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Abstract: Object tracking has remained a challenging problem in recent years. Most of the
trackers can not work well, especially when dealing with problems such as similarly colored
backgrounds, object occlusions, low illumination, or sudden illumination changes in real scenes. A
centroid iteration algorithm using multiple features and a posterior probability criterion is presented
to solve these problems. The model representation of the object and the similarity measure are two key
factors that greatly influence the performance of the tracker. Firstly, this paper propose using a local
texture feature which is a generalization of the local binary pattern (LBP) descriptor, which we call
the double center-symmetric local binary pattern (DCS-LBP). This feature shows great discrimination
between similar regions and high robustness to noise. By analyzing DCS-LBP patterns, a simplified
DCS-LBP is used to improve the object texture model called the SDCS-LBP. The SDCS-LBP is able
to describe the primitive structural information of the local image such as edges and corners. Then,
the SDCS-LBP and the color are combined to generate the multiple features as the target model.
Secondly, a posterior probability measure is introduced to reduce the rate of matching mistakes.
Three strategies of target model update are employed. Experimental results show that our proposed
algorithm is effective in improving tracking performance in complicated real scenarios compared
with some state-of-the-art methods.

Keywords: object tracking; multiple features; posterior probability measure; centroid iteration

1. Introduction

Among the numerous subjects in computer vision, object tracking is one of the most important
fields. It has many applications such as human computer interaction, video analysis, and robot
control systems.

Many object tracking algorithms have been brought up in the last decades. Welch [1] proposed
a Kalman filter-based algorithm considering Gaussian and linear problems to track one’s pose
in interactive computer graphics. Later, a particle filter-based approach was introduced with
respect to non-Gaussian and non-linear systems [2,3]. Other common trackers used include optical
flow-based tracking [4], multiple hypothesis tracking [5,6], and kernel-based tracking [7,8]. Recently,
João F. Henriques et al. [9] proposed a new kernel tracking algorithm called high-speed tracking with
kernelized correlation filters that have been widely used. Unlike other kernel algorithms, the method
has the exact same complexity as its linear counterpart.

Though these algorithms have been successful in many real scenes, they are still confronted with
challenging problems, such as illumination changes, object occlusions, image noises, low illumination,
fast motions and similarly colored backgrounds. One of the effective solutions is the mean-shift
algorithm which can handle object partial occlusions and background clutters [10–12]. Mean-shift is a
non-parametric pattern matching tracking algorithm. It uses the color histogram as the target model
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and the Bhattacharyya coefficient as the similarity measure. The location of the target is obtained by
an iterative procedure [10]. The performance of the algorithm is determined by the similarity measure
and the target feature. Because of the background interference, the tracking result may easily get
biased or be completely wrong. The location of the target obtained by the Bhattacharyya coefficient [7]
or other similarity measures, such as normalized cross correlation, histogram intersection distance [13],
and Kullback–Leibler divergence [14] may not be the ground truth. To improve the accuracy of object
matching, a maximum posterior probability measure was proposed [15]. It takes use of the statistical
feature of the searching region and can effectively reduce the influence of background and emphasize
the importance of the target.

In some scenes with dramatic intensity or color changes, the effectiveness of the color decreases.
Thus, it is desirable that some additional features should be used as a complement to color to improve
the performance of the tracking system [16,17]. For example, Collins et al. [18] presented an online
feature selection algorithm based on a basic mean-shift approach. The method can adaptively select the
best features for tracking. They only used the RGB histogram in the algorithm, but it can be extended
to other features. Wang et al. [19] proposed integrating color and shape-texture features for reliable
tracking, and their method was also based on the mean-shift algorithm. Ning et al. [20] presented a
mean-shift algorithm using the joint color-texture histogram, which proved to be more robust and
insensitive than the color. Most of these methods used multiple features to describe the target model
in order to reduce the mistakes of tracking systems. Unfortunately, color, shape-texture silhouettes or
other traditional features can not track the target in some special scenes with variably scaled images
or rotated images. In recent years, some new features have been proposed to solve these problems
including Scale Invariant Feature Transform (SIFT) [21], Principal Components Analysis-Scale Invariant
Feature Transform (PCA-SIFT) [22], Gradient Location and Orientation Histogram (GLOH) [23],
Speed-up Robust Feature(SURF) [24], and Fast Retina Keypoint (FREAK) [25], just to name a few.
Among them, a texture feature named the local binary pattern (LBP) [26] has been widely used in
computer vision [27] due to its advantages of fast computation and rotation invariance. Recently, some
improvements have been made based on the LBP such as the center-symmetric local binary pattern
(CS-LBP) [28] and the local ternary pattern (LTP) [29].

This paper proposes a centroid iteration algorithm with multiple features based on a posterior
probability measure [15] for object tracking. The main goal is to solve the difficulties in real scenes
such as similarly colored backgrounds, object occlusions, low illumination color image and sudden
illumination changes. The proposed algorithm consists of a target model construction step and a
localization step. We improve the LBP descriptor to the DCS-LBP descriptor. For further improvement,
a simplified version of the DCS-LBP is used, which we call the SDCS-LBP. It can describe important
information of the image (the edge, the corner and so on). Then, this new texture feature and the color
are combined to constitute the multiple features used in the target model, which we call the color and
texture (CT) feature in this paper. After obtaining the target, three strategies for updating the target
model are presented to reduce the tracking mistakes.

The rest of the paper is organized as follows: in Section 2, a local color texture feature based on the
DCS-LBP along with its simplified form is introduced. In Section 3, the proposed tracking algorithm is
illustrated in detail. Experimental results are shown in Section 4. Section 5 draws conclusions.

2. Multiple Features

Feature descriptors are very important in matching-based tracking algorithms, especially for
applications in real scenes. In some simple scenes, color can work well because it distinguishes the
targets from the background easily and contains a lot of useful information of the target. However,
in complex scenes containing similarly colored backgrounds, object occlusions, low illumination color
image and sudden illumination changes, the tracker only using the color feature may easily miss the
target. One of the solutions is to integrate multiple features in the target model for reliable tracking.
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2.1. Local Binary Patterns (LBPs)

The LBP is an illumination invariant texture feature. The operator uses the gray levels of the
neighboring pixels to describe the central pixel. The texture model LBPP,R is expressed as follows [26]:

LBPP,R =
P−1

∑
i=0

s(gi − gc)2i,

s(x) =

{
1, x ≥ 0,

0, x < 0,

(1)

where P is the number of the neighbours and R is the radius of the central pixel. gc denotes the
gray value of the central pixel and gi denotes that of the P neighbours with i = 0, ..., P− 1, and s(x)
represents the sign function. Figure 1 gives an example of the LBP code when P = 8 and R = 1.

Figure 1. The original LBP code.

There are two extensions of the LBP [26]. The first one is to make the LBP as a rotation invariant
feature as proposed by Ojala et al. [26]. It is defined as:

LBPri
P,R = min(ROR(LBPP,R, i)|i = 0, 1, · · · , P− 1), (2)

where ROR(x, i) performs a circular bit-wise right shift on the P_bit number x by i times. Equation (2)
selects the minimal number to simply the function. They explained that there were 36 rotation invariant
LBP codes at P = 8, R = 1. The second one is the uniform LBP, which contains at most one 0–1 and
one 1–0 transition when viewed as a circular bit string. The uniform LBP codes contain a lot of useful
structural information. Ojala et al. [26] observed that although only 58 of the 256 8-bit patterns were
uniform, nearly 90% of all observed image neighborhoods were uniform and many of the remaining
ones contained noise. The following operator LBPriu2

8,1 is a uniform and rotation invariant pattern with
Uvalue of at most 2:

LBPriu2
P,R =

{
∑P−1

i=0 s(gi − gc)2i, U(LBPP,R ≤ 2),

P + 1, otherwise,

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|+
P−1

∑
i=1
|s(gi − gc)− s(gi−1 − gc)|.

(3)

If we set P = 8, R = 1, the nine most frequent patterns with index from 0 to 8 are selected from the 36
different patterns, which are the rotation invariant patterns as shown in Figure 2.
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Figure 2. Nine uniform patterns of LBPriu2
8,1 .

2.2. Center-Symmetric Local Binary Patterns (CS-LBPs) and Local Ternary Patterns (LTPs)

In Section 2.1, it can be seen that LBP codes have a long histogram, which require lots of
calculations. Heikkilä et al. [28] designed a method by comparing the neighboring pixels in order
to reduce computation. They calculated the center-symmetric pairs of the pixels as defined in the
following function:

CS-LBPP,R =

P
2−1

∑
i=0

s(gi − gi+ P
2
)2i,

s(x) =

{
1, x ≥ T,

0, otherwise.

(4)

This operator halves the calculations of LBP codes at the same neighbors. The LBP threshold
depends on the central pixel, which makes the LBP sensitive to noise especially in flat regions of the
image while the CS-LBP threshold is a constant value T that can be adjusted.

Tan et al. [29] extended the LBP to 3-valued codes, called the local ternary pattern (LTP). They set
the codes around gc in a zone of width ±T to one. The codes above it are set to 2 and the ones below it
are set to 0. It is defined as:

LTPP,R =
P−1

∑
i=0

s(gi − gc)3i,

s(x) =


2, x ≥ T,

1, −T < x < T,

0, x ≤ −T.

(5)

Here, T is the same threshold as the CS-LBP. Thus, the LTP is more insensitive to noise than the
CS-LBP. However, it is no longer invariant to gray-level transformations.

2.3. Double Center-Symmetric Local Binary Patterns (DCS-LBPs)

In Section 2.2, it is analyzed that the CS-LBP is more efficient than the LBP in calculation, but
they are both sensitive to noise. The LTP is insensitive to noise, but its computation is too complex.
A simple way is to combine the LTP and the CS-LBP, which yields the CS-LTP. It is defined as:

CS-LTPP,R =

P
2−1

∑
i=0

s(gi − gi+ P
2
)3i,

s(x) =


2, x ≥ T,

1, −T < x < T,

0, x ≤ −T.

(6)
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By definition, the CS-LTP retains the advantages of the CS-LBP and the LTP, but the ternary values
are hard to calculate in the image.

Thus this motivates us to generate a DCS-LBP operator. The operator is divided into two parts:
DCS-LBP(upper)

P,R , in which the gray levels of the center-symmetric pixels above T are quantized to one

while those below T are quantized to zero, and DCS-LBP(lower)
P,R , in which the center-symmetric pixels

on the other side below −T are quantized to one while those below T are quantized to zero.
DCS-LBPupper

P,R = ∑
P
2−1
i=0 s1(gi − gi+ P

2
)2i, s1(x) =

{
1, x ≥ T,

0, otherwise,

DCS-LBPlower
P,R = ∑

P
2−1
i=0 s2(gi − gi+ P

2
)2i, s2(x) =

{
1, x ≤ −T,

0, otherwise.

(7)

T is the threshold used to eliminate the influence of weak noise. The value of T determines the
anti-noise capability of the operator. The upper-part and the lower-part of the DCS-LBP should be
calculated separately and then be combined together for use. By definition, there are 2× 2

P
2 different

values, which are much less than the basic LBP (2P) and the LTP (3P), and are close to the CS-LBP (2
P
2 )

and the CS-LTP (3
P
2 ). When P = 8, R = 1, the DCS-LBP has 32 different values. Table 1 shows

examples of all of these five local patterns. The first row are three local parts of an image including
texture flat areas, texture flat areas with noise, and texture change areas. The threshold is set to be 5.
It can be seen that the LBP and the CS-LBP can not exactly distinguish between texture flat and change
areas. The other three patterns are distinguishable and are all insensitive to noise, among which the
computational complexity of the DCS-LBP is lower than the other two.

It should be noted that there is a great amount of redundant information in the DCS-LBP, which
might cause matching errors. Thus, further optimization is necessary. The DCS-LBP patterns also
have the rotation invariant identity as shown in Figure 3. There are nine rotation invariant patterns.
Similarly, both DCS-LBP(upper)

P,R and DCS-LBP(lower)
P,R have the same uniform patterns as the LBP. Pattern

5 to Pattern 8, which cannot describe the primitive structural information corresponding of the local
image, are not uniform patterns. Pattern 0 to Pattern 4 each has its identity. Pattern 0 and Pattern 1
represent noise points, dark points and smooth regions. Pattern 2 represents the terminal. Pattern
3 represents angular points. Pattern 4 represents boundary. Thus, we improve the DCS-LBP to its
simplified version (called SDCS-LBP), which retains only the patterns with index from 0 to 4.

Figure 3. The nine rotation invariant patterns of the DCS-LBP.
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Table 1. Examples of five coding rules (T = 5).

Image local region

Texture flat Texture flat areas Texture change
areas with noise areas

LBP pattern

[11111111]2 [10000111]2 [10000111]2

CS-LBP pattern

[0000]2 [0000]2 [0000]2

LTP pattern

[11111111]3 [11111111]3 [21111122]3

CS-LTP pattern

[1111]3 [1111]3 [0001]3

DCS-LTP pattern

[0000]2[0000]2 [0000]2[0000]2 [1000]2[0011]2

2.4. Local Color Texture Feature (CT Feature)

Feature representation of the target model is very important for mean-shift based tracking
algorithms. The original mean-shift algorithm selects the RGB color space (16 × 16 × 16 = 4096)
as the features. However, in real scenes which contain similarly colored background, object occlusion,
low illumination color image and sudden illumination changes, the original mean-shift algorithm can
not track the target continuously. Inspired by [16], we consider designing a new feature combining the
color and the texture.

This paper chooses to use the HSV color space, which contains Hue, Saturation and Value.
The Value, which is measured with some white points, is often used for description of surface colors
and remains roughly constant even with brightness and color changes under different illuminations.
Hence, we replace the Value with the SDCS-LBP in the HSV space as the target model. The new feature
which combines the color and the texture is called the CT feature in this paper. The CT feature can be
considered as a special texture feature (terminal, angular point, boundary and some special points)
with a certain color. The HSV color space is reduced to the size of 8× 8 after excluding the part of
the Value. Thus, the dimension of the CT feature is 640 (8× 8× 5× 2 = 640). Figure 4 shows three
target models. For the CT feature, Figure 4b,c is the same and are different from Figure 4a, which can
not be distinguished using the color alone. The CT feature has the rotation invariant identity and can
distinguish between different texture patterns.
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Figure 4. A particular target model.

The calculation process of the CT feature is as follows. Firstly, let Pi be the set of pixels of the
target. Calculate DCS-LBPupper

P,R , DCS-LBPlower
P,R and the HSV color space of each point in Pi in turn.

If the value of DCS-LBPupper
P,R or DCS-LBPlower

P,R does not belong to the SDCS-LBP, the point will be
seen as a meaningless point, which should be eliminated. Secondly, calculate CTupper

Pi
and CTlower

Pi
by

multiplying the SDCS-LBP, the Hue and the Saturation. Third, after all the points of the target have
been calculated, hisupper(H, S, T) and hislower(H, S, T) of the target are worked out by putting the CT
feature into the histograms. The histogram of the target model (his(CT)) is obtained by combining
hisupper(H, S, T) and hislower(H, S, T). Figure 5 shows the representation of a target model by the
proposed method. Figure 5a is the first frame of a sequence. The target is showed in Figure 5b.
The histogram of the CT feature is showed in Figure 5c.

(a) (b)

0 100 200 300 400 500 600
0

50

100

150

200

250

300

(c)

Figure 5. The representation model of the target by the proposed algorithm. (a) 1st frame;
(b) target model region; (c) the histogram of CT feature.

3. Tracking Algorithm Using the CT Feature

Recently, many similarity measures are used in object tracking algorithms, such as the Euclidean
distance, the Bhattacharyya coefficient, the histogram intersection distance, and so on. However, there
is still lots of mismatching or misidentification in the tracking process. One of the reasons is that the
target model contains some background pixels [15]. This paper proposes using the similarity measure
based on maximum posterior probability to solve the problem.

3.1. Maximum Posterior Probability Measure

By introducing the candidate area, the maximum posterior probability measure (PPM) is able to
decrease the influence of background and increase the importance of the target model in the tracking
process. The PPM is a function to evaluate the similarity of the candidate and the target defined as:

ρ(p, q) =
1
m

mu

∑
u=1

puqu

su
, (8)

where pu and qu are, respectively, the histogram features of the target candidate region and the target
model; su is the feature of the search region of the target candidate; m is the pixel number of the target
model with u = 1, · · · , mu; and mu is the dimension of feature.
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Now, we define a vector ω, which is computed according to Equation (9). u(j) is the feature of the
jth pixel; ωj is the PPM of the jth pixel of the search region; Ai is the set of pixel of the ith target candidate
region in the search region. Thus, the original PPM can be converted into a simple one as [15]:

ρ(pi, q) =
1
m ∑

j∈Ai

ωj,

ωj =


qu(j)
su(j)

, su(j) > 0,

0, su(j) = 0.

(9)

From the function, it can be found that the PPM and ωj have a liner relationship. Therefore,
we compute the incremental part to obtain the PPM of neighborhood, which makes the recursive
algorithm a suitable one.

According to Equation (9), the PPM value of each pixel will be calculated, respectively. Thus,
the matching process is simplified to find a target candidate region with the biggest sum of PPM value.
The similarity measure of the target candidate and the target model is:

ρyi = ∑
xi∈Ayi

g(xi),

g(xi) =
qu(xi)

su(xi)
,

(10)

where {xi}i−1,··· ,m is the set of pixel’s position with the present frame centered at yi; g(xi) is the PPM
value at xi; and Ayi is the target candidate centered at yi. Supposing the PPM value of each pixel as
density and the similarity of the target candidate region as mass, the center of mass yi+1 is the target:

yi+1 =
∑xi∈Ayi

xig(xi)

∑xi∈Ayi
g(xi)

. (11)

Figure 6 shows the PPM of the target model. The target bounded by the blue box and the target
candidate region bounded by the green box in Figure 6a are resized. The target model and the target
candidate region are showed in Figure 6b. The PPM of the target model, which holds monotonic and
distinct peak shapes, is showed in Figure 6c.

(a) (b)
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Figure 6. The maximum posterior probability of the target model. (a) 1st frame; (b) target candidate
region; (c) the PPM of target model.

3.2. Scale Adaptation and Target Model Update

During the tracking process, the target always changes in shape, size, or color. Thus, the target
model must be updated. The update must abide by certain rules to prevent the tracking drift.
Three strategies are proposed for the target model update.
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1. Introduce an adaptive process to fit the target region to a variable target scale for the purpose of
precise target tracking.

2. Compute the similarity measure of the scale adapted target. If it is greater than a parameter,
update the target model.

3. Introduce a parameter into the tracking algorithm to update part of the target model.

Strategy 1 introduces a scale adaptation function given by [15]:

ω(k + 1) =


ω(k + 2) + 2, if φ̄−1 > 0.8 and φ̄0 > 0.75 and φ̄1 > 0.6,

ω(k− 2)− 2, if φ̄0 < 0.6 and φ̄1 < 0.3,

ω(k), otherwise,

(12)

where ω(k) is the size of the target region at frame k. φ̄i(i = −a, . . . , 0, . . . , a) is the average of the
PPM of each pixel. Furthermore, i < 0 means the ith outer layer. i = 0 represents the target region
border. a is the comparison step of scale adaptation and is set to 1 without losing the generality. In
Equation (12), the expanding condition means the pixels around the border are likely to be a part of
the target. The contracting condition means the target region should be reduced consequently. The
function is an empirical one. The parameters should be trained by a great number of experiments.

Strategy 2 shows that the frame will not be updated until the similarity measure is greater than a
certain parameter. In real scenes, some sudden changes may cause the tracking drift, so the update can
not work every frame. p is the current frame model, while q is the target model. φ(p, q) is the similarity
of the PPM for the current frame and the target model. If Equation (13) is satisfied, we considered p as
the reliable CT feature model, and update the target model with p:

φ̄(p, q) ≥ δ. (13)

Strategy 3 introduces a parameter into the algorithm to prevent the target model from being
updated completely. Because of the limitations of the description to the target model, p can not take
the place of q. The γ parameter is used to partially update the target model:

q′ = γp + (1− γ)q, (14)

where γ is the update factor; and q′ is the updated CT feature model. In our experiment, γ is set to be
a small value to adapt the changes of the target slowly.

3.3. Tracking Algorithm

Initialization: select the target object and compute the histogram his(C, T) of the target model
as qu. The center of the target yi is the initial position of the tracking object. Let {xi}i−1,··· ,m be the set
of pixel’s position with the present frame centered at yi.

1. Set yi as the initial position. Calculate his(C, T) of the search region as Su.
2. Calculate the PPM values g(xi) of each pixel of the region by Equation (10).
3. Initialize the number of iterations as k = 0.
4. Calculate the target location by Equation (11). k = k + 1.
5. Repeat Step 4 until ‖yi+1 − yi‖ < ε or k ≥ N.
6. Adjust the scale of the target region by Equation (12)
7. Decide whether to update the target by Equation (13). If satisfied, update the target model by

Equation (14).
8. Read the next frame of the sequence and turn to Step 1.

If the distance between two iterations is less than ε or the number of iterations exceeds N,
the algorithm is considered converged.
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4. Experiments

The environments are set in some real scenes with similarly colored backgrounds, object
occlusions, low illumination color image, and sudden illumination changes [12]. Eight public test
sequences are used in experiments which are from the Visual Object Tracking challenge (http://
votchallenge.net/index.html) and the Visual Tracker Benchmark [30] (http://www.visual-tracking.net)
(see Figure 7). As the visual tracking benchmark, the test sequences are tagged with the following four
attributes: low illumination color image (LI), sudden illumination changes (IC), object occlusion (OC),
similarly colored background (SCB) (see Table 2). We designed a tracking system based on Matlab
R2014a (8.3.0.532). All the trackers run on a standard PC (Intel (R) Core (TM) i5 2.6 GHz CPU with
8 GB RAM).

We compared our algorithm with some state-of-the-art methods including classical mean-shift
tracking (KBT) [10], PPM-based color tracking algorithm (PPM) [15], a mean-shift algorithm using the
joint color-texture histogram (LBPT) [20] and high-speed tracking with kernelized correlation filters
(KCF) [9]. In addition, extra experiments are designed to test the function of the two major parts of the
proposed method-the CT feature and the PPM separately. One of the experiments that we use is the CT
feature with the Euclidean distance (CT&ED) instead of the PPM as the similarity measure. The other
one that we use is the LBP feature with the PPM (LBP&PPM) instead of the CT feature. Both of the
two trackers are tested in the experimental framework. All the methods aim at tracking one object in
our experiments. The target will be tracked continuously at the rest of the frames.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Eight test sequences used in current evaluation. (a) basketball; (b) car; (c) coke; (d) doll;
(e) lemming; (f) matrix; (g) trellis; (h) woman.

Table 2. Eight sequences in the experiment.

Sequences Size Frame fps Object Number Attributes

car 320 × 240 368 30 1 IC SCB LI
basketball 576 × 432 725 30 >8 IC OC SCB

coke 640 × 480 291 30 1 IC OC SCB
doll 400 × 300 3872 30 1 IC OC

lemming 640 × 480 1336 30 1 IC OC
matrix 800 × 336 100 30 2 IC OC SCB LI
Trellis 320 × 240 569 30 1 IC SCB LI

woman 352 × 288 597 30 1 IC OC

4.1. Parameter Setting

The size of the search region of our methods is set to 2.5 times the target size. In addition, there are
five parameters in our tracking algorithm. We set δ = 0.85 and γ = 0.1 for the target model update in
Section 3.2. δ is the control parameter used to determine whether update the model or not. N and ε are
the iteration parameters for the tracking algorithm in Section 3.3. N = 20 is the maximum number

http://votchallenge.net/index.html
http://votchallenge.net/index.html
http://www.visual-tracking.net
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of the iteration, and ε = 0.5 is the minimum threshold of the iteration. The threshold parameter T
is important in our algorithm. In order to test the sensitivity of the parameter, the central location
error (CLE) is used to describe the tracking result. The CLE is defined as the Euclidean distance
between the center of the box predicted by the tracker and that of the box of the ground truth. We set
T = 1, 3, 5, 7, 9 for the calculation of the DCS-LBP. The results of eight test sequences are showed in
Table 3. It can be seen that our algorithm performs well on all the tests when T is a small value
between 1 to 5. In addition, it only missed the target in the basketball test sequence when T gets larger.
Therefore, we set T = 1 in the experiments.

Table 3. The parameter setting (CLE).

SEQUENCE T = 1 T = 3 T = 5 T = 7 T = 9

basketball 7 21 20 278 255
car 25 27 27 27 25

coke 19 18 17 14 16
doll 26 27 23 25 26

lemming 21 20 20 21 22
matrix 23 24 24 24 24
Trellis 13 13 12 12 12

woman 10 7 9 11 8

Average CLE 18 20 19 52 49

4.2. Qualitative Comparison

Some key frames of each sequence are given in Figure 8. The results of different trackers are
shown by the bounding boxes in different colors.

(1) In the basketball sequence, the tracked player moves fast. The environment changes many times.
CT&ED lose the target at frame 80. KBT, PPM, and LBP&PPM fail at frame 473, when the player
goes through his partner. KCF, LBPT and our tracker can successfully locate the object.

(2) In the car sequence, the target is a car, but the road environment is dark. There are bright lights
in the background. All of the trackers can merely track the car in the first 200 frames. However,
at frame 260, the car turns right, and only KCF can track the car accurately.

(3) In the coke sequence, the target is a coke and the light changes three times. The coke moves
fast and is blocked by plants sometimes. When the coke is blocked by the plants the first time,
LBTP misses the target. At frame 221, the occlusion and the illumination happen at the same
time, and KBT and PPM obtain the wrong place. During the tracking, both KCF and our method
perform better than the others.

(4) The doll sequence has 3872 frames, which is a very long sequence. The target is a doll. It is
blocked by the hand, and the scale of it changes sometimes. Because of the similar color with the
background, LBP&PPM, LBPT, and CT&ED fail at frame 2378. KCF gives the best result followed
by PPM and our tracker.

(5) The lemming sequence is a challenging situation with fast motion, significant deformation and
long-term occlusion. KCF missed the target at frame 380 because the target moves fast with the
similar background. Our method is more effective than the others during the tracking.

(6) In the matrix sequence, the target is the head. The sequence contains low illumination color image,
sudden illumination changes, object occlusion, and similarly colored background. Our tracker
gives the best result. At frame 30, all of the methods except ours lose the target. Our tracker
misses the target at frame 90, when the target has dramatic changes in shape.

(7) In the trellis sequence, the target is a boy’s face in an outdoor environment. The situation has
severe illumination and poses changes. All trackers except KCF and our tracker show some
drifting effects at frame 270. The CT&ED loses the target at frame 410. Only KCF and our tracker
show a good performance along the whole sequence.
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(8) In the woman sequence, the track is a walking woman in the street. The difficulty lies in the fact
that the woman is greatly occluded by the parked cars. All the tracks fail at frame 124 except KCF
and our tracker because of the occlusion and the small size of the target.

Basketball#80Basketball#80Basketball#80Basketball#80Basketball#80Basketball#80Basketball#80 Basketball#473Basketball#473Basketball#473Basketball#473Basketball#473Basketball#473Basketball#473 Basketball#632Basketball#632Basketball#632Basketball#632Basketball#632Basketball#632Basketball#632

Car#180 Car#289 Car#392

Coke#76Coke#76Coke#76Coke#76Coke#76Coke#76Coke#76 Coke#221Coke#221Coke#221Coke#221Coke#221Coke#221Coke#221 Coke#276Coke#276Coke#276Coke#276Coke#276Coke#276Coke#276

Doll#2379Doll#2379Doll#2379Doll#2379Doll#2379Doll#2379Doll#2379 Doll#2637Doll#2637Doll#2637Doll#2637Doll#2637Doll#2637Doll#2637 Doll#3821Doll#3821Doll#3821Doll#3821Doll#3821Doll#3821Doll#3821

Lemming#380Lemming#380Lemming#380Lemming#380Lemming#380Lemming#380Lemming#380 Lemming#900Lemming#900Lemming#900Lemming#900Lemming#900Lemming#900Lemming#900 Lemming#1100Lemming#1100Lemming#1100Lemming#1100Lemming#1100Lemming#1100Lemming#1100

Matrix#30Matrix#30Matrix#30Matrix#30Matrix#30Matrix#30Matrix#30 Matrix#50Matrix#50Matrix#50Matrix#50Matrix#50Matrix#50Matrix#50 Matrix#80Matrix#80Matrix#80Matrix#80Matrix#80Matrix#80Matrix#80

Trellis#270Trellis#270Trellis#270Trellis#270Trellis#270Trellis#270Trellis#270 Trellis#410Trellis#410Trellis#410Trellis#410Trellis#410Trellis#410Trellis#410 Trellis#509Trellis#509Trellis#509Trellis#509Trellis#509Trellis#509Trellis#509

Woman#124Woman#124Woman#124Woman#124Woman#124Woman#124Woman#124 Woman#363Woman#363Woman#363Woman#363Woman#363Woman#363Woman#363 Woman#597Woman#597Woman#597Woman#597Woman#597Woman#597Woman#597

Figure 8. Experiment results of our proposed algorithm, KBT [10], PPM [15], LBPT [20], KCF [9],
LBP&PPM and CT&ED on eight challenging sequences (from top to bottom are Basketball, Car, Coke,
Doll, Lemming, Matrix, Trellis, Woman, respectively).
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4.3. Quantitative Comparison

For performance evaluation and comparison, two metrics are considered: the CLE and the success
rate (SR), which have been widely used in object tracking [12,31]. A target is considered as successfully
tracked if the overlap region between the predicted bounding box and the ground truth exceeds 50%
in a frame [32]. The SR is defined as

SR =
area(Mt ∩Mg)

area(Mt ∪Mg)
, (15)

where Mt is the bounding box predicted by the tracker. Mg is the ground truth bounding box.
The function area(•) means to calculate the area of a region. The CLE has been described in Section 4.1.
The results of different methods on eight test sequences are showed in Tables 4 and 5. It can be seen
from Tables 4 and 5 that our algorithm achieves an SR of 94% and a CLE of 18 which are better than
the other algorithms. We also report the central-pixel errors frame-by-frame for each video sequence
in Figure 9.

Now, we discuss the influence of the two major parts in our method: the CT feature and the PPM,
separately. First, to test the influence of the similarity measure, we compare the trackers using the CT
feature and different measures: the Euclidean distance (CT&ED) and the PPM (which is the proposed
method—CT&PPM). It can be seen from Tables 4 and 5 that the PPM achieves an SR of 94% and a CLE
of 18, which are better than those achieved by the Euclidean distance (40% and 122%). Second, to test
the influence of the feature, we compare the trackers using the PPM and different features: the color
feature (PPM), the LBP (LBP PPM) and the CT feature (which is the proposed method—CT&PPM).
It can be seen from Tables 4 and 5 that the CT feature outperforms the others with the highest SR
and a lowest CLE. The results demonstrate the effectiveness of both the CT feature and the PPM in
improving the tracking accuracy.

Table 4. Success rates (%) of the proposed method compared with the other trackers.

SEQUENCE KBT [10] PPM [15] LBPT [20] KCF [9] Proposed LBP&PPM CT&ED

basketball 65 68 100 100 100 56 3
car 65 20 63 100 71 76 51

coke 18 37 7 94 94 48 89
doll 88 100 79 100 97 57 56

lemming 99 99 83 68 100 38 24
matrix 41 15 7 31 91 57 49
Trellis 67 90 27 100 100 87 27

woman 93 53 19 94 95 42 18

Average success rate 67 60 48 86 94 58 40

Table 5. Center location errors of the proposed method compared with the other trackers (pixels).

SEQUENCE KBT [10] PPM [15] LBPT [20] KCF [9] Proposed LBP&PPM CT&ED

basketball 113 68 11 8 7 123 288
car 29 77 31 6 25 16 36

coke 119 99 153 19 19 64 31
doll 25 12 42 8 26 51 67

lemming 13 12 61 78 20 149 132
matrix 75 14 249 76 23 61 85
Trellis 54 26 123 8 13 30 142

woman 22 85 145 10 10 46 196

Center location error 56 49 102 27 18 66 122
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Figure 9. Fame-by-frame comparison of center location errors (in pixels) on eight challenging
sequences. Based on the experimental results, our algorithm is able to track targets accurately and
stably. (a) Basketball; (b) Car; (c) Coke; (d) Doll; (e) Lemming; (f) Matrix; (g) Trellis; (h) Woman.
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4.4. Speed Analysis and Discussions

Table 6 lists the needed computation times of the five trackers on our test platform. The trackers
run from 160 fps to 60 fps in the current Matlab implementation. The speed of the trackers depends on
the area of the candidate region for all the test sequences and the number of iterations. Comparing with
KBT, PPM, and KCF, LBPT and the proposed method spend lots of time on texture feature computation.
However, they just calculate parts of useful points. Comparing with KBT, KCF and LBPT, PPM and
our algorithm can calculate the target model and the search region by joint points to decrease the
computational complexity. Because the dimension of the CT feature is 640 compared with KBT, PPM,
LBPT, KCF, our tracker takes more time than the other trackers. However, the computational time can
satisfy real-time applications.

Table 6. Computation speed comparison (fps).

SEQUENCE KBT [10] PPM [15] LBPT [20] KCF [9] Proposed

Average success rate 164 100 88 165 66

5. Conclusions

A new object tracking method has been proposed in this paper. The algorithm can overcome
some difficulties in real scenes such as object occlusion, sudden illumination changes, similarly colored
backgrounds, and low illumination color images. This work integrates the outcomes of the color
texture feature and PPM centroid iteration tracking. A color texture model called the CT feature is
introduced. In addition, we propose using a posterior probability measure with the CT feature for
target location. Three target model update strategies are designed to improve the tracking accuracy.

The tracking algorithm only using color can not track the target at similarly colored regions or
low illumination regions. The combination of the color and the texture feature can overcome these
difficulties, and the SDCS-LBP is a texture feature, which is robust against gray-scale changes. In real
scenes, our algorithm shows a good performance. As our method is based on the histograms of the
regions, it can overcome the problem of object partial occlusion. PPM measure and the target update
strategies can reduce the tracking mistakes. In the experiments, our algorithm performs better than
others for most of the test sequences. Future work will be dedicated to decreasing the complexity of
the algorithm.
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