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Abstract: Dempster–Shafer evidence theory is widely used in many soft sensors data fusion systems
on account of its good performance for handling the uncertainty information of soft sensors. However,
how to determine basic belief assignment (BBA) is still an open issue. The existing methods to
determine BBA do not consider the reliability of each attribute; at the same time, they cannot
effectively determine BBA in the open world. In this paper, based on attribute weights, a novel
method to determine BBA is proposed not only in the closed world, but also in the open world.
The Gaussian model of each attribute is built using the training samples firstly. Second, the similarity
between the test sample and the attribute model is measured based on the Gaussian membership
functions. Then, the attribute weights are generated using the overlap degree among the classes.
Finally, BBA is determined according to the sensed attribute weights. Several examples with small
datasets show the validity of the proposed method.

Keywords: Dempster–Shafer evidence theory; generalized evidence theory; basic belief assignment;
soft sensors data fusion; Gaussian distribution; attribute weights

1. Introduction

Data fusion technology of soft sensors [1–3] which integrates multi-source information to obtain a
more objective result, is widely used in many application systems [4–6]. Some algorithms, such as fuzzy
sets theory [7–10], Dempster–Shafer evidence theory (D-S evidence theory) [11,12], Z numbers [13,14],
D numbers [15–17] and neural networks [18–24], are important tools in the data fusion of soft sensors.
As one of them, D-S evidence theory gives a convenient mathematical framework to handle uncertainty
information, so it is widely used in many fields [25–27]. However, determination of basic belief
assignment (BBA) is the first and key step for applying D-S evidence theory. In general, there is no
fixed model to obtain BBA. The method is usually designed according to the practical application.

Many scholars have investigated different methods to address the problem of obtaining BBA.
Yager [28] proposed the D-S belief structure to determine BBA using the whole class of fuzzy measures.
Zhu et al. [29] used fuzzy c-means to obtain BBA. Dubois et al. [30] proposed a probability–possibility
transformation to gain BBA. Baudrit and Dubois [31] proposed practical representation methods
for incomplete probabilistic information, based on formal links existing between possibility theory,
imprecise probability and belief functions. Wang et al. [32] derived BBA function from the common
multivariate data spaces. Masson and Denoeux [33] constructed a possibility distribution from a
discrete empirical frequency distribution. Antoine et al. [34] constrained evidential clustering with
instance-level constraints to determine BBA. Campos and Huete [35] determined BBA by considering
the problem of assessing numerical values of possibility distributions.

Although various methods are proposed, these methods mainly focus on the incompleteness or
the uncertainty of information itself, which does not simultaneously consider the importance and
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reliability of information sources. In the real world, information is not only incomplete and fuzzy, but
also partly reliable. These are all the embodiment of the uncertainty of the information. We cannot
only consider the ambiguity of information without considering the reliability of the information itself.
For instance, in multiple attribute decision making, the importance of each attribute is different, so the
weight of BBAs which are generated by different attributes is different. Many methods are proposed
for measuring the weight of BBAs in D-S evidence theory [36,37]. The methods to determine these
BBAs mainly depend on the support degree among BBAs, which are driven by data and relatively
objective, however, these methods are questionable. The importance and reliability of these BBAs
are not measured from the source of BBAs. Traditionally, the reliability of the information source is
mainly evaluated based on the subjective judgement of the domain experts. However, the knowledge
of experts is limited, which would lead to unreasonable results before some effective analysis is done.
So far, the existing methods to determine BBA cannot address this issue, both in the closed world
and in the open world. To address this issue, a method to determine BBA is proposed based on the
attribute weights. The reliability of the information source is taken as a factor to correct the traditional
BBA, and then BBA is gained which contains the reliability of the information source. The advantage
of this method is that the reliability of BBA is measured by the attribute weights, which are driven by
data and more reasonable.

Many studies have shown that unreasonable results may appear when using the classical D-S
evidence theory in the open world. Based on this issue, Smets and Kennes [38] proposed the
transferable belief model (TBM), and firstly introduced the concepts of the closed world and the
open world, which has been widely applied in many fields [39–41]. The advantage of the TBM is that
it holds belief at two levels, namely the credal level and the pignistic level. However, regardless of
the credal level or pignistic level, the empty set is not assigned belief value in the BBA generation
phase. Instead, the empty set is seen as an alarm or intermediary to show that conflict exists which
may be caused by an incomplete framework of discernment in the process of evidential reasoning.
As a result, the belief is assigned to the empty set in the process of evidential reasoning if the open
world assumption is held, but not at the stage of BBA generation. Hence, Deng [42] presented the
generalized evidence theory (GET), where generalized basic belief assignment (GBBA) and generalized
combination rule (GCR) are proposed. GET assumes the decision-making environment is in an open
world at the initial phase, so a generalized BBA that allows the beliefs to be assigned to the empty
set is generated at the stage of data collection and modelling, which is more reasonable. GBBA will
degenerate to classical BBA when m(∅) = 0. Therefore, in this paper, a new method to determine BBA
in the open world is presented based on GET. However, the GCR in GET still has some problems. For
example, the method of obtaining m(∅) in the GCR is unreasonable. Based on this issue, a modified
generalized combination rule (mGCR) in the framework of GET is presented [43]. The mGCR satisfies
all properties of the GCR and is more reasonable than the GCR.

In this paper, based on the attribute weights, BBA is determined not only in the closed world,
but also in the open world. First, the Gaussian distribution is used to model the Gaussian membership
function of each attribute of each class. Second, the similarity between the test sample and the attribute
model is measured based on these Gaussian membership functions. Then, the attribute weights are
generated using the overlap degree among the classes. Given an attribute, the larger the overlap
degree, the smaller the attribute weight; conversely, the smaller the overlap degree, the larger the
attribute weight. Finally, BBA is determined after modifying the similarity by the sensed attribute
weights. This BBA contains not only the information of each class, but also the reliability of each
attribute, which is more objective and reasonable.

The rest of this paper is organized as follows. D-S evidence theory and some necessarily related
concepts are briefly presented in Section 2. In Section 3, a novel method of determining BBA based on
attribute weights is proposed. Several examples are illustrated in Section 4 to show the efficiency of
this method. The conclusion is presented in Section 5.
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2. Preliminaries

2.1. Dempster–Shafer Evidence Theory [11,12]

D-S evidence theory was introduced by Dempster. Then Shafer developed it by defining the belief
function and plausibility function. It has the ability to deal with uncertain information without a prior
probability. Thus, it is flexible and more effective than probability theory. Due to these advantages,
it is widely applied in many fields [44–46].

2.1.1. Frame of Discernment (FoD) and Mass Function

In D-S evidence theory, the frame of discernment (FoD) is defined as Ω = {H1, H2, · · · , HN},
which is composed of N exhaustive and exclusive hypotheses. Denote P(Ω), the power set which is
composed with 2Ω propositions as:

P(Ω) = {∅, {H1}, {H2}, · · · , {HN}, {H1 ∪ H2}, {H1 ∪ H3}, · · · , Ω}, (1)

where the propositions {H1}, {H2}, · · · , {HN} have only one element, so they are defined as the
singleton subsect proposition; the propositions {H1 ∪ H2}, {H1 ∪ H3}, · · · , Ω have more than one
element, so they are defined as the compound subsect proposition.

A mass function m is a mapping from 2Ω to [0, 1], formally defined as

m : 2Ω → [0, 1], (2)

which satisfies the following conditions:

∑
A⊂2Ω

m(A) = 1

m(∅) = 0.
(3)

The mass function m is also called BBA function. Any subset A of Ω such that m(A) > 0 is called
a focal element.

2.1.2. Dempster’s Combination Rule

Suppose m1 and m2 are two mass functions in the same FoD Ω. Dempster’s combination rule,
noted by m = m1 ⊕m2, is defined as follows:

m(A) =


∑

B∩C=A
m1(B)m2(C)

1− k
, A 6= ∅

0, A = ∅

(4)

where
k = ∑

B∩C=∅
m1(B)m2(C). (5)

Here, k is regarded as a measure of conflict between m1 and m2. The larger the value of k, the more
conflict between the evidence.

2.2. Generalized Evidence Theory

Generalized evidence theory (GET) is presented by Deng, which can handle the uncertain
information in the open world [42].
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2.2.1. Generalized Basic Belief Assignment

Suppose that U is a FoD in the open world. Its power set, 2U
G , is composed of 2U propositions. A

mass function is a mapping mG : 2U
G → [0, 1] that satisfies

∑
A⊂2U

G

mG(A) = 1, (6)

where mG is GBBA of the U.
The difference between GBBA and classical BBA is the restriction of ∅. Note that mG(∅) = 0 is

not necessary for GBBA, namely, the empty set can also be a focal element. GBBA will degenerate to
classical BBA when m(∅) = 0.

2.2.2. Generalized Combination Rule

In GET, ∅1 ∩ ∅2 = ∅ is assigned to conflict coefficient K. Given two GBBAs (m1 and m2), the
GCR is defined as follows:

m(A) =

(1−m(∅)) ∑
B∩C=A

m1(B)m2(C)

1− K
,

K = ∑
B∩C=∅

m1(B)m2(C),

m(∅) = m1(∅) ·m2(∅),

m(∅) = 1 i f and only i f K = 1.

(7)

2.3. Modified Generalized Combination Rule

The mGCR is presented by Jiang et al., where the intersection ∅ = ∅1 ∩ ∅2 is considered as
support to ∅, namely, the orthogonal sum of m1(∅) and m2(∅) is normalized like other focal elements.
Given two GBBAs, the mGCR is defined as follows:

m(A) =
∑

B∩C=A
m1(B)m2(C)

1−K
m(∅) = m1(∅)m2(∅)

1−K

(8)

with
K = ∑

B ∩ C = ∅
B ∪ C 6= ∅

m1(B)m2(C)

m(∅) = 1 i f K = 1 or ∑
A 6=∅

m(A) = 0.
(9)

The mGCR inherits all the advantages and properties of the original GCR.

3. The Proposed Method

To obtain an objective classification, the key step is how to gain an effective BBA. As can be seen
in Figure 1, a new method to determine BBA is presented. First, the dataset is divided into two parts,
where a part is taken as the training set and another part is taken as the test set. Then the Gaussian
models of k attributes are built using the training set, and the attribute models are tested by the test
set to produce the similarity. Finally, the weight of each attribute is constructed based on the overlap
degree of each class, which is used to modify the similarity and then to determine BBA.
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Figure 1. Flowchart of the proposed method.

3.1. The Modeling of Each Attribute

The Gaussian distribution is the common probability distribution in statistics, which is easy to
analyze. Therefore, the membership function of Gaussian type is adopted to build the attribute models
in this paper.

Suppose in the frame of discernment (FoD) Θ = {θ1, θ2, · · · , θn}, each class θi (i = 1, 2, · · · , n)
has j (j = 1, 2, · · · , k) attributes. The mean value Xij and the standard deviation σij of all the training
samples in class θi are calculated as follows:

Xij =
1
N

N

∑
l=1

xijl ,

σij =

√√√√ 1
N − 1

N

∑
l=1

(xijl − Xij)2,

(10)

where xijl is the sample value of the jth attribute from the lth training sample in class θi.
Hence, the corresponding attribute model of Gaussian type is obtained as follows:

µA(x) = exp(−
(x− Xij)

2

2σ2
ij

) (11)

The real-world sensor data usually has stochastic nature. To make the results more objective and
credible, the training samples from each class are randomly selected to build the attribute model. For
each attribute, n membership functions of Gaussian type are obtained as models of different class in
the specific attribute.
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3.1.1. The Construction of the Singleton Subsect and Compound Subsect

In D-S evidence theory, BBA has two forms. One is the singleton subsect, such as {A}, which
represents a certain proposition. The other is the compound subsect, such as {AB}, which represents a
kind of uncertain proposition. Namely, it indicates that {A} proposition or {B} proposition occurs,
and it is unknown how to assign belief in {A} and {B}. For instance, in the case of motor rotor
fault diagnosis, there are three faults: A, B and C, which represent the unbalance, misalignment and
pedestal looseness respectively. BBA from a sensor is m({A}) = 0.55, m({AC}) = 0.45. Where {A}
represents that the fault of the motor rotor is the unbalance, which is a singleton subsect proposition;
{AC} represents that the fault of the motor rotor is the unbalance or pedestal looseness, which is a
compound subsect proposition.

In this paper, the proposed method can automatically generate BBA of the singleton subsect
and the compound subsect. This section mainly introduces how to construct the singleton subsect
proposition and the compound subsect proposition. As shown in Figure 2, an attribute model of
Gaussian type is denoted as a singleton subsect proposition, where µA(x) and µB(x) are all singleton
subsect propositions. The compound subsect proposition is constructed by the overlap area of some
membership functions of Gaussian type. The compound subsect proposition {AB} is noted as follows:

µAB(x) = min(µA(x), µB(x)) (12)

where w = sup min(µA(x), µB(x)).
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Figure 2. The modeling of the singleton subsect and compound subsect.

3.2. The Measurement of Similarity

In this paper, a nested structure similarity function sim is defined to represent the matching degree
between the test sample and the attribute model. This structure can avoid the high conflict, to some
extent. The similarity is measured using the following regulations:

(1) If there is only one intersection between the test sample and the attribute models, then this
intersection is assigned to the corresponding singleton subset as the similarity between this test sample
and the corresponding singleton subset model;

(2) If there is more than one intersection between the test sample and the attribute models, then
the top value of the intersections is assigned to the corresponding singleton subset as the similarity;
the low value of the intersections is assigned to the corresponding compound subset as the similarity.

In the actual applications, the test model is covered by a different number of test data. For example,
in the dataset, the test model is usually covered by one test data which, on account of its attribute
value, is a fixed value, such as Iris. So this test model is the discrete value, as is the case for the test
samples x0 and x1 which are shown in Figure 3. However, in a complex system, the attribute value is
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not a fixed value, for example, sensor data is not constant in sensor networks and is thus easily affected
by the external environment. In such a case, the attribute is measured repeatedly by the sensor and the
sensor data will be a set of values. Thus, this test model is covered by multiple test data, and is fuzzed
into the membership function of Gaussian type, as is the case for the test models µx0 and µx1 which are
shown in Figure 4. As shown in the analysis above, under the different application backgrounds, the
measurement of the similarity is slightly different.

If the test model is covered by one test data, as shown in Figure 3a, for the test sample x0,
the similarity is measured by the above regulations (1):

sim(B) = µB(x0) = a0,

where µB is the membership functions of the singleton subsect propositions {B}. x0 has no intersection
with µA and µAB, so sim(A) = sim(AB) = 0.

As shown in Figure 3b, for the test sample x1, the similarity is measured by the above regulations (2):

sim(B) = µB(x1) = a1,

sim(AB) = µAB(x1) = a2,

where µB is the membership functions of the singleton subsect propositions {B}, and µAB is the
membership functions of the compound subsect propositions {AB}.

Although x1 has an intersection with µA, this intersection is assigned to the compound subsect
{AB} since it simultaneously locates in the overlapping portions between µA and µB. Based on the
above regulations (2), sim(A) = 0 and sim(AB) = a2.
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Figure 3. The measurement of similarity where the test model is a discrete value. (a) Only one
intersection; (b) multiple intersections.

If the test model is covered by multiple test data, then the model is first constructed using the
membership function of Gaussian type, which is similar to the model of training sets. Then, as shown
in Figure 4a, for the test model µx0 , the similarity is measured by the above regulations (1):

sim(B) = a0,

where µx0 has no intersection with µA and µAB, so sim(B) = sim(AB) = 0.
As shown in Figure 4b, for the test model µx1 , the similarity is measured by the above regulations (2):

sim(A) = a1, sim(AB) = a2,
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where although µx1 has an intersection with µB̃, this intersection is assigned to the compound subsect
{AB} since it simultaneously locates in the overlapping portions between µA and µB. Based on the
regulations (2), sim(B) = 0 and sim(AB) = a2.
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Figure 4. The measurement of similarity where the test model is a continuous value. (a) Only one
intersection; (b) multiple intersections.

3.3. The Construction of Attribute Weights

In the multiclass classification, a comprehensive evaluation of each attribute needs to be made
to obtain an objective result [47–49]. Given an attribute, if the similarity of some classes is high, that
is, the overlap degree of the attribute models of these classes is large, then the ability to discriminate
the difference of these classes of this attribute is weak. In this case, a false classification may easily
occur based on this attribute, so the reliability of this attribute is low. Further, BBA generated from
this attribute has a smaller contribution in multiclass classification. On the contrary, if the similarity
of some classes is low, then the ability to discriminate the difference of these classes of this attribute
is fine, so the reliability of this attribute is high. Further, BBA generated from this attribute has a
larger contribution in multiclass classification. Thus, the effect of the attributes which provide a larger
contribution should be enhanced and the effect of the attributes which provide a smaller contribution
should be weakened to obtain more objective results. As analyzed above, the attribute weights are
proposed and taken into account in this paper.

Suppose µij(i = 1, 2, · · · , n; j = 1, 2, · · · , k) is the membership function of the jth attribute of the ith

class; µ∗rj(r = 1, 2, · · · , n2−n
2 ; j = 1, 2, · · · , k) is the generalized triangular fuzzy number model of the rth

compound subsect proposition {AB} in the jth attribute; S(x) is the area of the x. Then the attribute
weight wj(j = 1, 2, · · · , k) is proposed as follows:

wj = 1−

n2−n
2
∑

r=1
S(µ∗rj)

n
∑

i=1
S(µij)−

n2−n
2
∑

r=1
S(µ∗rj)

(13)

where wj reveals that the larger the overlap degree, the larger the similarity, and the smaller the
attribute weight.

3.4. The Construction of BBA

In D-S evidence theory, the closed world means that the FoD is complete; the open world means
that the FoD is incomplete, namely, unknown propositions potentially exist outside of the given FoD.
In the closed world, the FoD is complete, so the redundant BBA should be assigned to the universal
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set Θ, which is gained after using the attribute weights to correct the similarity sim. However, in the
open world, an unknown proposition exists. In GET, BBA of the unknown proposition is determined
based on the known propositions. Then, the attribute weights are also constructed by the model of
the known propositions and used to correct the similarity of the known propositions. Finally, the
redundant BBA is assigned to the universal set Θ. According to the analysis above, the determination
of BBA in the closed world and the open world is proposed respectively.

3.4.1. The Determination of BBA in the Closed World

In the closed world, BBA is determined by three steps. The similarity sim is generated in the first
step, which is described in Section 3.2. In the second step, if ∑ sim > 1, the similarity is normalized;
if ∑ sim < 1, the similarity is not normalized. The FoD is complete in the closed world, so where
sim(∅) = 0 is necessary. In the third step, BBA of each proposition is obtained as follows:

m(∅) = 0

m(A) = wj × simj(A), (A 6= Θ and A 6= ∅)

m(Θ) = 1−
k

∑
j=1

wjsimj(A)

(14)

where wj is denoted as the jth attribute’s weight, and simj is denoted as the similarity function of the
jth attribute.

For example, in the frame of discernment Θ = {a, b, c}, the similarity function sim2 of attribute 2
is sim2(a) = 0.6, sim2(ab) = 0.2 and the attribute weigh w2 = 0.7, then BBA is determined as follows:

m2(a) = w2× sim2(a) = 0.7× 0.6 = 0.42,

m2(ab) = w2× sim2(ab) = 0.7× 0.2 = 0.14,

m2(Θ) = m2(abc) = 1−m2(a)−m2(ab) = 1− 0.42− 0.14 = 0.44,

m2(b) = m2(c) = m2(ac) = m2(bc) = 0.

After determining BBA, BBAs of k attributes are combined k− 1 times with Dempster’s combination
rule and the final recognized result can be gained.

3.4.2. The Determination of BBA in the Open World

In the open world, BBA is also determined by three steps. The similarity sim is generated in
the first step, which is described in Section 3.2. The FoD is incomplete in the open world, so where
sim(∅) = 0 is not necessary. Hence, in the second step, if ∑ sim > 1, then the similarity is normalized
and the similarity of the empty set sim(∅) = 0; if ∑ sim < 1, then the similarity is not normalized
and the similarity of the empty set sim(∅) = 1−∑ sim. In the third step, BBA of each proposition is
obtained as follows:

m(∅) = sim(∅)

m(A) = wj × simj(A), (A 6= Θ and A 6= ∅)

m(Θ) = 1−
k

∑
j=1

wjsimj(A)−m(∅)

(15)

where wj is denoted as the jth attribute’s weight, and simj is denoted as the similarity function of the
jth attribute.
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For example, in the frame of discernment Θ = {a, b}, the similarity function sim1 of attribute 1
is sim1(a) = 0.6, sim1(ab) = 0.2 and the attribute weigh w1 = 0.8, then BBA is determined as follows.
Firstly, the similarity of the empty set is obtained as:

sim1(∅) = 1− (sim1(a) + sim1(ab)) = 1− (0.6+ 0.2) = 0.2.

Then BBA of each proposition is obtained as:

m1(∅) = sim1(∅) = 0.2,

m1(a) = w1× sim1(a) = 0.8× 0.6 = 0.48,

m1(b) = w1× sim1(b) = 0.8× 0 = 0,

m1(Θ) = m1(ab) = 1−m1(∅)−m1(a)−m1(b) = 1− 0.2− 0.48− 0 = 0.32.

After determining BBA, BBAs of k attributes are combined k− 1 times with the mGCR and the
final recognized result can be gained.

4. Application Example

In this section, several experiments are performed both in the closed world and the open world
respectively, to evaluate the validity and reasonability of the presented method. To better evaluate
this method, an engineering example of fault diagnosis of a motor rotor is carried out. Note that the
numbers from the following calculations are all unified as the four significant digits.

In addition, since the real-world data usually has stochastic nature, it is less advisable that the data
with the highest recognition rate is selected for the experiment. Hence, in the following experiment, the
training set and the test set are randomly selected, which makes the results more objective and credible.

4.1. An Example of Iris

The Iris dataset [50,51] contains three classes: Iris Setosa(S), Iris Versicolour(E) and Iris Virginica(V).
Each class has 50 samples, and each sample contains four attributes: sepal length(SL), sepal width(SW),
petal length(PL) and petal width(PW), respectively. Each of the four attributes is treated as an
information source, and correspondingly there are three training sets and three test sets which are
the same for the sample number. The data is obtained from the UCI repository of machine learning
databases. (UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/datasets/Iris.)

4.1.1. Experiment in the Closed World

Thirty samples are randomly selected as training samples from three classes respectively, and the
remaining 20 samples of each of the three classes are taken as the test samples. Then, the experiment is
carried out as follows.

Step 1: According to Section 3.1, the attribute models of each attribute of the training samples are
obtained and shown in Figure 5.

Step 2: A test sample (4.6, 3.1, 1.5, 0.2) is selected from the test set of S. Then, based on Section 3.2,
the similarity between this test sample and each attribute model is obtained, which is shown in Figure 5
and Table 1.

From Table 1, we can see that the similarity of the SW attribute does not coincide with the reality.
This is because the SW attributes of the three classes are mutually overlapping, which is not easy to
distinguish in this case.

http://archive.ics.uci.edu/ml/datasets/Iris
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Table 1. Similarity of Iris in the closed world.

Attributes
Similarity

sim(S) sim(E) sim(V) sim(SE) sim(SV) sim(EV) sim(SEV)

SL 0.5005 0 0 0.0285 0 0 0
SW 0 0 0.4035 0 0.3201 0 0
PL 0.9712 0 0 0 0 0 0
PW 0.9098 0 0 0 0 0 0
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Figure 5. The models and similarity of each attribute in the closed world. (a) SL; (b) SW; (c) PL; (d) PW.

Step 3: According to Equation (13), the attribute weights of the four attributes are obtained
as follows:

wSL = 1− 1.0247
3.6677− 1.0247

= 0.6123,

wSW = 1− 0.7934
2.2250− 0.7934

= 0.4458,

wPL = 1− 0.2980
3.0420− 0.2980

= 0.8914,

wPW = 1− 0.0787
1.4263− 0.0787

= 0.9416.

Step 4: Based on Section 3.4, BBAs are determined as shown in Table 2.
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Table 2. BBA of Iris in the closed world.

Attributes BBA

m(S) m(E) m(V) m(SE) m(SV) m(EV) m(SEV)

SL 0.3046 0 0 0.0515 0 0 0.6439
SW 0.1665 0 0 0 0.0283 0 0.8052
PL 0.7442 0 0 0 0 0 0.2558
PW 0.8067 0 0 0 0 0 0.1933

Finally, four BBAs are combined three times with Dempster’s combination rule (Equation(4)), and
the results are shown as follows:

m(S) = 0.9714, m(E) = 0, m(V) = 0, m(SE) = 0.0021, m(SV) = 0.0009, m(EV) = 0, m(SEV) = 0.0256.

From the final BBA, it is clear that the test sample is classified into S class which coincides with
the reality.

4.1.2. Experiment in the Open World

To verify the presented method’s performance in the open world, the training samples are
randomly selected only from two Iris classes which are randomly selected from the three classes, and
the remaining class is taken as the unknown class. The test samples are randomly selected from each
of the three classes. In the Iris dataset, each class has 50 samples. In this paper, 30 samples of two
classes are randomly selected as training samples from S and E respectively; the remaining 20 samples
of each of these two classes and the 20 samples which are randomly selected from V, are taken as the
test samples. Then, the experiment is carried out as follows.

Step 1: According to Section 3.1, the attribute model of each attribute of the training samples is
obtained and shown in Figure 6.
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Figure 6. The models and similarity of each attribute in the open world.(a) SL; (b) SW; (c) PL; (d) PW.
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Step 2: A test sample (5.5, 4.2, 1.4, 0.2) is selected from the test set of S. Then, based on Section 3.2,
the similarity between this test sample and each attribute model is obtained, which is shown in Figure 6
and Table 3.

Table 3. Similarity of Iris in the open world.

Attributes
Similarity

sim(S) sim(E) sim(SE)

SL 0 0.7261 0.4027
SW 0.1181 0 0
PL 0.9493 0 0
PW 0.9333 0 0

From Table 3, we can see that the similarity of the PL attribute and the PW attribute coincides
with the reality, but the similarity of the SL attribute and the SW attribute does not coincide with the
reality. This is because the classes are not easy to distinguish if the overlap degree among the classes
in the SL attribute and the SW attribute is large. Hence, the attribute weights are necessary when
determining BBA.

Step 3: According to Equation (13), the attribute weights of four attributes are obtained as follows:

wSL = 1− 0.3605
2.3381− 0.3605

= 0.8177,

wSW = 1− 0.2504
1.6729− 0.2504

= 0.8240,

wPL = 1− 0
1.6847− 0

= 1,

wPW = 1− 0
0.7362− 0

= 1.

Step 4: Based on Section 3.4, BBAs are determined as shown in Table 4.

Table 4. BBA of Iris in the open world.

Attributes
BBA

m(S) m(E) m(SE) m(∅)

SL 0 0.5937 0.3678 0.0385
SW 0.0973 0 0.4513 0.4513
PL 0.9493 0 0.0253 0.0253
PW 0.9333 0 0.0333 0.0333

Finally, four BBAs are combined three times with the mGCR (Equation(8)), and the results are
shown as follows:

m(S) = 0.9980, m(E) = 0.0012, m(SE) = 0.0007, m(∅) = 0.0001.

From the final BBA, it is clear that the test sample is classified into S class which coincides with
the reality.

Similarly, a test sample (6.8,3.0,5.5,2.1) is selected from the test set of unknown class (V), then the
final BBA is obtained as follows:

m(S) = 0, m(E) = 0, m(SE) = 0, m(∅) = 1,
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where m(∅) = 1 indicates that the possibility of this test sample outside the FoD is very large,
which coincides with the reality.

4.2. Experiments on Three Datasets: Five-Fold Cross-Validation

To further evaluate the proposed method, this method is compared with three well-known
classifiers: support vector machine with radial basis function (SVM-RBF), decision tree learner
(REPTree) and Naive Bayesian (NB) both in the closed world and the open world.

Three datasets are experimented in this section, which are obtained from the UCI repository
of machine learning databases [52]. (UCI Machine Learning Repository: http://archive.ics.uci.edu/
ml/datasets.) Within this, the Iris dataset is perhaps the best known database found in the pattern
recognition literature. The dataset contains three classes of 50 instances each, where each class refers
to a type of iris plant. Each class contains four attributes. The Seeds dataset contains three different
varieties of wheat: Kama (K), Rosa (R) and Canadian (C). Each variety has 70 samples, and each sample
contains seven attributes. The Wine dataset was the result of a chemical analysis of wines grown in the
same region in Italy but derived from three different cultivars. The analysis determined the quantities
of 13 constituents found in each of the three types of wine. A summary of these datasets is shown in
Table 5.

Table 5. General information about the real datasets.

Dataset #Instance #Class #Attribute

Iris 150 3 4
Seed 210 3 7
Wine 178 3 13

The comparison results of five-fold cross-validation are shown in Tables 6–8 respectively.

Table 6. The comparison results of Iris.

Cases Frame Methods Classes Overall Average
Setosa (S) Versicolour (E) Virginica (V)

Closed world {S,E,V}

SVM-RBF 100.00% 94.30% 96.31% 96.87%
REPTree 100.00% 92.38% 92.65% 95.01%

NB 100% 91.62% 94.53% 95.38%
Our method 99.00% 93.00% 95.00% 95.67%

Open world

{S,E}

SVM-RBF 100.00% 100.00% 0 (V=∅) 66.67%
REPTree 100.00% 100.00% 0 (V=∅) 66.67%

NB 100.00% 100.00% 0 (V=∅) 66.67%
Our method 92.00% 88.00% 84.00% (V=∅) 88%

{S,V}

SVM-RBF 100.00% 0 (E=∅) 100.00% 66.67%
REPTree 99.41% 0 (E=∅) 99.67% 66.36%

NB 100% 0 (E=∅) 100.00% 66.67%
Our method 84.00% 80.00% (E=∅) 90.00% 84.67%

{E,V}

SVM-RBF 0 (S=∅) 95.53% 97.89% 64.48%
REPTree 0 (S=∅) 93.11% 90.61% 61.24%

NB 0 (S=∅) 92.51% 94.89% 62.47%
Our method 100.00% (S=∅) 82.00% 84.00% 88.67%

http://archive.ics.uci.edu/ml/datasets
http://archive.ics.uci.edu/ml/datasets
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Table 7. The comparison results of Seeds.

Cases Frame Methods Classes Overall Average
Kama (K) Rosa (R) Canadian (C)

Closed world {K,R,C}

SVM-RBF 82.14% 94.41% 94.08% 90.21%
REPTree 84.32% 92.33% 91.82% 89.49%

NB 76.03% 69.81% 88.42% 78.09%
Our method 87.71% 93.43% 90.57% 90.57%

Open world

{K,R}

SVM-RBF 93.07% 93.58% 0 (C=∅) 62.21%
REPTree 93.57% 95.43% 0 (C=∅) 63.00%

NB 78.04% 77.22% 0 (C=∅) 51.75%
Our method 85.71% 82.86% 88.57% (C=∅) 85.71%

{K,C}

SVM-RBF 89.84% 0 (R=∅) 93.61% 61.15%
REPTree 89.44% 0 (R=∅) 91.04% 60.16%

NB 83.67% 0 (R=∅) 87.66% 57.11%
Our method 80.00% 88.57% (R=∅) 95.71% 88.09%

{R,C}

SVM-RBF 0 (K=∅) 100% 100% 66.67%
REPTree 0 (K=∅) 98.81% 99.53% 66.11%

NB 0 (K=∅) 91.91% 89.12% 60.34%
Our method 84.29% (K=∅) 91.43% 84.29% 86.67%

From the above experimental results, it is found that:

(1) The results in the closed world

Both the proposed method and the classical machine learning algorithms are efficient in the
closed world. From the first four lines of Tables 6–8, we can find that the proposed method obtains
competitive performances with respect to machine learning algorithms. For example, in the first
four lines of Table 7, the average recognition rate of Seeds of our method is 90.57%, NB is 78.09%,
REPTree is 89.49% and SVM-RBF is 90.21%.

(2) The results in the open world

From the latter 12 lines of Tables 6–8, we can find that the average recognition rate of the
empty set ∅ is 0 by the classical machine learning classifiers. It means that the “unknown” class is
definitely misclassified by the classical machine learning classifiers. These standard machine learning
classification algorithms cannot work in an open world environment.

In contrast, the “unknown” class in an open world environment can be classified by the proposed
method. For example, in Table 8, the average recognition rate of the empty set ∅ of wine is 89.33%,
93.78% and 91.62% respectively in the frame of discernment of {A, B}, {A, C} and {B, C}. Therefore,
our method is still effective in an open world.

By summarizing (1) the results in the closed world and (2) the results in the open world, it can be
found that both the proposed method and the classical machine learning algorithms are efficient in
the closed world. However, the classical machine learning algorithms cannot work in an open world.
In contrast, our method is still effective in an open world, which is the advantage of our method
compared with the classical machine learning algorithms.



Sensors 2017, 17, 721 16 of 20

Table 8. The comparison results of Wine.

Cases Frame Methods Classes Overall Average
A B C

Closed world {A,B,C}

SVM-RBF 6.86% 99.93% 4.75% 37.18%
REPTree 91.43% 88.06% 91.58% 90.36%

NB 88.36% 82.88% 84.58% 85.27%
Our method 89.85% 95.90% 95.78% 93.84%

Open world

{A,B}

SVM-RBF 7.36% 99.36% 0 (C=∅) 35.68%
REPTree 95.35% 95.87% 0 (C=∅) 63.74%

NB 88.07% 93.19% 0 (C=∅) 60.42%
Our method 84.85% 88.95% 89.33% (C=∅) 87.71%

{A,C}

SVM-RBF 100.00% 0 (B=∅) 6.91% 35.64%
REPTree 99.29% 0 (B=∅) 99.17% 66.15%

NB 86.93% 0 (B=∅) 95.92% 60.95%
Our method 95.00% 93.78% (B=∅) 81.90% 90.23%

{B,C}

SVM-RBF 0 (A=∅) 100% 5.25% 35.08%
REPTree 0 (A=∅) 94.31% 91.92% 62.08%

NB 0 (A=∅) 84.88% 88.00% 57.63%
Our method 91.62% (A=∅) 96.00% 79.85% 89.16%

4.3. An Example of Fault Diagnosis

Suppose there are three types of fault in a motor rotor, which are noted as F = {F1, F2, F3} =

{rotorunbalance, rotormisalignment, Pedestallooseness}. Three vibration acceleration sensors and a
vibration displacement sensor are placed in different installation positions to collect the vibration
signal. Vibration displacement and acceleration vibration frequency amplitudes at the frequencies of
1X, 2X and 3X are taken as the fault feature variables. At the same time interval, each fault feature of
each fault is continuously observed 40 times which is taken as a group of observations. In this paper,
a total of five groups are measured in each fault feature of each fault. For example, five groups of
observations of the fault feature variables of 1X of the rotor unbalance are shown in Table 9.

The example is carried out by the proposed method and three well-known classifiers: support
vector machine with radial basis function (SVM-RBF), decision tree learner (REPTree) and Naive
Bayesian (NB), respectively. The comparison results of the five-fold cross-validation are shown in
Table 10.

Table 9. Five groups of observations of 1X of the rotor unbalance [53].

Groups Observations

X11

0.1663 0.1590 0.1568 0.1485 0.1723 0.2006 0.1903 0.1908 0.1986 0.1843
0.1785 0.1610 0.1579 0.1511 0.1532 0.1647 0.1628 0.1646 0.1634 0.1642
0.1648 0.1640 0.1674 0.0661 0.1659 0.1650 0.1633 0.1632 0.1604 0.1542
0.1555 0.1562 0.1540 0.1564 0.1557 0.1542 0.1546 0.1571 0.1537 0.1536

X12

0.154 0.1518 0.1537 0.1548 0.1542 0.1538 0.1545 0.1537 0.1571 0.1560
0.1584 0.1552 0.1586 0.1574 0.1569 0.1565 0.1551 0.1585 0.1585 0.1593
0.1548 0.1558 0.1547 0.1593 0.1532 0.1632 0.1575 0.159 0.1594 0.1541
0.165 0.1674 0.1651 0.1604 0.1787 0.1818 0.1820 0.1656 0.1658 0.1644

X13

0.1647 0.1647 0.1654 0.1651 0.1656 0.1653 0.1652 0.1652 0.1648 0.1649
0.1653 0.1650 0.1650 0.1652 0.1653 0.1652 0.1648 0.1647 0.1646 0.1645
0.1651 0.1652 0.1652 0.1649 0.1650 0.1643 0.1640 0.1639 0.1641 0.1633
0.1632 0.1629 0.1630 0.1630 0.1634 0.1631 0.1634 0.1629 0.1632 0.1629

X14

0.1630 0.1629 0.1627 0.1626 0.1622 0.1624 0.1627 0.1618 0.1614 0.1617
0.1621 0.1615 0.1618 0.1611 0.1614 0.1610 0.1612 0.1611 0.1616 0.1612
0.1612 0.1613 0.1623 0.1616 0.1621 0.1613 0.1611 0.1610 0.1610 0.1613
0.1615 0.1616 0.1618 0.1616 0.1614 0.1612 0.1606 0.1614 0.1619 0.1614

X15

0.1609 0.1610 0.1612 0.1615 0.1609 0.1606 0.1604 0.1606 0.1605 0.1601
0.1604 0.1608 0.1610 0.1603 0.1599 0.1601 0.1602 0.1599 0.1598 0.1598
0.1598 0.1596 0.1595 0.1593 0.1594 0.1598 0.1596 0.1597 0.1595 0.1593
0.1598 0.1596 0.1597 0.1595 0.1593 0.1577 0.1580 0.1576 0.1577 0.1579
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Table 10. The comparison results of the fault diagnosis.

Cases Frame Methods Classes Overall Average
F1 F2 F3

Closed world {F1, F2, F3}

SVM-RBF 94.15% 92.86% 100% 95.67%
REPTree 99.05% 98.68% 99.78% 99.17%

NB 98.05% 96.94% 100% 98.33%
Our method 99.50% 98.50% 100% 99.33%

Open world

{F1, F2}

SVM-RBF 99.14% 98.49% 0(F3=∅) 65.88%
REPTree 99.66% 100% 0(F3=∅) 66.55%

NB 98.86% 99.48% 0(F3=∅) 66.11%
Our method 96.00% 90.00% 100%(F3=∅) 95.33%

{F1, F3}

SVM-RBF 99.86% 0(F2=∅) 100% 66.62%
REPTree 99.76% 0(F2=∅) 100% 66.59%

NB 99.99% 0(F2=∅) 100% 66.66%
Our method 96.50% 100%(F2=∅) 94% 96.83%

{F2, F3}

SVM-RBF 0(F1=∅) 99.38% 100% 66.46%
REPTree 0(F1=∅) 99.70% 99.78% 66.49%

NB 0(F1=∅) 99.41% 100% 66.47%
Our method 100%(F1=∅) 91.00% 93.00% 94.67%

The above experimental results demonstrate the validity of the proposed method. The advantages
of the proposed method are discussed and concluded as follows:

• The weights of the attributes have been considered in the proposed BBA generation method.
Because of that, the generated BBA could reflect the difference of the importance between different
attributes which have different classification ability. If the classification ability of each attribute
is similar, then the result obtained by using the proposed method is basically identical with
such a method that does not consider attributes’ weights. However, if attributes have different
classification ability, then the proposed method has better performance since it has considered
the weight of each attribute.

• The weight of each attribute is totally determined based on the discrimination of the attribute,
but without relying on other information. In many existing approaches, the weights of attributes
are either from an externally given credibility of sensors or mutual support degree of different
attributes. In this paper, the weight of every attribute is determined just by the attribute’s
discrimination, before the amendment of the generated BBA is implemented. This approach is
completely a data-driven solution, which makes the results more objective and credible.

• The proposed BBA generation method is efficient simultaneously in the closed world and open
world. At present, many existing BBA generation approaches only consider the situation of the
closed world. In contrast, by introducing generalized evidence theory, the incomplete information
about the frame of discernment is taken into consideration in the initial phase of the modelling of
uncertain information. Therefore, it is more reasonable and realistic.

• The proposed method is simple and can be easily used in many practical applications. In addition,
it is based on the normal distribution assumption and can be easily changed to other forms to
reflect the feature of training data much more realistically. Therefore, the proposed method is
flexible and easily extensible.

However, compared to the traditional BBA method, namely the method that does not consider the
attribute weights, the approach of weighted BBA has complicated calculations. However, considering
that the performance is better after using the attribute weights, the increased computational complexity
is acceptable to some extent.

5. Conclusions

In the application of soft sensors data fusion, based on evidence theory, how to determine BBA is
an open issue. In this paper, a new method is presented to determine BBA in a closed or open world
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environment. Within the proposed BBA determination method, all data are separated into a training
set and test set, and the attributes of each sample are seen as soft sensors. At first, according to the
training samples, each attribute’s Gaussian model is built. Then, for every test sample, by considering
the similarity and the attribute weights, a BBA is derived to express the test sample. Finally, according
to the derived BBA, the class of the corresponding test sample is determined.

The advantages of the proposed BBA determination method include the following aspects. At first,
the weights of attributes, which reflect the reliability of information sources, have been considered in
the process of BBA generation. Moreover, it is compatible with the method which does not consider
the attribute weights. Second, since the generalized evidence theory has been used in this work,
the proposed method is efficient not only in the closed world but also in the open world. Many
previous BBA determination methods have only been able to deal with the situation of the closed
world. Third, the whole process is completely data-driven, which makes the results more objective.
The proposed method can be easily used in many practical applications, for example, classification
and fault diagnosis. A number of simulation experiments show that the proposed method is effective.
However, some shortcomings still exist in the proposed method. Mainly, the amount of computation
of the proposed method is increased since the weights of attributes have been considered. Besides, the
proposed method relies on a proper training set, which requires a certain size of data samples.

In the future, we will research further the following problems. Firstly, we will try to apply the
proposed method to more practical applications, and import a pre-judging procedure to determine
whether the attribute weights need to be considered to reduce the computational complexity.
Furthermore, the possible dependencies among the attributes of the actual targets will be considered
to improved the proposed method.
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