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Abstract: Real-time detection of multiple stance events, more specifically initial contact (IC), foot flat
(FF), heel off (HO), and toe off (TO), could greatly benefit neurorobotic (NR) and neuroprosthetic
(NP) control. Three real-time threshold-based algorithms have been developed, detecting the
aforementioned events based on kinematic data in combination with a biomechanical model.
Data from seven subjects walking at three speeds on an instrumented treadmill were used to validate
the presented algorithms, accumulating to a total of 558 steps. The reference for the gait events
was obtained using marker and force plate data. All algorithms had excellent precision and no
false positives were observed. Timing delays of the presented algorithms were similar to current
state-of-the-art algorithms for the detection of IC and TO, whereas smaller delays were achieved for
the detection of FF. Our results indicate that, based on their high precision and low delays, these
algorithms can be used for the control of an NR/NP, with the exception of the HO event. Kinematic
data is used in most NR/NP control schemes and is thus available at no additional cost, resulting
in a minimal computational burden. The presented methods can also be applied for screening
pathological gait or gait analysis in general in/outside of the laboratory.

Keywords: gait segmentation; modeling; real-time event detection; adaptive thresholds;
neuroprostheses; neurorobotics; kinematics

1. Introduction

Walking neuro-robotics (NR) and -prosthetics (NP) are currently available as therapeutic tools in
rehabilitation [1,2], or as permanent assistive devices [3]. Most recent NR and NP, however, do not
yet incorporate effective strategies to dynamically interface with the human body using the natural
dynamics of the gait process. Synthesizing the walking behaviour in real time would enable the
NR/NP to assist and provide augmented proprioceptive inputs synchronized with the task execution.
One way to synthesize gait is through the identification of gait and stance events.
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In gait laboratories, force platforms are typically used to detect initial contact (IC) and toe off
(TO), thus separating gait cycles as well as separating stance from swing phase within one gait cycle.
In combination with marker data, additional stance events such as foot flat (FF) and heel off (HO) can
also be detected automatically, albeit offline [4]. In wearable applications, these external reference
systems cannot be used, and often real-time processing is desired or needed. Pattern recognition
approaches, in combination with inertial sensors, have therefore become popular to identify IC and
TO [5–7]. Current algorithms predominantly use one single sensor attached to each shank. TO and/or
IC are typically detected as the minimum shank angular velocity that respectively precedes and follows
the maximum velocity, coinciding with mid-swing (MS) [5,6,8]. However, the relation between TO and
this minimum in shank angular velocity has since long been debated [5,8,9]. Botzel et al. therefore
recently proposed a new TO definition, suggesting that TO corresponds to the midpoint between the
minimum shank angular velocity and its zero-crossing [7].

In routine gait analysis, timing of IC and TO is imperative and often sufficient; whereas in ankle-foot
orthoses (AFO), control for drop foot patients, and accurate and timely HO detection is fundamental to
avoid falls due to stumbling [3,10]. Automatic real-time detection of additional stance events, such as FF
and HO would allow these events to be incorporated in the control of NR/NP [3,4,10,11]. The benefits
of a more fine-grained segmentation in NR/NP control were already demonstrated in [3]. For the
variable-impedance control of an AFO, Blaya and Herr separated the gait cycle into two stance phases
and one swing phase. This allowed reduction of foot slapping following IC and enabled higher
powered plantar-flexion, resulting in a gait pattern more similar to healthy gaits for subjects with
drop foot [3]. They segmented gait cycles based on information from force sensitive resistors (FSRs).
Pappas et al. also used a gyroscope on each foot in combination with FSRs to detect IC, FF, HO and
TO with the intention to implement this in an NP. They validated their algorithm both indoors and
outdoors on healthy subjects and on subjects with impaired gait [12]. FSRs, however, have strong
limitations regarding mechanical wear and reliability, and are therefore best avoided in practical
applications [13,14].

Kotiadis et al. presented inertial gait phase detection algorithms to trigger drop foot stimulators
without the need for FSRs. Four algorithms identifying IC and HO, based on a combination of
gyroscopes and accelerometers, were validated offline on a single subject. The presented methods
were threshold based, in order to avoid high computational costs. The thresholds were optimized
and maintained constant for the one subject tested, and FF or TO were not detected [11]. Recently,
Chia et al. [6] presented a threshold-based real-time algorithm where the thresholds were automatically
calibrated to the subject and updated at each step. This algorithm was validated on both healthy
subjects and stroke patients, but only detected IC and TO [6].

Traditionally, a balance has been sought between minimal instrumentation and reliable and
accurate event detection. However, most NR/NP control strategies require continuous real-time
monitoring of the kinematic data of all actuated joints. This data could thus also be used to identify
gait and stance events at no additional cost. Joint kinematics in NR/NP are typically obtained either
through inertial sensors, as is the case in wearable motion analysis applications such as Outwalk [15],
or through encoders or potentiometers embedded in the NR. Furthermore, with exception from
the method presented in Chia [6], all methods either relied on offline training, offline processing,
or at best ran in quasi-real-time with an inherent delay due to signal processing and/or event
definition. This despite the established knowledge that optimal delays for control should not exceed
100–125 ms [16], with 61 ms being the smallest delay noticeable by subjects [17].

The objective of our work was to identify the different stance phases in real time with a mean
delay below 61 ms and variability smaller than 125 ms from the real event to enable their use in
NR/NP control algorithms. In this paper, we therefore present a workflow that enables detection of
four gait events (IC, FF, HO, TO) in real time, based on kinematic data commonly available in NR/NP.
No sensors other than those already present for the control of the NP/NR are required, and cost and
reliability of the NP/NR thus remain unchanged. We developed three kinematic-based real-time gait
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and stance phase detection algorithms (RTGSD), all using this workflow. Kinematic data and joint
angles were coupled to a biomechanical model from which the signals used for event detection by
the respective algorithms were extracted. In this paper, we used optical marker data and obtained
the joint kinematics offline. Nevertheless, any system providing kinematics off/online can be used
as a substitute to be coupled to the biomechanical model and RTGSD-algorithm. Performance of
the developed algorithms was evaluated on timing and precision, using an offline dataset of healthy
subjects walking on a treadmill.

2. Experimental Section

2.1. Data Collection and Processing

Seven healthy subjects (61 ± 8 kg, 23 ± 3 years) signed a written informed consent to participate
in this study; the ethical committee of UZ Leuven gave approval to the experimental protocol.
Each subject performed three walking trials on an instrumented split-belt treadmill at, respectively,
3, 4, and 5 km/h. In total, 558 steady state steps were analysed. A motion capture system consisting
of 10 infrared cameras recorded the motion of reflective markers attached to anatomical locations of
the subject, according to the extended plug in gait marker protocol (100 Hz) (Figure 1). The generic
“3DGaitModel2392” musculoskeletal model was scaled to the subject’s dimensions using Opensim
3.3 [18,19]. A Kalman smoothing algorithm was then used to compute the joint kinematics of the scaled
model that best reproduced the measured motion of the markers [20]. These steps are represented
by the discontinuous box in Figure 1 and can be substituted by real-time kinematics obtained by the
NP/NR. The obtained joint kinematics were then fed-back to the scaled model to extract the data
required by each of the algorithms (Figure 1). Since real-time kinematics were not available from
marker data, all processing was done offline for this study. However, when real-time kinematics
are available, the entire process can be performed online (Figure 1). In [21], a previous version of
RTGSD-min was implemented on a BeagleBone Black (BeagleBoard, Oakland, MI, USA) and ran in
real time. In ongoing pilot work, we implemented RTGSD-G6, using exoskeleton encoder data as
input, in real time using the entire workflow as presented here. However, no independent and reliable
reference data for the stance events were available for those trials. AMTI force plates embedded in the
split-belt treadmill measured the ground reaction forces at 1000 Hz.

joint
kinematics

tibia angular velocity
ankle angle
tibia angle

tibia angular velocity
calcaneus linear velocity
toes linear velocity

tibia angular velocity
tibia position
foot angle 
foot angular acceleration

RTGSD-min

RTGSD-B6

RTGSD-G6

IC
FF
HO
TO

IC
FF
HO
TO

IC
FF
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0. obtain kinematics 1. extract relevant signals using 
biomechanical model

2. detect events and
update tresholds 

Figure 1. Musculoskeletal model and data processing. The generic musculoskeletal model
(3DGaitModel2392) was scaled to the subject’s dimensions. The plug-in gait marker placement protocol
was used for the data collection. Joint kinematics were obtained from the measured marker data using a
Kalman Smoothing algorithm [20]. In our study, joint kinematics were obtained offline (discontinuous
box), but this can be substituted by any online method to obtain joint kinematics. The real-time
processing, outside of the discontinuous box, consisted of feeding the joint kinematics back to the
scaled model, extracting the information required by the respective algorithms from this model and
performing the gait and stance phase detection.
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All processing and validation was performed in Matlab (2014b, The Mathworks, Natick, MA,
USA). The events as identified by the proposed algorithms were compared to the reference data
obtained from the force platforms embedded in the treadmill (IC, TO) and marker data (FF, HO).
The precision of the algorithms was quantified by contrasting the True Positives (TP) against the sum
of the TP and the False Positives (FP). False Negatives (FN) were also reported. Timing was assessed
using the Bland–Altman method [22].

2.2. Reference Events

Reference events, more specificically, IC, TO, FF and HO, were defined based on the force plate
and marker data (Figure 2, panel D). IC and TO were identified using a 20 N threshold on the vertical
force component measured by the force plates (Figure 2, panel D solid line). FF and HO were defined
according to the algorithm presented in [4], using a 100 mm/s threshold on, respectively, the toe
(dotted line) and heel (dashed line) marker vertical velocities (Figure 2, panel D). The original method
was developed for over-ground gait using sagittal plane marker velocity. To accommodate to the
treadmill data, only the vertical velocity was used in this study. We validated this modification by
comparing the timing of the IC and TO events using only vertical velocity thresholds to the GRF-based
(Ground Reaction Forces) reference events. Mean delays of −43 ms for TO and −3 ms for IC were
observed when compared to the force plate data. These results are similar or better than those presented
in [4]. Therefore, the modified method using only the vertical marker velocity was assumed to correctly
identify FF and HO.
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Figure 2. Cont.
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Figure 2. Gait and stance events detected by each of the presented algorithms. All events for one step
are represented in (E) (IC, FF, HO, TO, MS). In (A–D) the black lines are plotted against the axis on the
left, whereas the grey lines are plotted against the axis on the right. A single right step from one of the
subjects is shown. (D) displays the reference events. (C) displays the events as detected for this step by
the RTGSD-min algorithm. In (B), the events as detected by RTGSD-B6 are represented. The events as
detected by RTGSD-G6 are shown in (A). The orange dots in (A,B) represent flags that are used by the
respective state-machines to detect the next event. In (A), the zero-crossing towards a minimum of the
calcaneus vertical velocity is flagged, enabling subsequent detection of IC. In (B), the zero crossing of
the foot acceleration and the minimum of shank angular velocity are flagged, enabling the subsequent
detection of HO and TO.

2.3. RTGSD Structure

The developed real-time gait and stance phase detection (RTGSD)-algorithms share
a double-layered structure based on state-machines for the real-time detection (Algorithm 1) and
a parallel layer updating the thresholds (Algorithm 2).

In the real-time detection layer, events are detected based on the real-time signals extracted from
the model, the current state of the state machine, and the current thresholds. To detect an event, the
state-machine of the leg of interest has to be in the correct state, and the amplitude of the target signal for
that event had to exceed the corresponding threshold (Figure 2) (Algorithm 1). The signals used by each of
the algorithms are listed in Figure 1. In Figure 2, these signals are plotted in the respective panels, and the
events are marked by coloured circles both in the plot and in the state-machine. The event definitions used
by each of the algorithms are also listed in Table 1. The state-machines of each leg operated independently
of each other. Each state-machine contained the four validated states IC, FF, HO, TO as well as MS
(Figure 2, panel E). Flags were used to ensure robustness of the algorithm. A flag can be considered
a pre-event, an event that has to be detected to enable detection of the next stance event (orange dots
in Figure 2). When a flag is raised, the state-machine does not change, and this only occurs upon
detection of the respective stance-event, which, in turn, results in lowering the flag. An example in
pseudo-code is shown in Algorithm 1, where the flag corresponds to a minimum and the event to
a maximum.

In the update layer, a low-pass filtered (LPF) version of the corresponding signal was used to
increase robustness of the detection and thus avoid false positives due to noise in the signal at the
cost of a systematic delay. The update layer first detects the event using the filtered signal and
subsequently uses the event detected in the filtered signal as a starting point to look for the true
real-time (RT) event, thus resulting in thresholds for the filtered and raw signal based on these true
events. At the start of each trial, generic thresholds based on data from two trials of two subjects were
used. The thresholds were automatically updated every step in the update layer of the respective
state-machine. Adaptive thresholds were updated based on the mean of the last five events, corrected
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for three times the standard deviation over these events and an offset. The experimentally set offset
was included to reduce the influence of outliers, especially at gait onset. The number of standard
deviations and the magnitude of the offset can be tuned manually, if deemed necessary. The example
event included in Algorithm 2 corresponds to a maximum. The update layer ensures the adaptability
of the algorithm to environmental changes or changes in the gait pattern. This structure was based on
the three-layered algorithm presented in [6,21].

Algorithm 1: Real-time detection layer: Example of detecting event as a maximum

// Find event in RT, no flag
if (state_machine(i) = n)AND(signal(i) > event_threshold_RT)AND(signal(i) = maximum)

then
// Change state_machine of corresponding leg
state_machine(i) = n + 1;

// Find event in RT, with flag
if (state_machine(i) = n)AND(signal(i) = minimum) then

// Raise flag
f lag = 1;

if (state_machine(i) = n)AND(signal(i) > event_threshold_RT)AND(signal(i) =
maximum)AND f lag then

// Change state_machine of corresponding leg
state_machine(i) = n + 1
// Lower flag
f lag = 0

Algorithm 2: Update layer: Example event corresponding to a maximum

// Find event on LPF signal
if (signal_LPF(i) > event_threshold_LPF)AND(signal_LPF(i) = maximum) then

// Store event in buffer (5 latest events)
event_bu f f er_LPF(id_LPF) = signal_LPF(i − 1)
id_LPF = id_LPF + 1
id_LPF(id_LPF > 5) = 1
// Update threshold LPF signal
event_threshold_LPF = mean(event_LPF)− 3 ∗ std(event_LPF)− o f f set

// Find event on RT signal, starting from LPF event
RT_detected = 0
LPF_count = 1
while (RT_detected == 0 AND LPF_count < buffer_limit) do

if (signal_RT(i − LPF_count) >
event_threshold_RT)AND(signal_RT(i − LPF_count) = maximum) then

// Store event in buffer (5 latest events)
event_bu f f er_RT(id_RT) = signal_RT(i − 1)
id_RT = id_RT + 1
id_RT(id_RT > 5) = 1
// Update threshold RT signal
event_threshold_RT = mean(event_RT)− 3 ∗ std(event_RT)− o f f set
RT_detected = 1

LPF_count = LPF_count + 1
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The following modifications with respect to the structure used in [21] were implemented.
The calibration layer was removed and replaced by generic thresholds. This enabled event

detection from onset of walking, a requirement when embedded in NR control.
The update and real-time detection layer were decoupled, in order to make the algorithms

computationally more efficient and to enable the use of different sample frequencies for the update
layer and the detection layer.

To ensure correct identification of the end of the stance phase in the real-time detection, a secondary
definition of TO was implemented. This secondary TO detection was only activated in case the initial
TO event would go undetected. TO was then assumed to have occurred at the zero-cross of the shank
angular velocity.

Finally, the global state-machine was replaced with an independent state-machine for each leg.
The thresholds and adaptive policy were set conservatively since we prioritized precision over timing.
Lower thresholds might result in a smaller delay but are also more prone to measuring noise and to
result in false event detections.

The three algorithms: RTGSD-min, RTGSD-B6 and RTGSD-G6 are described below in more detail.
Specific data required by each of the algorithms is extracted from a biomechanical model scaled to
each subject (Figures 1 and 2). RTGSD-min only requires a minimal data set consisting of sagittal
plane shank angular velocity data and ankle angular data. It is therefore referred to as RTGSD-min
and is particularly suited for AFO. RTGSD-B6 and RTGSD-G6 are geared towards a bilateral six
degrees of freedom NP/NR, as indicated by the suffix 6 in their name. RTGSD-B6 is based on the event
definitions as proposed by Botzel et al. [7], in particular the TO definition. RTGSD-G6 is an ambulatory
implementation of the algorithm presented by Ghoussayni et al. [4]. All methods make use of sensors
already needed for control of NP/NR/AFO. No additional sensors are needed, which means that cost
and reliability are not affected.

2.4. RTGSD-Min

This algorithm was based on the stance events of [10] and the algorithm presented in [6].
A preliminary version of this algorithm was presented in [21], where data was obtained from
potentiometers embedded in the exoskeleton. RTGSD-min only requires sagittal plane shank angular
velocity data and ankle angular data. It is therefore particularly suited for AFO. This data can either be
obtained through inertial sensors attached to the shank and foot (e.g., drop foot NP), an inertial sensor
attached to the shank and an encoder providing ankle angle data (e.g., AFO [3,10]), or joint angle data
from the ankle-knee-hip of each leg (e.g., gait exoskeleton [21]). In [21], no independent reference was
available to validate the detected events.

IC was defined as the maximum shank angle (dashed line) with respect to the vertical. In agreement
with [6], MS was defined as the maximum shank angular velocity (solid line) and TO as the minimum
shank angular velocity. FF and HO were defined as, respectively, the first minimum and maximum of
the ankle angle (dotted line) post ipsilateral IC (piIC), as in [21] (Figure 2C). Thresholds were attached
to, and updated for, the detection of MS, IC and TO.

2.5. RTGSD-B6

RTGSD-B6 was developed according to the event definitions suggested by Botzel et al. [7]. IC was
defined as the minimum of the shank angular velocity, MS as the maximum of the shank angular
velocity (solid line). TO was defined as the midpoint between the trough and the zero-crossing of the
shank angular velocity [7] (Figure 2B). The height of this threshold is dependent on walking speed [7].
The data provided in [7] was therefore spline fitted and interpolated to obtain the corresponding
values (A) applicable to our data. The minimum of the shank angular velocity was used as a TO-flag
after which the true TO event could occur, and its amplitude (M1) was used to update the threshold
(M1*A) for the TO-detection of that gait cycle (Figure 2B). A similar flag was also used to enable HO
detection and raised upon detecting the minimum in foot acceleration post-FF (dotted line). HO was
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defined as the minimum of the shank vertical position following FF (dashed line). The shank position
was derived from the biomechanical model, rather than using marker position because the latter is not
available outside of the lab. Botzel et al. did not propose a definition for FF, and the minimum in foot
acceleration following IC was therefore used since pilot data revealed a high correlation between this
signal and FF (Figure 2B). Thresholds for IC, FF, MS, and TO-flag were updated.

2.6. RTGSD-G6

The third algorithm (RTGSD-G6) is an ambulatory implementation of the algorithm presented by
Ghoussayni et al. [4]. The original algorithm makes use of the sagittal plane velocities of the toe and
heel markers. Marker data is not available outside of the lab but is assumed to represent the motion
of the segments to which they are attached. We therefore computed the velocity of the scaled model
every time step and extracted the velocity of the calcaneus and toe segments.

IC and HO were detected based on the vertical velocity of the calcaneus (dashed line). The vertical
velocity of the toes (dotted line) was used to identify FF and TO. Only the vertical velocity component
was taken into account, with the threshold levels fixed to 50 mm/s, based on the information in [4].
The magnitude of the segment vertical velocities was often below 100 mm/s; therefore, the threshold
used in [4] for shod conditions was used (Figure 2A). Based on pilot results, the definition of IC was
changed, with respect to [4], to correspond to the minimum in vertical velocity of the calcaneus. To
make this IC detection robust, an IC-flag was raised by the zero crossing (ZC) of calcaneus vertical
velocity from positive to negative post-MS. MS is the only event for which the threshold was updated.

Table 1. Summary of stance events as defined by each of the three algorithms.

Event RTGSD-Min RTGSD-B6 RTGSD-G6

IC max. tibia angle min. tibia angular vel. calcaneus vertical vel. > −50 mm/s
FF 1st min. ankle angle, piIC min. foot angular acc. toes vertical vel. > −50 mm/s

HO 1st max. ankle angle, piIC min. tibia vertical position calcaneus vertical vel. > 50 mm/s
TO min. tibia angular vel. midpoint min. and ZC tibia angular vel. toes vertical vel. > 50 mm/s

3. Results and Discussion

3.1. Results

A total of 558 steps were analysed by each algorithm and compared against reference data based
on a Vicon motion capture system (Oxford Metrcis Group, Oxford, UK) and force plates, the ground
truths for kinematics and gait events. All algorithms achieved a precision score equal to one for all
events, meaning that no false positives occurred. False negatives were only found for RTGSD-B6,
corresponding to three HO events. The detection delays for each algorithm are represented below in
Bland–Altman plots for IC and TO (Figure 3), and FF and HO (Figure 4). In each panel, the difference
between the reference and the respective algorithm was plotted against their average. Positive times
reflected a delay of the algorithm under consideration with respect to the reference. Results from left
and right state machines were similar and were therefore combined. Discontinuous lines mark the 95%
confidence interval. The mean delays (and standard deviations), in ms, are summarized in Table 2.

RTGSD-G6 had the smallest mean delay and variability for IC and TO detection (Figure 3).
In general, all three algorithms performed similarly on these events. The results for RTGSD-B6 did
not confirm that the TO definition applied in this algorithm results in improved mean delay and/or
variability with respect to the other algorithms. FF was detected equally well by all algorithms, with
mean delays around those observed for IC and TO detection (Figure 4). However, HO detection
resulted either in large mean delay (RTGSD-G6) or large variability (RTGSD-min and RTGSD-B6).
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Figure 3. Bland–Altman plots for IC and TO of walking at 3, 4, 5 km/h on both left and right legs
of seven healthy subjects. Positive times reflect delays of the presented method with respect to the
reference. A solid grey line indicates mean error, and the confidence interval (mean ± 1.96 SD) is
represented by discontinuous black lines.
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Figure 4. Bland–Altman plots for IC and TO of walking at 3, 4, 5 km/h on both left and right legs
of seven healthy subjects. Positive times reflect delays of the presented method with respect to the
reference. A solid grey line indicates mean error, and the confidence interval (mean ± 1.96 SD) is
represented by discontinuous black lines.

Table 2. Mean detection delays in ms (±standard deviation) of the developed algorithms for each of
the four stance phases evaluated. The results achieved by the real-time algorithm with lowest reported
delays [6], and the best performing real-time algorithm detecting all events (with use of FSR) [12], have
been included for comparison.

Algorithm IC (ms) FF (ms) HO (ms) TO (ms)

RTGSD-min −30.45 (12.45) −28.54(19.65) 5.83 (95.15) −49.08(37.14)
RTGSD-B6 26.53 (22.43) 26.21 (12.48) 3.63 (110.37) 38.52 (25.35)
RTGSD-G6 11.10 (10.72) −29.33(11.00) 189.39 (44.99) 6.40 (15.49)

Chia [6] 13 N.A. N.A. 10
Pappas [12] 70 70 40 35
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3.2. Discussion

Three novel real-time algorithms were presented, detecting four separate gait events (IC, FF, HO
and TO) relevant for controlling an NP/NR. The presented algorithms are based on kinematic data
available in most NP/NR, or in standard gait monitoring and analysis. The novelty of the presented
algorithms lies in using kinematic data and coupling it to a biomechanical model. This enables to
online extract features and signals commonly used in the vast body of literature on gait event detection
online that are otherwise not available online. In this paper, this innovative approach was coupled
to a threshold-based structure where the state-machine to detect the events and the updating of the
thresholds used in the detection are performed in parallel. All presented algorithms detected IC,
FF and TO well within the established limits of 61 ms (125 ms), allowing time for additional delays
stemming from the control and hardware, as can be seen from Figures 3 and 4 and Table 2.

The performance of the presented algorithms also matches the current state of the art for real-time
IC and TO detection. Chia et al. reported delays of, respectively, 13 ms and 10 ms for IC and TO [6].
The delays reported by Pappas for healthy subjects walking on a treadmill are 70 ms for IC, 70 ms
for FF, 40 ms for HO, and 35 ms for TO [12]. The algorithm presented by Pappas et al. is one of the
few wearable solutions to detect IC, FF, HO and TO in real time, and is often used as a benchmark in
literature. RTGSD-min and RTGSD-B6 outperform the algorithm of Pappas on a very similar dataset,
despite not relying on footswitch data. RTGSD-G6 produced better results for IC, FF and TO but not
for HO.

Comparing results of different algorithms across studies is often difficult since other references
may have been used to design and/or validate the respective algorithms. These differences are likely
to lead to small differences in event detection between the respective algorithms, and also compared to
the reference at hand. In RTGSD-min, the definitions as used in [6] were implemented, yet higher mean
delays were observed. In [6], IC definition was reported to be tailored to the reference used, a GaitRite
system. It is possible that the definition provided by [6] deviates slightly from the force plate event
used in this study. In the updating of the thresholds, we favoured precision over timing, although
taking a smaller safety margin on the thresholds could have resulted in reduced delays. In RTGSD-B6,
IC was defined, in agreement with the consensus in literature, as the minimum of shank angular
velocity; delays similar to those in RTGSD-min were obtained. In this study, we used force platform
data to obtain the reference for IC and TO. The definition of IC and TO in RTGSD-G6 was adapted
from [4] where force platform data was also used as a reference, producing results that outperformed
the current state of the art. The mismatch between event definitions between the respective algorithms
and the reference is likely responsible for the observed small differences in IC, FF, and TO detection
between algorithms. The higher delay in TO for RTGSD-min and RTGSD-B6 with respect to the results
of [6] was also in part due to few outliers. In these cases, the respective TO definition was not engaged,
due to the threshold not being fulfilled, and TO was not detected until the shank angular velocity
became positive. The latter was implemented as a secondary TO definition to compensate for the
decoupling between the update and real-time detection layer. In [6], there was a stronger coupling
between both layers, where corrections can occur from the update to the detection layer. To reduce
the computational load, this coupling was removed in the structure used in this study. If sufficient
computational power is available, restoring this coupling could thus result in improved TO detection
delays. The new TO definition proposed in [7] was implemented in RTGSD-B6 but did not appear to
outperform the two other algorithms (Table 2).

Threshold-based HO detection appears problematic. Kotiadis et al. reported detection delays
of, respectively, 5 ms and 100 ms for HO in their two best performing algorithms [11]. However, this
data was only of one subject and the algorithm with the lowest delay on HO had a mean delay of
70 ms on IC. RTGSD-min and RTGSD-B6 had small mean delays for HO but displayed a very large
variability. The definition of HO recently proposed in [7] and implemented in RTGSD-B6 resulted in
the lowest mean delays, but, like all other methods, suffered from large variability and also had three
false negatives. The variability in RTGSD-G6 was lower, but the mean delay of −189 ms fell outside of
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the defined limits. Given that the other events can be detected with much smaller delays and that the
order of gait events is inherently sequential, future efforts should consider coupling a probabilistic
method or a machine learning method to threshold-based algorithms to decrease the variability and
mean delay of HO detection.

The results obtained in this study were obtained offline, based on joint kinematics obtained from
a Kalman Smoother algorithm. In real-time applications, it is reasonable to expect slightly higher delays,
depending on the quality of the real-time joint kinematics and filtering performed. However, given
the characteristics of joint kinematics, these additional delays are even in the worst-case scenario not
expected to exceed 10 ms. Future studies should validate the presented approach and/or algorithms
on NR/NP, and over a wider range of activities.

4. Conclusions

A novel structure was presented where joint kinematics are coupled to a biomechanical model,
scaled to the subject, to detect gait events. The scaled model allows extracting features otherwise
unavailable outside of the laboratory, or unavailable from kinematics alone. Three algorithms were
presented based on this structure for the detection of IC, FF, HO and TO in NR/NP. The algorithms
were threshold based and a computationally efficient structure was applied to facilitate embedding the
algorithms on portable devices. Since no sensors other than those already present for the control of the
NP/NR/AFO are required, cost and reliability of the NP/NR/AFO remain unchanged. The very low
delays observed and 100% precision scores suggest that these algorithms can be used in combination
with real-time NP/NR control algorithms. However, care should be taken when using the HO event
since higher variability was observed for this event. Our results suggest that threshold based methods
might not be the most suitable approach to detect HO online. Future studies should therefore look
into enhancing threshold based algorithms with probabilistic methods to reduce HO variability.
The presented methods can also be used on gait monitoring, screening and follow-up of pathologies.
In our future work, we will apply these detection methods in the control of an exoskeleton.
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Abbreviations

The following abbreviations are used in this manuscript:

AFO Ankle-Foot Orthoses
FF Foot Flat
FSR Force Sensitive Resistor
GRF Ground Reaction Forces
HO Heel Off
IC Initial Contact
LPF Low-Pass Filtered
MS Mid Swing
NP NeuroProsthetics
NR NeuroRobotics
piIC post ipsilateral IC
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RT Real-Time
RTGSD Real-Time Gait and Stance Detection
TO Toe Off
ZC Zero-Crossing
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