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Abstract: At present, free-to-move node self-deployment algorithms aim at event coverage and
cannot improve network coverage under the premise of considering network connectivity, network
reliability and network deployment energy consumption. Thus, this study proposes pigeon-based
self-deployment algorithm (PSA) for underwater wireless sensor networks to overcome the limitations
of these existing algorithms. In PSA, the sink node first finds its one-hop nodes and maximizes the
network coverage in its one-hop region. The one-hop nodes subsequently divide the network into
layers and cluster in each layer. Each cluster head node constructs a connected path to the sink node
to guarantee network connectivity. Finally, the cluster head node regards the ratio of the movement
distance of the node to the change in the coverage redundancy ratio as the target function and
employs pigeon swarm optimization to determine the positions of the nodes. Simulation results show
that PSA improves both network connectivity and network reliability, decreases network deployment
energy consumption, and increases network coverage.
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1. Introduction

Underwater wireless sensor networks (UWSNs) are network-monitoring systems in an underwater
environment. The sensor nodes in these networks have perceptual, acoustic communication, and
computational capabilities, and they can transmit the sensed information to the sink node for processing
and analysis by one-hop or multi-hop methods [1,2]. UWSNs have been applied to water environment
monitoring, underwater resource exploration, and marine military defense [3,4]. Research on UWSNs [5]
mainly involves network architecture design [6], node deployment, node localization [7,8], time
synchronization [9], network protocol design [10,11], etc. As the first step in UWSNs application,
node deployment significantly affects network service in different aspects, including network coverage,
network connectivity, and network energy consumption. The node-deployment problem is defined
that move sensor nodes to the corresponding positions in an artificial or a self-organized manner
to form a network topology that has special characteristics and increases the network service [4,12].
Meanwhile, the goals of node deployment are to increase network coverage and network connectivity,
decrease network energy consumption, and prolong network lifetime. Generally, the problem of
node deployment can be divided into static deployment, move-restricted node self-deployment,
and free-to-move node self-deployment according to the mobility of the node [2,13–17]. In static
deployment, the nodes cannot move and are deployed in the target area by the artificial method [14].
Thus, static deployment is not appropriate for the large-scale deployment. In move-restricted node
self-deployment, the nodes can move only vertically and adjust their depth by themselves according
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to the local information near the node [18]. In free-to-move node self-deployment, the nodes have
the capability to move freely in all directions [19]. With the improvement of the design level of the
sensor node, the cost of the mobile nodes is reduced and more and more scholars concentrate on the
research of free-to-move node self-deployment. Moreover, free-to-move node self-deployment is closer
to the reality. Therefore, free-to-move node self-deployment has wide application scenarios and has
important research significance.

The existing free-to-move node self-deployment algorithms [20–25] usually regard the event
coverage as the research object, and aim at the network coverage, but these algorithms do not regard
the network connectivity and network reliability as the goal simultaneously. Furthermore, in these
algorithms, each node should move several rounds to determine the final deployed position, which
increases the network deployment energy consumption. Consequently, there is still much space to
improve the performance of free-to-move node self-deployment algorithms.

Thus, the current paper proposes the pigeon-based self-deployment algorithm (PSA) to solve
these problems. The sink node first finds its one-hop nodes and maximizes the coverage in its one-hop
region. This process allows for the maintenance of the number of the nodes deployed in the region
near the sink node and increases network reliability and network coverage as much as possible.
The one-hop nodes then divide the network into layers and cluster in every layer. This mechanism
forms a distribution in which the scale of the cluster is small and the number of cluster head nodes
is great in the region close to the sink node. The cluster head nodes do not move again, thus, the
number of nodes in the region close to the sink node increases. Each cluster head node subsequently
constructs a connected path to the sink node to guarantee network connectivity. Finally, the cluster
head node regards the ratio of the movement distance of a cluster-in node to the change in the
coverage redundancy ratio (CRR) of the node as the target function on the premise that the cluster-in
node should be connected to the cluster head node by one-hop or multi-hop path. Pigeon swarm
optimization is then employed to solve the moving position of the node. This method can determine
the optimal deployment location in the continuous solution space, and minimize the complexity of
the search for the optimal deployment location. Moreover, the moving position of each node can
be determined at once, which can reduce the deployment energy consumption. PSA is compared
with the three-dimensional virtual forces deployment algorithm (TVFDA) [25] in terms of network
coverage, network connectivity, network reliability and energy consumption. The simulation results
show that PSA increases both network connectivity and network reliability, decreases network energy
consumption, and increases network coverage.

The rest of this paper is organized as follows: Section 2 introduces the related work about
free-to-move node self-deployment. Section 3 describes the system model, preliminaries, and
definitions considered in this study. Section 4 presents details of PSA. Section 5 analyses the complexity
of PSA. Section 6 discusses the performance study and provides a detailed analysis of its result. Finally,
Section 7 concludes the paper and presents future research directions.

2. Related Work

Some scholars have recently developed free-to-move node self-deployment algorithms for UWSNs.
Wang et al. [20,21] proposed three kinds of movement-assisted sensor deployment algorithms, namely,
vector-based algorithm, Voronoi-based algorithm, and Minimax algorithm. These three algorithms
are all based on the Voronoi diagram. In the vector-based algorithm, a node moves to the next
position according to the repulsive force exerted on the node by its Voronoi neighbor nodes. In the
Voronoi-based algorithm, a node moves to the farthest vertex of its Voronoi diagram every round.
In the Minimax algorithm, a node moves closer to the farthest vertex of its Voronoi diagram to avoid
the situation in which a vertex that was originally close becomes the new farthest vertex. In these
algorithms, each node can move autonomously to the corresponding position to cover the coverage
hole according to its own local information. Thus, these algorithms can increase network coverage,
and meet the distributed characteristic of the sensor network. However, the Voronoi diagram of each
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node should be formed in each of the iterations, and this process requires each node to know the global
information of the network and consequently results in extra communication energy consumption.
Moreover, the process based on the 3D Voronoi diagram of the node is more complex compared with
that based on 2D Voronoi diagram. Thus, these algorithms are suitable for 2D node self-deployment
but unsuitable for node self-deployment in UWSNs. Koutsougeras et al. [22] proposed a sensor
deployment algorithm based on self-organizing maps for the event. In each of the iterations, an event
is selected by a random sequence, and the node that is closest to the event should update its position
according to the rule of movement. The node moves a certain distance to the event, and the distance of
the movement is proportional to the distance between the node and the event. The algorithm is iterated
until no more significant movement is possible. This algorithm can deploy the node according to the
density of the event in the region and accomplish an uneven deployment in the target area. However,
this algorithm adjusts the node position by the centralized way, which is difficult to achieve in practice.
Xia et al. [23] proposed a fish swarm-inspired underwater sensor deployment algorithm (FSSDA).
Drawing on the foraging behavior of the fish swarm, this algorithm regards the node as the fish and
the event as the food, moves the node to cover the event, and finally completes the deployment for
the event according to the crowding parameter of each event. The algorithm has low computational
complexity and rapid convergence rate. Du et al. [24] proposed a particle swarm-inspired underwater
sensor self-deployment algorithm. The process of the node deployment in the algorithm is similar
to that in FSSDA, but the algorithm also considers the situation in which the position of the event is
dynamically changing, like the situation in practice. However, both algorithms are suitable for the
distributed coverage of the event but unsuitable for the coverage of the region. In addition, these
algorithms also ignore network connectivity. Li et al. [25] proposed a three-dimensional virtual forces
deployment algorithm (TVFDA). This algorithm applies the concepts of gravitation and repulsion
in physics to the wireless sensor network and considers that these forces exist between nodes in the
network. Therefore, in the algorithm, each node moves to the next position according to the join
forces, which are exerted on the node by its neighbor nodes, and each node stops moving until its
join forces is zero or the maximum iteration number is reached. This algorithm allows for an even
distribution of the nodes in the target area compared with situation before the algorithm is run; thus,
this algorithm enhances network coverage and meets the characteristics of underwater wireless sensor
networks. However, in this virtual force algorithm, each node needs to know the related information
of its neighbors in each iteration, that is, each node should communicate with its neighbor nodes in
each iteration; thus, this algorithm results in increased network energy consumption. Moreover, each
node should move a real distance several times according to the gravitational and repulsive forces
exerted on it. Consequently, this algorithm may segment the network, degrade network connectivity,
and increase network energy consumption for the node deployment. Furthermore, being incapable
of controlling the number of the nodes in the region near the sink node, TVFDA may degrade both
network reliability and energy efficiency.

3. Preliminaries, Models, and Definitions

3.1. Preliminaries

N nodes are thrown in the target area (rectangular or cubic) uniformly and randomly. Each node
then moves to the determined position with the aid of an autonomous underwater vehicle (AUVs),
and each node is fixed at the position by an anchor after its deployment position is calculated by the
deployment algorithm. In addition, sensor nodes communicate with one another through acoustic
channels and maintain connectivity with the sink node via one-hop or multi-hop paths. The following
assumptions are made:

(1) A node adopts the Boolean sensing model [26], and the sensing radius of the node is fixed.
(2) All nodes have the same states, including initial energy, sensing radius, and communication radius,

before the node deployment. Moreover, the communication radius of the node can be adjusted
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according to the demand of the algorithm but should not exceed the maximum communication
radius, Rmax

c which is determined by the physical device during the node deployment.
(3) With the similar assumptions in [24] as inspiration, the sink node is fixed at the center of the

water face. By contrast, the other nodes can move freely in all directions, and their real-time
locations can be determined using a localization algorithm or global positioning satellite devices
during the node deployment.

3.2. Related Models

3.2.1. Coverage Redundancy Ratio

The coverage redundancy ratio (CRR) of the node (i.e., si) is defined as the ratio of the sensing
area of the node with its neighbor node (i.e., the node within si’s maximum communication radius) to
si’s sensing area [27]. CRR is formulated as follows [27]:

γ(si) = 1−
n

∏
j=1
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where n is the number of the neighbor nodes of node si and d(si,sj) is the distance between node si and
its neighbor node sj.

3.2.2. Underwater Energy Consumption

During the node deployment, each node should determine the local information near its position
by communicating with its neighbor nodes, and each node should move to the determined position
when it knows the position. Therefore, the energy consumption in this study is divided into
communication energy consumption and deployment energy consumption.

(1) Communication Energy Consumption

The nodes of an underwater sensor network communicate with one another by acoustic
signals [28]. Thus, the communication energy consumption of the acoustic medium [29] is adopted in
this study and given by

Ec(d(sse, srec)) = Pr × Tp × A(d(sse, srec)) (2)

This expression describes the energy consumption when the data packet is transmitted from the
sending node to the receiving node. In Equation (2), Pr is the minimum number of power packets that
can be received, and Tp is the data transmission time, whose formulation is as follows:

Tp =
Lb
Vt

(3)

where Lb is the length of the sent data packet and Vt is the transmission speed of the data packet
in water. The energy attenuation during the transmission of the data packet at a given distance is
described as follows:

A(d(sse, srec)) = d(sse, srec)
λ · αd(sse ,srec) (4)

where λ is the energy diffusion factor, whose value is generally equal to 1.5, and α is a parameter
determined by the following expression:

α = 10a(Fr)/10 (5)

In Equation (5), a(Fr) is the absorption coefficient (in dB/m) formulated as follows:
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a(Fr) = 0.11
10−3F2

r
1 + F2

r
+ 44

10−3F2
r

4100 + F2
r
+ 2.75× 10−7F2

r + 3× 10−6 (6)

where Fr is the carrier frequency in kHz.

(2) Deployment Energy Consumption

In the process of the node self-deployment for underwater wireless sensor networks, each node
moves to the determined position that the node self-deployment algorithm calculates. The energy
consumption because of node moving in the process is called the deployment energy consumption.
Because the methods of nodes moving are various, it is difficult to express with a specific model.
Therefore, in the problem of node deployment, the total distance of all nodes in the deployment
process is used to measure the deployment energy consumption of a node deployment algorithm.

3.3. Definitions

3.3.1. Network Coverage

An underwater 3D space (target coverage area) is usually represented by a cuboid or cube.
This space is divided into a number of small cubic grids whose sides have the length w [18]. The center
of each cubic grid called the grid point, which is regarded as the representative of the grid. Each grid
point has its own coordinates. A typical underwater 3D space is illustrated in Figure 1.
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Network coverage, which reflects the degree an underwater sensor network covers a monitoring
or target area, is a primary criterion parameter in the evaluation of a node-deployment algorithm.
This parameter is defined as the ratio of the number of grid points covered by UWSNs to the total number
of grid points in the target area. Network coverage is denoted by rcov, whose formula is as follows:

rcov =
Ncov

Ntotal
(7)

where Ncov is the number of grid points covered by the active nodes and Ntotal is the total number of
grid points in the target area.

3.3.2. Network Connectivity

Network connectivity is another important criterion parameter for evaluating the quality of
service in sensor networks. This parameter is a prerequisite for the effective application of sensor
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networks. It is defined as the ratio of the number of nodes connected to the sink node by a one-hop or
multi-hop path to the total number of nodes in the network. The number of nodes connected to the
sink node can be calculated by breadth-first search, in which the sink node is the root node.

4. Problem and Algorithm Description

4.1. Problem Description

The existing free-to-move node self-deployment algorithms usually aim at the event coverage
and deploy the node according to the network coverage. However, these algorithms do not consider
the problems related to network connectivity, network reliability, and network energy consumption.
Furthermore, these algorithms determine the final position of each node after the node moves several
rounds according to the result of every iteration of the algorithm. This process induces each node to
move to the final position not in a straight line, thereby increasing the moving distance of the node and
the energy consumption. In these algorithms, the network coverage is increased by forcing each node
to move an appropriate distance in each of the iterations so that the node can stay away from each other
as far as possible. This process decreases the area of the overlapping region in the target area; however,
the probability of deploying the node near the sink node is also decreased. As a result, holes appear in
the locations near the sink node more easily, and the network service may be degraded regardless of
the network routing protocol. In addition, positioning the nodes far from other nodes, may lead to
a segmented network, which detrimentally also affects network connectivity. Thus, in this study, the
problem is defined as follows: given N sensor nodes that are thrown randomly and uniformly in the
deployment space, design an algorithm to maximize network coverage, maintain network connectivity
while minimizing energy consumption.

This study proposes the pigeon-based self-deployment algorithm (PSA) for UWSNs to solve
the drawbacks of the existing free-to-move node self-deployment algorithms. In PSA, the sink node
first finds its one-hop nodes and maximizes network coverage in its one-hop region. The one-hop
nodes then divide the network into layers and cluster in each layer. Each cluster head node constructs
a connected path to the sink node to guarantee network connectivity. Finally, each cluster head node
regards the ratio of the movement distance of the node to the change in CRR of the node as the target
function and uses pigeon swarm optimization to solve its position. As a result, the network coverage
is expanded, the deployment energy consumption is reduced, and the number of node in the region
near the sink node is increased.

4.2. Algorithm Description

4.2.1. Pigeon Swarm Optimization Algorithm

The pigeon swarm optimization algorithm (PSOA) is proposed by Duan and Quiao [30,31] in 2014.
The algorithm is derived from the behavior of homing pigeons. PSOA consists of two models, namely,
the map and compass operator and the landmark operator. PSOA has better optimization performance
and faster convergence speed, comparing with other artificial intelligence algorithms [32,33].

(1) Map and Compass Operator

When all the pigeons are not familiar with the destination or landmark during the initialization of
the algorithm, they determine the flying position and direction according to the magnetic field and
the position of the sun. In this model, each pigeon updates its position according to the recent global
optimal solution in the current iteration. On the assumption that the position and speed of the j-th
pigeon are Xj and Vj, respectively, Xj and Vj are updated according to Equations (8) and (9) in the
t-th iteration.

Vj(t) = Vj(t− 1) · e−Gt + rand ·
(
Xg − Xj(t− 1)

)
(8)

Xj(t) = Xj(t− 1) + Vj(t) (9)
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where G is the map and compass factor, rand is a random number, and Xg is the global optimal position
in the t-th iteration.

(2) Landmark Operator

After PSOA has run for some time, some pigeons may have found the destination or familiar
landmarks. Thus, these pigeons can move to the destination quickly, and the others move behind them.
On the assumption that Xc(t) is the center of the position of the pigeon whose fitness is the top Np/2,
the position of each pigeon in the t-th iteration is

Np(t) =
Np(t− 1)

2
(10)

Xc(t) =
∑ Xj(t) · f itness

(
Xj(t)

)
∑ f itness

(
Xj(t)

) (11)

Xj(t) = Xj(t− 1) + rand ·
(
Xc(t)− Xj(t− 1)

)
(12)

where Np(t) is the number of pigeons that meets the restriction of the condition in the t-th iteration and
fitness(Xj(t)) is the proportion of the fitness of the j-th pigeon to that of all the pigeons. In the minimum
optimization problem, the fitness is formulated as follows:

f itness
(
Xj(t)

)
=

1
f
(
Xj(t)

)
+ ε

(13)

where, f is the fitness function andis a small value.

4.2.2. PSA Process Description

The process of PSA is divided into three stages: (1) deploying in the one-hop region of the sink
node; (2) network layering and clustering; and (3) optimizing the position of the cluster-in nodes.

(1) Deploying in the one-hop region of the sink node

After the nodes are thrown in the target area uniformly and randomly, the sink node broadcasts
“beginning deployment” information with the communication radius, Rmin

c . The node receiving the
information (i.e., si) confirms the sink node as its next hop node and relays its location information,
poriginal(si):

poriginal(si) =
[
xoriginal(si), yoriginal(si), zoriginal(si)

]
(14)

These nodes are called the one-hop nodes of the sink node, or the one-hop node SH. |SH| is the
number of elements in the set of one-hop nodes. The sink node then optimizes the network coverage
in the one-hop region of the sink node. The ratio of the deployment energy consumption for moving
the node to the final position, pdeployed(si), to the difference between CRR in poriginal(si) and pdeployed(si) is
regarded as the fitness function fitness1:

min f itness1 =


∑

si∈SH
d(pdeployed(si),poriginal(si))

∑
si∈SH

γ(poriginal(si))−γ(pdeployed(si))
denominator is greater than 0

inf else

(15)

s.t. d
(

sin k, pdeployed(si)
)
≤ Rmin

c

zdeployed(si) < z(sin k)− cborder ∀si ∈ SH
(16)

where cborder is a constant expressing the minimum distance between the deployment position of the
node and the boundary of the target area.
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The number of the pigeons is set to Np, and the positions of the pigeons are initialized. The position
of the j-th pigeon, Xj, consists of the coordinates of |SH| random points, each of which represents the
position of a node in the set SH. These random nodes are in the hemisphere that regards the sink node
as the center of the sphere. These nodes also regard the radius of the sphere to be 1.25 times that of the
minimum communication radius. Thus, Xj is illustrated in Figure 2.

Sensors 2017, 17, 674 8 of 19 

 

where cborder is a constant expressing the minimum distance between the deployment position of the 
node and the boundary of the target area. 

The number of the pigeons is set to Np, and the positions of the pigeons are initialized. The 
position of the j-th pigeon, Xj, consists of the coordinates of |SH| random points, each of which 
represents the position of a node in the set SH. These random nodes are in the hemisphere that 
regards the sink node as the center of the sphere. These nodes also regard the radius of the sphere to 
be 1.25 times that of the minimum communication radius. Thus, Xj is illustrated in Figure 2. 

 
Figure 2. Solution coding diagram. 

Subsequently, the solution of fitness1, Xg, is calculated according to the PSOA described in Section 
4.2.1, and the position of node si is formulated as follows: 

       3 2 3 1 3deployed i g g gp s X i X i X i       (17) 

(2) Network Layering and Clustering 

This stage is further divided into four steps. 

Step 1. After the one-hop node si moves to the calculated position, all the other one-hop nodes set 
their layer number, level(si), to 1; the corresponding layer width, width(level(si)), to the initial 
communication radius, min

cR ; and the broadcast radius, Rb(si), to min
cR . Then, they broadcast 

their information, (ID, level(si)). 
Step 2. The node sj receiving the information compares the layer number with that of si. If the layer 

number is greater than that of si, then level(sj) is set to level(si) + 1 and Rb(sj), and width(level(sj)) 
are set to Rb(si). 

Step 3. The node sj broadcasts the information level(sj), and the nodes having the same layer number 
as sj reply the distance between the sink node and themselves to sj. Then, sj compares the 
distance with its distance to the sink node, d(sj,Sink), to determine if d(sj,Sink) is the 
minimum value among the distances of the nodes relaying the distance to sj. Consequently, 
sj becomes a cluster head node and broadcasts the information Mc. By contrast, sj enters the 
stage of waiting message. In time T, if sj receives Mc, then sj becomes a common node and 
broadcasts Mnc. If sj receives Mnc, then sj ignores the distance a node sent and compares its 
distance to the sink node with that of the nodes, except the node sending Mnc. sj also 
becomes the cluster head node when sj waits for time T. The common node then joins into 
the cluster, which is the closest to it, and the nodes in current layer update the broadcast 
radius Rb(sj), 

        maxmin 1 ,b i i i cR s width level s width level s R    (18) 

Step 4. Each node sj in the current layer broadcasts the information (level(sj), cluster head node or 
not). For the node receiving the information, the node whose layer number is greater than 
level(sj) proceeds to Step 2 and clusters with the residual nodes. The node whose layer 
number is less than level(sj), relays the information (self is cluster head node or not) to the 
cluster head node and ignores the information the common nodes send. The cluster head 
node in the current layer selects the closest cluster head node in the last layer as the next-
hop node. If it does not receive the information of the cluster head node in the last layer, 
then it selects the closest common node in the last layer as the next-hop node. 

Figure 2. Solution coding diagram.

Subsequently, the solution of fitness1, Xg, is calculated according to the PSOA described in
Section 4.2.1, and the position of node si is formulated as follows:

pdeployed(si) =
[

Xg[3i− 2] Xg[3i− 1] Xg[3i]
]

(17)

(2) Network Layering and Clustering

This stage is further divided into four steps.

Step 1. After the one-hop node si moves to the calculated position, all the other one-hop nodes set
their layer number, level(si), to 1; the corresponding layer width, width(level(si)), to the initial
communication radius, Rmin

c ; and the broadcast radius, Rb(si), to Rmin
c . Then, they broadcast

their information, (ID, level(si)).
Step 2. The node sj receiving the information compares the layer number with that of si. If the

layer number is greater than that of si, then level(sj) is set to level(si) + 1 and Rb(sj), and
width(level(sj)) are set to Rb(si).

Step 3. The node sj broadcasts the information level(sj), and the nodes having the same layer number
as sj reply the distance between the sink node and themselves to sj. Then, sj compares the
distance with its distance to the sink node, d(sj,Sink), to determine if d(sj,Sink) is the minimum
value among the distances of the nodes relaying the distance to sj. Consequently, sj becomes
a cluster head node and broadcasts the information Mc. By contrast, sj enters the stage of
waiting message. In time T, if sj receives Mc, then sj becomes a common node and broadcasts
Mnc. If sj receives Mnc, then sj ignores the distance a node sent and compares its distance
to the sink node with that of the nodes, except the node sending Mnc. sj also becomes the
cluster head node when sj waits for time T. The common node then joins into the cluster,
which is the closest to it, and the nodes in current layer update the broadcast radius Rb(sj),

Rb(si) = min(width(level(si)) + width(level(si)− 1), Rmax
c ) (18)

Step 4. Each node sj in the current layer broadcasts the information (level(sj), cluster head node
or not). For the node receiving the information, the node whose layer number is greater
than level(sj) proceeds to Step 2 and clusters with the residual nodes. The node whose layer
number is less than level(sj), relays the information (self is cluster head node or not) to the
cluster head node and ignores the information the common nodes send. The cluster head
node in the current layer selects the closest cluster head node in the last layer as the next-hop
node. If it does not receive the information of the cluster head node in the last layer, then it
selects the closest common node in the last layer as the next-hop node.



Sensors 2017, 17, 674 9 of 19

After a certain time, if the node has the initial layer number, then it broadcasts its maximum
communication radius and enters the closest cluster. If the node has the initial layer number and only
has neighbor nodes with the initial layer number in its maximum communication radius, then this
node moves a distance in the direction of the sink node one time and subsequently finds its next-hop
node. Distance (signed as dsink in following paper) here refers to the average distance between the
node and its closest node in the direction of the sink node minus the maximum communication radius.

After Stage (2) is run, the network distribution is generally shown in Figure 3. The number of the
cluster in the region near the sink node is greater than that in the region far from the sink node.

Sensors 2017, 17, 674 9 of 19 

 

After a certain time, if the node has the initial layer number, then it broadcasts its maximum 
communication radius and enters the closest cluster. If the node has the initial layer number and only 
has neighbor nodes with the initial layer number in its maximum communication radius, then this 
node moves a distance in the direction of the sink node one time and subsequently finds its next-hop 
node. Distance (signed as dsink in following paper) here refers to the average distance between the 
node and its closest node in the direction of the sink node minus the maximum communication 
radius. 

After Stage (2) is run, the network distribution is generally shown in Figure 3. The number of 
the cluster in the region near the sink node is greater than that in the region far from the sink node. 

Cluster head 
node

Sink One-hop 
node

Cluster-in 
node

Communicate in 
cluster

Communicate between 
cluster head nodes

Water face
One-hop area Level 1 Level 2

 
Figure 3. Network Distribution Diagram. 

The flowchart of network layering and clustering is presented in Figure 4. 

(3) Optimizing the Position of the Cluster-in Nodes 

After Stage (2), each cluster node (i.e., sk) knows its own cluster-in node set Sc(sk) and their 
corresponding original positions Po(sk). When the cluster head node, sk, receives the command 
“calculating deployment location”, it calculates the deployment position of its cluster-in nodes.  

First, sk updates the set of nodes whose deployment positions have been calculated in the 
network SND and the set of nodes whose deployment positions have been calculated in its cluster SCD 
(the element in SCD is only the cluster head node when the cluster head node begins to optimize the 
positions of its cluster-in nodes). Subsequently, sk calculates the deployment positions of its cluster-
in nodes by using PSOA, and the deployment position of each cluster-in node is determined using 
PSOA once. The detailed procedure follows. 

(1) Selecting Next Node to be Calculated 

The cluster head node sk calculates the CRR values of its cluster-in nodes whose deployment 
positions in the network have not yet been calculated and then selects the node (i.e., si) with the 
minimum CRR as the next node to be calculated. 
  

Figure 3. Network Distribution Diagram.

The flowchart of network layering and clustering is presented in Figure 4.

(3) Optimizing the Position of the Cluster-in Nodes

After Stage (2), each cluster node (i.e., sk) knows its own cluster-in node set Sc(sk) and their
corresponding original positions Po(sk). When the cluster head node, sk, receives the command
“calculating deployment location”, it calculates the deployment position of its cluster-in nodes.

First, sk updates the set of nodes whose deployment positions have been calculated in the network
SND and the set of nodes whose deployment positions have been calculated in its cluster SCD (the
element in SCD is only the cluster head node when the cluster head node begins to optimize the
positions of its cluster-in nodes). Subsequently, sk calculates the deployment positions of its cluster-in
nodes by using PSOA, and the deployment position of each cluster-in node is determined using PSOA
once. The detailed procedure follows.

(1) Selecting Next Node to be Calculated

The cluster head node sk calculates the CRR values of its cluster-in nodes whose deployment
positions in the network have not yet been calculated and then selects the node (i.e., si) with the
minimum CRR as the next node to be calculated.
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(2) Constructing the Fitness Function

The cluster head node sk firstly formulizes the deployment energy consumption that nodes move
from the initial position to the deployment position and subsequently formulizes the increase in the
network coverage. Finally, sk regards the ratio of the deployment energy consumption to the increase
in the network coverage as the fitness function fitness2 on the premise that si can connect with at least
one node in SCD after si moves to the deployment position. The fitness functions fitness2 is formulated
as follows:

min f itness2 =


d(pdeployed(si),poriginal(si))

γ(poriginal(si))−γ(pdeployed(si))
denominator values greater than 0

inf else
(19)
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where the numerator is the moving distance and the denominator is the network coverage gain when
the node moves from the original position to the current deployed position.

The constraint conditions of this fitness function are as follows:
The node si connects with at least one node in SCD after it moves to the deployment position:

∑
sj∈SCD

bool
(
si, sj

)
≥ 1 (20)

where

bool
(
si, sj

)
=

 1 d
(

pdeployed(si), pdeployed
(
sj
))
≤ Rmax

c

0 d
(

pdeployed(si), pdeployed
(
sj
))

> Rmax
c

(21)

The deployment position of si is in the target area:

cborder ≤ xdeployed(si) ≤ x(sink)− cborder
cborder ≤ ydeployed(si) ≤ y(sink)− cborder
cborder ≤ zdeployed(si) ≤ z(sink)− cborder

(22)

(3) Solving the Fitness Function by PSOA

For the selection of the optimal deployment position of a cluster-in node, the pigeon swarm is
initialized on the basis of the fitness function and solution space. A description of pigeon swarm
initialization follows.

Rule for initializing the pigeon swarm: Each pigeon represents a possible deployment position of
the current calculating node, namely, the coordinates of the position in the target area. Thus, the initial
position of each pigeon j can be expressed as Xj = [x,y,z]. The solution space of the deployment location
may consist of multiple intersecting spheres. Thus, the same amount of pigeons is produced in every
sphere because pigeons search for the solution space thoroughly to obtain the optimal solution as much
as possible. On the assumption that |SCD| nodes whose deployment positions have been calculated in
the cluster of sk, the rule for producing the initial population is as follows: Np/|SCD| random points
(i.e., the position of the pigeon) are produced in each sphere, with each node in SCD as its center and
1.25 Rmax

c as its radius; all the random points form the initial population of the pigeon. The initial
speed of the pigeon is derived randomly in the interval 0−Vmax.

The steps to derive the optimal solution by PSOA are as follows:

(1) The pigeons are initialized. The Np initial positions of the pigeons are determined using the rule
for initializing the pigeon swarm.

(2) The fitness of each individual is calculated. The fitness values are sorted according to the
following rule: the fitness values of the individuals beyond the solution space are less than those
in the solution space. The individual with the minimum fitness is selected as the global optimal
solution, Xg, in the current iteration. When several individuals have the same minimum fitness,
the individual with the minimum distance to the sink node is selected as Xg.

(3) The position of the pigeon is updated using Equations (8) and (9), the fitness value is calculated,
and Xg is updated according to Step (2).

(4) If the value of the current iteration is not equal to the maximum number of iterations, N1, then
Step (3) is repeated.

(5) The solution space based on Equations (10)–(12) is searched locally, and Xg is updated.
(6) If the number of iterations is not N2, then Step (5) is repeated.
(7) Xg is the deployment location of node si.

When sk has calculated the deployment positions of its cluster-in nodes, each node moves to the
corresponding position and broadcasts its new position. The other nodes whose deployment positions
are not calculated update their SND.
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The cluster head node sk inquires its last-hop node (sk’s child node) whether the deployment
positions of its cluster-in nodes have been calculated. If not, the last-hop node of sk begins to calculate
the deployment positions of its cluster-in nodes according to Stage (3) “Optimizing the Position of
the Cluster-in Nodes” in Section 4.2.2. Otherwise, sk transmits the information that the deployment
positions of the node in its cluster have been calculated to its next-hop node (sk’s father node), and its
next-hop node finds the next cluster where the deployment positions of cluster-in nodes need to be
calculated, following the procedure described above in the current paragraph. When all of the clusters
in the network have completed the process “Optimizing the Position of the Cluster-in Nodes”, the
algorithm ends.

The following Algorithm 1 provides the main steps of the process of optimizing the position of
the cluster-in nodes.

Algorithm 1. Optimizing the Position of the Cluster-in Nodes.

Input: set of cluster-in nodes Sc(sk), original position of the cluster-in nodes Po(sk).
Output: deployed position of the cluster-in node Pd(sk).
1: Initialize Pd(sk) = zeros(|Sc(sk)|, 3), SND, SCD = sk;
2: while Sc(sk) 6= ∅
3: calculate the CRR of the node in Sc(sk);
4: si = the node with the minimum CRR;
5: poriginal(si) = [xoriginal, yoriginal, zoriginal] according to Po(sk);
6: assuming that pdeployed(si) = [xdeployed,ydeployed,zdeployed] and build the fitness function;
7: initialize N1, N2, Np, G, and the search range;
8: initialize the position Xj and the speed Vj of each pigeon individual j;
9: calculate the fitness2 of each pigeon individual;
10: Xg = arg min[fitness2(Xj)];
11: for Nt = 1 to N1 do
12: for i = 1 to Np do
13: calculate Vi and Xi according to Equations (8) and (9);
14: end for
15: evaluate Xi, and update Xg;
16: end for
17: for Nt = 1 to N2 do
18: if Np > 1
19: rank the fitness2;
20: Np = Np/2;
21: removed the half of pigeons with a lower fitness2;
22: calculate Xc according to Equation (11);
23: for i = 1 to Np do (remaining pigeons)
24: calculate Vi and Xi according to Equation (12);
25: end
26: evaluate Xi, and update Xg;
27: end if
28: end for
29: record Xg into Pd(sk), namely, update the value of corresponding row in Pd(sk);
30: Sc(sk) = Sc(sk) − si;
31: SND = SND ∪ si;
32: SCD = SCD ∪ si;
33: end while;

Notice: Po(sk) and Pd(sk) are the matrix with the size |Sc(sk)|× 3, and Po(sk) = [Poriginal(s1); Poriginal(s2);· · · , Poriginal(si)].
In addition, zeros(|Sc(sk)|, 3) is the matrix whose element is zero and whose size is size |Sc(sk)| × 3.
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5. Algorithm Analysis

This section analyzes the time complexity of the algorithm. The relevant parameters are presented
in Table 1.

Table 1. Symbol Table.

Parameters Symbol

Target area size size
Population number Np

Iteration number of the map and compass operator
model N1

Iteration number of the landmark model N2
Average number of neighbor Na

Average number of non-cluster head node Nci
Minimum communication radius Rmin

c

5.1. Time Complexity of PSOA

PSOA comprises the map and compass operator model and the landmark operator model.
During the map and compass operator, each pigeon updates its position according to the global
optimal solution, Xg, produced in the last iteration, and subsequently Xg is updated in each of the
iterations. The execution time of each of the iterations is 2Np. Thus, the model’s time complexity,
complexity1, is 2(N1Np).

In each of the iterations during the landmark operator, the algorithm initially sorts the pigeons
according to their fitness values to calculate the center position, Xc. The execution time of this process
is Np log Np. The algorithm then updates the position of each pigeon according to Xc and updates
Xg; the execution time of this process is 2Np. Thus, the execution time of each of the iterations is
NplogNp + 2Np, and the model’s time complexity, complexity2, is formulated as follows:

complexity2 = N2 ·
(

Np log Np + 2Np
)

(23)

The time complexity of PSOA (complexityPSOA) is

complexityPSOA = complexity1 + complexity2

= N2Np log Np + 2Np(N1 + N2)
(24)

5.2. Time Complexity of PSA

At the stage of network layering and clustering, the nodes broadcast layer by layer for network
layering, and the number of layers is not better than size/Rmin

c . In each layer, the nodes select the
cluster head node synchronously. The worst situation in this process is that a node waits for all its
neighbor nodes to give up the competition one by one. The time complexity is Na. Thus, this stage’s
time complexity, complexity3, is Na·size/Rmin

c .
At the stage of optimizing the positions of the cluster-in nodes, for each cluster, the algorithm

firstly selects the node one by one to calculate their CRR, and then calculates the deployment location
of each cluster-in node by using the PSOA iteratively, that is, the algorithm uses PSOA to calculate the
deployment positions of cluster-in nodes one by one. Thus, for each cluster, the time complexity is Nci
(complexityPSOA + Nci). Assuming that network has Nc cluster head nodes, this stage’s time complexity
complexity4 is formulated as follow:

complexity4 = Nc · Nci · (complexityPSOA + Nci)

= N · (complexityPSOA + Nci)
(25)

Therefore, the time complexity of PSA, complexityPSA, is formulated as follows:
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complexityPSA = Na · size/Rmin
c + N ·

(
N2Np log Np + 2Np(N1 + N2)

)
≤
(

N2Np log Np + 2Np(N1 + N2) + size/Rmin
c
)

N
(26)

6. Simulation and Performance Analysis

6.1. Simulation Scenario and Parameter Settings

This study simulates the node self-deployment process of an underwater wireless sensor network
by using the MATLAB simulation platform to analyze the effectiveness of PSA. The target water area
(length × width × depth) is set to 120 × 120 × 120 m3, the node sensing radius, Rs, is set to 10 m, and
the result of each index is calculated as the average value of 30 sets of data. The other parameters are
set as follows:

(1) With the method of obtaining the optimal hot spot radius in [34] as basis, the minimum
communication radius in this study is set to 12.5 m. The maximum communication radius
is set to thrice that of Rs to be consistent with the simulation conditions of TVFDA.

(2) The parameter G is set to 0.2, Vmax is set to 0.15 times that of the length of the target area, N1, N2
is respectively set to 35 and 30, and Np is set to 55 after several experiments on solving the fitness
function. (The process is not described in detail in this paper because the experiment is not the
point of the problem studied in the paper).

(3) According to [35], the distance between the node and the boundary is 0.866Rs when the full
coverage of the network is achieved. This distance is adopted in this study; that is, cboarder is set to
0.866Rs.

(4) The parameter of the communication energy consumption model and other parameters are set as
shown in Table 2.

Table 2. Parameter setting.

Parameter Value

Length of data packet Lb 150 bit
Carrier frequency Fr 24 kHZ

Energy consumption of data reception Pr 20 mW
Data transmission speed underwater Vt 1000 bit/s

6.2. Simulation

Figure 5 shows the network coverage rates of PSA and TVFDA with varying number of nodes.
The coverage rates of PSA and TVFDA increase with increasing number of nodes. The coverage rates
of PSA and TVFDA are highly similar when the number of nodes is lower than 75, but the coverage
rate of PSA is higher than that of TVFDA. When the number of nodes is increased, PSA finds more
optimal node deployment locations than TVFDA does. This result may be attributed to the process of
PSA of determining the moving directions and distances of the nodes by building the optimization
model and solving it using PSOA. When the number of the nodes is extremely low, the difference
in the results between the two algorithms is not evident. Therefore, when the goal is to improve
network reliability and network connectivity even at the risk of reducing network coverage, PSA can
still provide network coverage that is slightly higher than TVFDA.
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Figure 5. Network coverage comparison.

Figure 6 shows the network connectivity coefficients of PSA and TVFDA with varying number of
nodes. The network connectivity coefficients of PSA and TVFDA increase with increasing number
of nodes, and PSA can even reach the state of full network connectivity. Moreover, the network
connectivity of PSA is higher than TVFDA when the network nodes are sparse. The superiority of PSA
can be attributed to the process of optimizing the node positions by first constructing the backbone
of the network and subsequently optimizing the positions of the cluster-in nodes on the condition of
maintaining network connectivity. When the network nodes are sparse, all the nodes cannot constitute
the backbone network, and the unconnected nodes randomly move a certain distance in the direction
of the sink node, thereby increasing network connectivity to a certain extent. By contrast, TVFDA
determines the moving direction and distance of each node according to the neighbor of the node,
which is very easy to cause the original connected network to be divided and consequently reducing
the connectivity of the entire network.
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Figure 7 shows the network deployment energy consumption of PSA and TVFDA with varying
number of nodes. As shown, the network deployment energy consumption of both algorithms
increase with increasing number of nodes, but the network deployment energy consumption growth
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of TVFDA is significantly greater than that of PSA. In TVFDA, almost all the nodes in the algorithm
have to move corresponding distances several times according to the virtual forces exerted on them;
thus, the total distance of the node during the network deployment process significantly increases.
In PSA, the nodes only move once during the execution of the algorithm, and the network deployment
energy consumption is considered when calculating the deployment locations of the cluster-in nodes.
In addition, when the network nodes are sparse, a node has no neighbors with large probability, that
is, some nodes may not move when TVFDA runs, thereby reducing the total moving distance to a
certain extent. Thus, the deployment energy consumption of TVFDA is approximate to PSA when the
number of nodes is low.
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Figure 8 shows the communication energy consumption of PSA and TVFDA with varying number
of nodes. As shown, the communication energy consumption of PSA is lower than that of TVFDA.
TVFDA needs to run several iterations in a distributed manner to improve the network coverage
and connectivity, and each node in each of the iterations needs to broadcast a message to obtain the
environment information. (According to many experiments, TVFDA needs to run approximately
15 times before stabilizing, when the communication radius of the nodes is 30 m and the nodes are
deployed in an area of 120 × 120 × 120 m3). However, at the network layering and clustering stage of
PSA, each node needs to broadcast a maximum of four messages, and the communication radii of all
the nodes are less than the maximum communication radius. Moreover, the locations of the nodes in
the cluster can be obtained by optimizing the node position, that is, each of cluster-in nodes should
broadcast once. Therefore, PSA is better than TVFDA in terms of communication energy consumption.
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Figure 9 shows the number of nodes in the region within the distance Rmax
c to the sink node with

varying number of nodes in the entire network. As shown, the numbers of nodes in both algorithms
increase. However, for the same number of nodes, the number of nodes in the sink node area after PSA
deployment is greater than that after TVFDA deployment. PSA does not optimize the cluster head
nodes in the entire network and the number of the cluster head node is greater in the region near the
sink node, which increases the number of nodes in the region. However, the objective of TVFDA is
to promote the uniform distribution of nodes in the network to increase the coverage of the network
without considering the number of nodes in the vicinity of the sink node.
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7. Conclusions

In this study, we propose PSA for UWSNs to solve the problem in which existing free-to-move
node self-deployment algorithms usually target event coverage and cannot improve network coverage
under the premise of considering network connectivity, network reliability and network deployment
energy consumption. In this algorithm, the sink node first finds its one-hop nodes and maximizes
the network coverage in its one-hop region. The one-hop nodes then divide the network into layers
and cluster in each layer. Meanwhile, each cluster head node constructs a connected path to the
sink node to guarantee network connectivity. The cluster head node finally regards the ratio of the
movement distance of the node to the change in CRR as the target function. It employs pigeon
swarm optimization to solve the node-deployment problem. The simulation results show that PSA
improves both network connectivity and network reliability, decreases network deployment energy
consumption, and increases the network coverage.

As a future work, we plan to extend the ideas in this paper considering the node deployment
about node probability perception model, which is more in line with the actual situation. The cluster-in
position adjustment strategy may need to be modified to some degree. In addition, we plan to consider
the additional scenario where the sensor nodes are not anchored. In the scenario, the node may be
drifted by the current, and the algorithm should run several times to maximize the network service
quality. Thus, the additional trigger mechanism that makes the algorithm run again will be designed.
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