = Re(QH
(2M−1)J2Q2M), K2 = Im(QH

(2M−1)J2Q2M), K3 = Re(QH
(N−1)J4QN), and

K4 =Im(QH
(N−1)J4QN) are all real-values selecting matrices. Ω1 = diag(tan(−Nπ sin θ1/2), · · · ,
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tan(−Nπ sin θK/2)) and Ω2 = diag(tan(−Mπ sin θ1/2), · · · , ) tan(−Mπ sin θK/2)) are real-valued
diagonal matrices.

Combine Equations (11) and (13), the signal subspaces satisfy:

K1UΣ1 = K2U (14a)

K3VΣ2 = K4V (14b)

where Σ1 = T−1
1 Ω1T1 and Σ2 = T−1

2 Ω2T2, which can be estimated via least squares (LS):

Σ1 = (K1U)+K2U (15a)

Σ2 = (K3V)+K4V (15b)

After Equation (15), the eigenvalues of Σ1 and Σ2 will, respectively, provide the estimations of
the diagonal elements of Ω1 and Ω2, which can give the DOA estimations. However, as Σ1 and Σ2

are processed separately, and their eigenvalues are mis-pairing, which will cause the interference
between the angles when determining the unique DOA. Sun et al. [20] proposed an additional
processing method relying on peak search and angle difference chosen to deal with this problem,
but this procedure also adds computation complexity. We will analyse the relationship between Σ1

and Σ2 below, and conduct a method to simultaneously obtain the eigenvalues of Σ1 and Σ2 with
automatically pairing.

Firstly, substitute Equation (11) into Equation (10); then it can be obtained that Rh = H1T1ΛT2
TH2

T.
Combine Equation (9), then it is shown that:

T1ΛT2
T = Rs (16)

Equation (16) means that T2 = Rs(T1
T)
−1

Λ−1, which can be substituted into Σ2 = T−1
2 Ω2T2,

then Σ2
T can be expressed as:

Σ2
T = TT

2 Ω2(T2
−1)

T

= Λ−1T1
−1RsΩ2RsT1Λ

= Λ−1T1
−1Ω2T1Λ

(17)

Combine Σ1 = T−1
1 Ω1T1 and Equation (17), constructing a K × K matrix as:

Σ = Σ1 + j(ΛΣ2
TΛ−1)

= T1
−1Ω1T1 + jT1

−1Ω2T1

= T1
−1(Ω1 + jΩ2)T1

(18)

where Λ has already been obtained after the SVD of CCM in Equation (10). According to Equation (18),
the eigenvalues of Σ provide the estimations of the diagonal elements of Ω1 + jΩ2, whose real part and
imaginary part give the DOA information corresponding to subarray 1 and subarray 2, respectively.
Use αk to denote the k-th eigenvalue of Σ, then the DOA estimations from subarray 1 and subarray 2,
respectively, are:

sin
_
θ k,n = −2arctan

(
Re(αk)

)/(
Nπ

)
, k = 1, ..., K (19a)

sin
^
θ k,m = −2arctan

(
Im(αk)

)/(
Mπ

)
, k = 1, ..., K (19b)

The DOA estimations from subarray 1 and subarray 2 are automatically paired based on the
same αk. Due to the range limitation of the function arctan(·) ([−π/2, π/2]) in Equation (19), the
two DOA estimations in Equation (19) may be ambiguous (original range within the tangent function
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is [−πM/2, πM/2] or [−πN/2, πN/2], which has been shown in Ω1 or Ω2 in Equation (13)), and
unique DOA will be determined in the next section.

3.3. Unique DOA Estimation

Now two ambiguous DOA estimations are obtained from subarray 1 and subarray 2, respectively.
In this section, we continue to uniquely determine the true DOA based on the coprime-ness between
the two subarrays. As now the DOA estimations are automatically paired (corresponding to the same
source), the angles can be determined without interference from other sources.

For the k-th DOA shown in Equation (19), due to the large inter-element spacing, there are totally
N solutions for subarray 1 and M solutions for subarray 2, respectively [18–20]. The adjacent intervals
between the estimations are 2/N for subarray 1 and 2/M for subarray 2, respectively:

sin
_
θ k,n+1 − sin

_
θ k,n =

2
N

, n = 1, ..., N − 1 (20a)

sin
^
θ k,m+1 − sin

^
θ k,m =

2
M

, m = 1, ..., M− 1 (20b)

Based on the relationship in Equation (20) and the obtained two arbitrary ambiguous estimations

in Equation (19), all the N estimations sin
_
θ k,n, n = 1, ..., N for subarray 1 and all of the M estimations

for subarray 2 sin
^
θ k,m, m = 1, ..., M can be obtained.

Finally, based on the coprime-ness between M and N, the unique estimation can be obtained

by finding the coincidence between sin
_
θ k,n, n = 1, ..., N and sin

^
θ k,m, m = 1, ..., M [18]. In practical

situations, the unique estimation is actually obtained from the average of two nearest ones:

θ̂k = arcsin
(

sin
_
θ k,n̂ + sin

^
θ k,m̂

2

)
, k = 1, ..., K (21)

where sin
_
θ k,n̂ and sin

^
θ k,m̂ denote the two nearest results.

It should be noted that the CCM is estimated via finite snapshots in practice:

Rc =
1
T

T

∑
t=1

(
x1(t)xH

2 (t)
)

(22)

where T denotes the number of snapshots. Therefore, the signal subspaces U and V are actually
obtained by respectively selecting the left and right singular vectors corresponding to K largest
singular-values.

3.4. Summaries and Remarks

The major steps of the proposed algorithm are:

1. Construct the real-valued CCM with extended aperture via Equations (22), (7), and (9).
2. Perform SVD of the CCM obtained in step 1 to obtain the signal subspaces, and estimate two

initial ambiguous DOAs via Equations (15), (18), and (19).
3. Determine the unique DOA via Equations (20) and (21).

In our algorithm, the CCM construction, SVD and pseudo-inverse dominate the complexity, and it
should be noted that the SVD and the pseudo-inverse are all based on real-valued computations, while
the PSS method and ESPRIT based method both require multiple complex eigenvalue-decompositions
and pseudo-inverses. The complexity of our algorithm is about O(MNT + NM2 + (2M + N)K2 + K3),
which is lower than those of the PSS method and ESPRIT based method (PSS: O((M2 + N2)T + M3 + N3
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+ (J/N)M(M − K) + (J/M)N(N − K) and ESPRIT based: O((M2 + N2)T + M3 + N3 + 3(M + N)K2 + 4K3)
without considering the additional peak search based processing procedure).

The advantages of our algorithm can be summarized as:

1. It requires CCM construction, real-valued SVD, and eigenvalue-decomposition only once, so it
has low complexity.

2. It extends the aperture of subarray 1, thus, the number of managed source is increased (according
to Equation (15), the maximum number depends on the minimum aperture between the two
subarrays, i.e., min (2M − 1, N − 1)).

3. It achieves better DOA estimation performance than the PSS method and the
ESPRIT-based method.

The last two advantages will be verified in the simulation section below.

Remark 1. For the situation when M > N, we should consider to extend the aperture of subarray 2 to increase
source number that the method can handle. Just transform the direction matrix of subarray 1 into real-valued
one firstly:

Rcr2 = QH
MRc = QH

MA1RsAH
2

= G1ΨuRsAH
2

(23)

where G1 is the real-valued direction matrix and Ψu is the diagonal matrix composed of the rest scalars (similar
to the processing of subarray 2 in Equation (4)). Then construct the extended CCM as:

Rz =
[
Rcr2, Rcr2

∗
]

=
[
G1ΨuRsAH

2 , G1Ψu
∗RsAT

2

]
= G1Rs

[
A2Ψu

∗, A2
∗Ψu

]H
(24)

Now the aperture of subarray 2 has been extended, and similar steps as those from Equation (8) can be conducted.

Remark 2. In real situations, the residual noise will make Rh in Equation (9) none real-valued, so the real-valued
CCM is actually acquired via Rh = Re(QH

2MRz).

4. Simulation Results

Consider coprime arrays with M = 5 antennas for subarray 1 and N = 7 antennas for subarray 2,
respectively. Assume there are two uncorrelated signals with DOAs being θ1 = 15◦ and θ2 = 30◦,
respectively. Collect T = 200 snapshots, and define the root mean square error (RMSE) of the DOA
estimation as:

RMSE =
1
K

K

∑
k=1

√√√√ 1
L

L

∑
l=1

[(
θ̂k,l − θk

)2
]

(25)

where θ̂k,l is the estimation of θk of the l-th Monte Carlo trial, and the total trial number is L = 200.
In the simulations below, the DOA estimation performance comparison between the PSS method [19],
ESPRIT based method [20] and the proposed algorithm under the measurement of RMSE will be
presented. The PSS method uses search grid 0.1◦, and both PSS method and ESPRIT based method
exploit additional peak search based procedure [20] to avoid the interference between sources after
obtaining the DOA estimations. Multi-source Cramer-Rao Bound (CRB) [23] of the DOA estimation
using coprime arrays is also presented as a benchmark.

Figure 2 shows the DOA estimation results of the proposed algorithm over 100 trials when
SNR = 0 dB, and it is shown that the proposed algorithm can accurately estimate both of the two DOAs.
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Figure 2. DOA estimation results over 100 trials (SNR = 0 dB).

The DOA estimation performance comparison is shown in Figure 3, and it is indicated that
our algorithm has better DOA estimation performance than the PSS method and the ESPRIT-based
method due to the extended aperture and automatically solutions from the two subarrays. Due to
the self-limitation of peak search based method [20], the PSS method performs worse than the
ESPRIT-based method with high SNR.
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Figure 3. DOA estimation performance comparison.

Figure 4 shows the DOA estimation results when the source number is K = 5, and the angles
of the sources are uniformly distributed among the range [5◦, 50◦]. As M < N, the maximum source
number that the PSS method and the ESPRIT-based method can handle depends on the minimum
aperture between the two subarrays, i.e., (M− 1) = 4. In contrast, the proposed algorithm can deal with
min(2M− 1, N − 1) = 6 sources due to the aperture extension in Section 3.1. Thus, Figure 4 verifies that
the proposed algorithm can handle more sources than the PSS method and the ESPRIT-based method.
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Figure 4. DOA estimation results with K = 5 sources (SNR = 10 dB).

In Figure 5, we show the DOA estimation performance comparison with two closely-spaced
sources, whose DOAs are θ1 = 12◦ and θ2 = 15◦, respectively. It is shown that both the PSS method
and the ESPRIT-based method have significant performance degradations with low SNR compared to
those shown in Figure 3, while the proposed method still maintains stable performance. With high
SNR, their estimation errors are close to each other due to the closely-spaced sources.

To clearly observe the resolutions of the algorithms, we use resolution probability to investigate
the DOA estimation performance versus angular separation in Figure 6. The two DOAs are θ1 = 50◦

and θ2 = θ1 + ∆θ, where ∆θ denotes the angular separation. The two sources can be resolvable if both∣∣θ̂1 − θ1
∣∣ and

∣∣θ̂2 − θ2
∣∣ are smaller than |θ1 − θ2|/2 [20]. The SNR is set to 10 dB, and it is shown that

the proposed algorithm achieves the best resolution performance among the algorithms.
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Figure 7 shows the DOA estimation performance comparison with K = 3 sources, whose DOAs
are 30◦, 35◦, and 50◦, respectively. With the increase of the source number, it is indicated that both PSS
method and the ESPRIT-based method degrade significantly, especially with low SNR. The proposed
algorithm still outperforms the other methods and also has performance degradation with low SNR
compared to the two-source situation.Sensors 2017, 17, 638 10 of 11 
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5. Conclusions

A real-valued CCM based fast DOA estimation method for coprime arrays is proposed.
A real-valued CCM with extended aperture is constructed and is then exploited to obtain the
closed-form solutions of DOA estimations from the two subarrays. By analysing the relationship
between the two subarrays, the obtained solutions are automatically paired, which can avoid angular
interference when determining the unique DOA estimation. Compared to the PSS method and the
ESPRIT-based method for coprime arrays, the proposed algorithm reduces the computational burden,



Sensors 2017, 17, 638 11 of 12

achieves better DOA estimation performance, and handles more sources. Several simulations have
been carried out to verify the validity of our algorithm.
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