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Abstract: The acoustic emission (AE) signals of metal materials have been widely used to identify the
deformation stage of a pressure vessel. In this work, Q235 steel samples with different propagation
distances and geometrical structures are stretched to get the corresponding acoustic emission signals.
Then the obtained acoustic emission signals are de-noised by empirical mode decomposition (EMD),
and then decomposed into two different frequency ranges, i.e., one mainly corresponding to metal
deformation and the other mainly corresponding to friction signals. The ratio of signal energy between
two frequency ranges is defined as a new acoustic emission characteristic parameter. Differences
can be observed at different deformation stages in both magnitude and data distribution range.
Compared with other acoustic emission parameters, the proposed parameter is valid in different
setups of the propagation medium and the coupled stiffness.

Keywords: acoustic emission; metal deformation degree; tensile test; signal energy ratio; empirical
mode decomposition

1. Introduction

Pressure vessels have been widely used in the process industry. A unexpected vessel leak not
only interrupts production in an industrial facility, but also endangers personal safety [1]. Great
attention has been paid to monitor and access its working condition in both industry and academia.
Most vessel leaks are caused by irreversible deformation of metal material [2]. The deformation of
metals can be graded into four stages: elastic stage, yield stage, uniform plastic stage, and necking
stage. Different deformation stages correspond to different degrees of damage of the metals. At the
elastic stage, a linear relationship between stress and extension is usually observed for most metals
and there are no damages for the metals after the external force is removed. The permanent plastic
deformation happens at the yield stage. Then obvious plastic deformation is observed, which marks
the coming of the uniform plastic stage. It would be very dangerous if no proper measures are applied.
An accident happens when the necking stage starts [3,4]. So the deformation degree has been widely
used to characterize the condition of pressure vessels while in service [5]. There are different methods
available for the detection of metal deformation. For example, ultrasonic detective method is widely
used to monitor the slow fatigue crack growth in aluminum and magnesium alloys, where atmospheric
moisture is a significant factor which may influence the endurance data [6]; Fiber optic Bragg grating
(FOBG) method is an effective way to monitor the true strain on the surface of specimens, but the
main problem is to define the mounting of the FOBG sensors on the specimens [7]; A visualization
system utilizes a 2D laser displacement sensor to capture the deforming profile of the workpiece
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during operation, and displays the results in graphical form. This provides engineers and researchers
with an intuitive means of analyzing and diagnosing the deformation process during sheet metal
forming [8]. In general, they can be approximately classified as acoustic emission (AE) technique,
thermal infrared testing method, ultrasonic method, resistance method, etc. The AE technique, as the
only non-destructive examination (NDE) method, is able to assess volumetric integrity during a
pressure vessel under loading [9–14]. The main AE during the deformation of metals is generated
from massive dislocation activities in grain boundaries [15]. First dislocation activities take place at
the yield stage. Then intensive increasing of dislocation activities is observed and a Luders band is
formed eventually. Plastic deformation begins in this stage. At uniform plastic stage, AE activities are
observed, too. The decrease of AE counts in this stage is connected with the reduction of dislocation
activities. There are no dislocation activities at other two stages [16,17]. Meanwhile, the AE activities in
the deformation of metals follow the Kaiser effect, first investigated by Joseph Kaiser, which expressed
that little or no AE signals will be recorded before the previous maximum stress level is achieved [18].
For example, if the external force is unloaded at uniform plastic stage, there will be little or no AE
signals recorded if external force is introduced again until it reaches the previous uniform plastic stage.

There exists a one to one correspondence between obtained AE signals and dislocation activities
in different deformation stages [19]. If the obtained AE signals are processed properly, the deformation
degree of metals can be identified correctly. However, the obtained AE signals are always accompanied
by frictions between sample and device, and background noises in both the measurement device
and the environment [20]. Furthermore, AE signals from the deformation of metals are usually
nonlinear and non-stationary [21]. General signal processing methods, such as Fourier Transform,
cannot fulfill the requirements of processing the result. A number of studies have been carried out
to develop methods for filtering out the noise signals [20,22]. Wavelet transform (WT) and empirical
mode decomposition (EMD) have been widely used in those methods [23,24]. Both transforms enable
separation of the AE signals into different frequency ranges. Compared with WT, EMD calculation
does not involve any convolution, which could save some computational time [25]. However, EMD
calculation generates undesirable intrinsic mode functions (IMF) at a low-frequency range, which
may cause misinterpretation [26]. On the contrary, it is hard to obtain a satisfactory resolution using
WT analysis at a high-frequency range [25]. The extracted AE signals are mainly characterized by AE
count, rise-time, amplitude, or energy. In these characteristics parameters, the AE count is used to
estimate different deformation stages of metals [27], and the distributions of amplitude or energy of
AE signals are also consistent with the internal dislocation movement of metals [28]. It is also reported
that the change of characteristics parameters is influenced by the propagation medium, the coupled
stiffness, and the AE sensor [29].

Most methods proposed in literature are based on the AE signals received from a measurement
device, with no further consideration of the signal source [30]. When AE signals are recorded, it
contains the information from its source, propagation medium, coupled stiffness, and AE sensor.
They can be expressed by the characteristic or transfer functions of the source, the propagation
medium, the coupled stiffness, and the sensor (Hs, Hm, Hc, and Ht). In frequency domain, the transfer
function of the AE signals, HAE, is given by the product of the four transfer functions above [31,32]:

HAE = Hs·Hm·Hc·Ht. (1)

HAE is the combination of all these factors. In order to improve analysis results, the feature
information of the Hs shall be discussed in detail. The Hs includes tensile source, friction source,
and other environmental sources [33]. At the same time, the frequencies of the three AE sources
mentioned above, from certain failure modes, almost remain unchanged [16]. One of the most
significant researches on dynamic deformation degree of metals is the frequency characterization of
the tensile source and some noise sources during the deformation of metals.

It has been proved that the friction signals do not follow the Kaiser effect, which is different from
the AE signals of metal deformation [34,35]. In other words, the total energy of original friction signals
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remains unchanged during the deformation of metals [35]. The difference of the received friction
signals at different degrees of metal deformation results from the propagation medium, the coupled
stiffness, and the AE sensor, while these factors affect other signals at the same time. Frequencies of
received signals are corresponding to those of their source signals [22], which makes it possible to
separate signals from different sources by frequency analysis. If the friction signals could be extracted
and used as a baseline, it may help to reduce the influence of the propagation distance, the coupled
stiffness, and the sensor. For this purpose, the tensile experiments with different propagation distances
and geometry structures are designed and analyzed in Section 2. The rest of this paper is organized in
the following manner. In Section 3, the filtering methods are introduced, and a new AE characteristic
parameter is proposed. The filtering and deformation degree results and discussion are included in
Section 4. The conclusions are drawn in Section 5.

2. Experimental

Q235 is the common material of pressure vessels, in addition to the element iron, it contains
relatively numerous amounts of carbon, manganese, silicon, sulfur, and phosphorus. Specimens made
of Q235 plain carbon steels with two different geometry structures were chosen for tensile test (Table 1)
in this work. Five different propagation distances of elastic waves are adjusted by the distance between
fracture and the location of sensor.

Table 1. Geometry structure of tensile specimen and the distance between fracture and the location of
the sensor.

Scheme
Geometry Structure Distance between Fracture and

the Location of Sensor (mm)Width (mm) Thickness (mm) Length (mm)

1 8 5 88 115
2 8 5 88 110
3 8 5 88 105
4 8 5 88 100
5 8 5 88 90
6 12 3 60 90

The measurement of the stress-time curve was obtained by an MTS-810 electro-hydraulic
servo-controlled testing machine with a maximum loading of 10 t. AE signals were collected by
a multi-channel SAMOS acoustics emission system, which is composed of a PC system, pre-amplifiers
and sensors. An R15-ARPHA sensor was selected in this tensile test with a peak frequency of 150 kHz,
so that the environmental noises can be eliminated to some extent. The AE sensors were attached
firmly to the surface of the substrate by a thin film of Vaseline to ensure maximum ultrasonic signal
transmission. The tensile system and acoustic emission system were connected by cables so that the
load–time curves and AE characteristics could be recorded simultaneously. Figure 1 shows the tensile
environment and schematic of the testing system.

AE data from three channels were recorded for all tests. In this system, AE signals that traveled
through tensile specimen were received first, AE signals were then filtered and magnified by an AEwin
TM analyzer, and recorded automatically by a computer at the end.



Sensors 2017, 17, 789 4 of 13
Sensors 2017, 17, 789 4 of 13 

 

 
Figure 1. The tensile environment and schematic of testing system. 
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with the aim of eliminating the influence of the propagation medium, the coupled stiffness, and the 
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3.1. The Filtering Methods 

The analysis of AE signals from the deformation of metals is seriously affected by environmental 
noise and friction signals. The AE signals during deformation in the time domain and the frequency 
domain are plotted in Figure 2. 
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As indicated in the previous section, frequency domain methods are available to filter out noise 
contents from the original signals. In this work, both friction signals and signals from metal 
deformation need to be preserved after filtering. Most of them exist in a high-frequency range. 
Compared with WT, it is easy to obtain a satisfactory resolution using EMD analysis at the high-
frequency range [25]. Also, to use WT, an appropriate wavelet base function had to be selected 
beforehand. 

EMD is one of the elements of Hilbert-Huang Transform (HHT) proposed by Norder E. Huang 
in 1998 [36]. In EMD, the intrinsic oscillatory modes are identified by their characteristic time scales 

Figure 1. The tensile environment and schematic of testing system.

3. Methods

The obtained AE signals contain signals from metal deformation, friction signals, and
environmental noise. Only signals from metal deformation and friction signals are of interest in
this work. Thus, they should be extracted first. Then a new AE characteristic parameter will be
studied with the aim of eliminating the influence of the propagation medium, the coupled stiffness,
and the sensor.

3.1. The Filtering Methods

The analysis of AE signals from the deformation of metals is seriously affected by environmental
noise and friction signals. The AE signals during deformation in the time domain and the frequency
domain are plotted in Figure 2.
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Figure 2. Plots in the time domain (left) and the frequency domain (right) for obtained acoustic
emission signals: (a) elastic stage; (b) yield stage; (c) uniform plastic stage; and (d) necking stage.

As indicated in the previous section, frequency domain methods are available to filter out
noise contents from the original signals. In this work, both friction signals and signals from
metal deformation need to be preserved after filtering. Most of them exist in a high-frequency
range. Compared with WT, it is easy to obtain a satisfactory resolution using EMD analysis at
the high-frequency range [25]. Also, to use WT, an appropriate wavelet base function had to be
selected beforehand.
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EMD is one of the elements of Hilbert-Huang Transform (HHT) proposed by Norder E. Huang in
1998 [36]. In EMD, the intrinsic oscillatory modes are identified by their characteristic time scales in the
signals, and then the signals are decomposed into a collection of IMFs. The IMF, containing different
local features of the original signals, can be employed to express the original signals in a complete,
adaptive, and orthogonal way.

The IMF satisfies the following properties: (1) the number of extrema of IMF is equal to, or at
most different by one to the number of zero crossings, (2) the mean value between the maximum and
the minimum value of the envelope is equal to zero at any point [25]. The IMF satisfying the above
conditions is a mono-component signal. Thus, the decomposition method is used with the envelopes
composed by the local maxima and minima separately. Once the extrema are ascertained, all the local
maxima are connected by a smooth line curve as the upper envelope xmax(t). The lower envelope,
named xmin(t), can be obtained by the same procedure. Their mean is designated as m1(t) and the
difference between the original signal, X(t) and m1(t) is the first component h1(t), i.e.,

m1(t) =
xmax(t) + xmin(t)

2
(2)

h1(t) = X(t)− m1(t). (3)

The previous calculation will be repeated to change the original signal to h1(t) until the first IMF
is obtained as C1(t). The difference between X(t) and C1(t) is the next original signal r1(t), i.e.,

r1(t) = X(t)− C1(t)r2(t) = r1(t)− C2(t) . . . rn(t) = rn−1(t)− Cn(t). (4)

As rn(t) cannot meet the requirements of the IMF, this also means the end of EMD decomposition, i.e.,

X(t) =
n

∑
i=1

Ci(t) + rn(t). (5)

Flandrin [37] and Wu [38] have done a lot of statistical analysis on the EMD results of fractional
Gauss noise and white Gaussian noise, and the distribution characteristics of power spectral density
of EMD in different IMF components were obtained. Using this distribution, EMD can be effectively
used for signal de-noising.

With repeated sifting, different frequency bands can be separated clearly. The IMFs with the
requisite frequency are picked up to recombine the signal without the noise content [17,39].

3.2. The Ratio of Signal Energy between Two Frequency Ranges

As discussed in the previous section, the obtained AE signal after de-noising, HAE, is considered
the combination of the AE signal from metal deformation, HTAE, and the AE signal from friction force,
HFAE. Both of them contain the information from their sources, propagation medium, coupled stiffness,
and AE sensor. The influence of the propagation medium, the coupled stiffness and the sensor are
equally applied [31,32], as shown in Equation (6)

HTAE = Hts·Hm·Hc·Ht

HFAE = H f s·Hm·Hc·Ht
(6)

where Hts stands for the AE source from tensile deformation and H f s stands for the AE source from
fraction force.

The signals containing both HTAE and HFAE could be obtained by their characteristic frequencies.
And the influence of Hm, Hc, and Ht remains the same. The ratio of overall signal energy at
tensile frequency range to overall signal energy at frictional frequency range, is proposed as the
AE characteristic parameter, as shown in Equation (7), which will be referred as the ratio of signal
energy thereafter.
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R =
HTAE
HFAE

=
Hts·Hm·Hc·Ht

H f s·Hm·Hc·Ht
=

Hts

H f s
(7)

Then the influence of the propagation medium, the coupled stiffness, and the sensor could be
cancelled by keeping parameter settings of all the instruments constant. As there is no Kaiser effect
in friction signals, the total energy of friction signals shall stay unchanged with the process of metal
deformation. There shall be a one-to-one correspondence between Hts and R along the progress of
metal deformation, i.e., the deformation degree of metals can be reflected by the value of R.

Once the above discussion is validated by experiment, there shall be a series of R values
corresponding to degrees of metal deformation, therefore, the degree of metal deformation can be
identified by the analysis of AE collected on site. More optimistically, the idea can be extended to the
monitoring of pressure vessels with load.

4. Results and Discussion

The AE signals used in this work are introduced at Table 1. In every tensile test, tens of thousands
of AE events are collected. All AE events can be divided into four parts according to the time of the
stress-time curve shown in Figure 3, which is synchronized with an acoustic emission system. The
right part in Figure 3 is local detail of the selected part on the left figure. Signals are de-noised first and
then the characteristic parameter is extracted based on the discussion in Section 3.
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4.1. De-Noising by EMD

The goal of de-noising in this work is to remove the components with frequencies less than 90 kHz.
Both WT and EMD methods are employed for this purpose, and their results are compared in Figure 4.

Figure 4 shows the de-noising results of AE signals during four the deformation stages in the
tensile process. The left part of the dash line is decomposed by EMD and the right part is processed
by WT. It can be seen that the distribution of frequency components analyzed by EMD are notably
concentrated. Based on the signal analysis in the four deformation stages, EMD shows an adaptive
capacity without any false signals in a high frequency range, where the AE signal associated with
deformation and friction signal resides. Therefore, in the following work, the EMD is employed to
extract the signals with frequencies higher than 90 kHz.
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4.2. Ratio of Signal Energy Analysis and Feature Extraction

For more accurate analysis, the de-noised signals are recombined by IMFs with frequencies higher
than 100 kHz, and then decomposed into two different frequency ranges. The ratio of signal energy
between the two frequency ranges is calculated. All four stages of scheme 1, at Table 1, are analyzed
and depicted in Figure 5 respectively. As a comparison, Figure 6 shows the signal energy distribution
of the elastic stage and the yield stage in frequency domain.
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The investigation on low carbon steel showed that the major source of AE in a tensile process
is associated with dislocation activity in the grain boundaries and the intensive motion of slip
bands [16,17], as introduced in Section 1. In the yield stage, new dislocations are generated and
slip bands are eventually spread. Most of the ratios of signal energy keep a larger value as shown
in Figure 5b. In the uniform plastic stage, the decrease of AE counts results from the reduction of
dislocation activities. The ratios of signal energy in Figure 5c are smaller. In the elastic stage and the
necking stage, no dislocation activity exists. The ratios of signal energy in Figure 5a,d remain below 0.1,
however, the elastic stage and the necking stage can still be determined, since the device deformation
have to go through the elastic stage and uniform plastic stage before the emergence of the necking
stage, and these two stages are easy to determine as showed in Figure 5b,c. In conclusion, the ratio of
signal energy analysis is in accordance with theoretical analysis of a tensile process. In fact, it is only
needed to determine between the elastic stage and the yield stage, because the monitored device is no
longer fit to serve anymore, once the yield stage of deformation is reached. These two stages are easy
to determine by comparing Figure 5a,b. However, in Figure 6, there is no obvious difference between
signal energy at the elastic stage and the yield stage. As a result, the ratio of signal energy is more
appropriate in this condition.

All AE events in the four deformation stages are statistically analyzed by the ratio of signal energy
and then illustrated by box-plot as shown in Figure 7, where the highest point is the maximum, the
lowest point is the minimum. The bottom and top points of the box are the 25th and the 75th percentile,
while the bold line inside the box is the median. In order to summarize the ratio of signal energy
distribution in different stages clearly, the mean and standard deviation are shown in Table 2.

Sensors 2017, 17, 789 9 of 13 

 

 
Figure 6. Signal energy distribution of the elastic stage (left) and the yield stage (right). 

The investigation on low carbon steel showed that the major source of AE in a tensile process is 
associated with dislocation activity in the grain boundaries and the intensive motion of slip bands 
[16,17], as introduced in Section 1. In the yield stage, new dislocations are generated and slip bands 
are eventually spread. Most of the ratios of signal energy keep a larger value as shown in Figure 5b. 
In the uniform plastic stage, the decrease of AE counts results from the reduction of dislocation 
activities. The ratios of signal energy in Figure 5c are smaller. In the elastic stage and the necking 
stage, no dislocation activity exists. The ratios of signal energy in Figure 5a,d remain below 0.1, 
however, the elastic stage and the necking stage can still be determined, since the device deformation 
have to go through the elastic stage and uniform plastic stage before the emergence of the necking 
stage, and these two stages are easy to determine as showed in Figure 5b,c. In conclusion, the ratio of 
signal energy analysis is in accordance with theoretical analysis of a tensile process. In fact, it is only 
needed to determine between the elastic stage and the yield stage, because the monitored device is 
no longer fit to serve anymore, once the yield stage of deformation is reached. These two stages are 
easy to determine by comparing Figure 5a,b. However, in Figure 6, there is no obvious difference 
between signal energy at the elastic stage and the yield stage. As a result, the ratio of signal energy is 
more appropriate in this condition. 

All AE events in the four deformation stages are statistically analyzed by the ratio of signal 
energy and then illustrated by box-plot as shown in Figure 7, where the highest point is the 
maximum, the lowest point is the minimum. The bottom and top points of the box are the 25th and 
the 75th percentile, while the bold line inside the box is the median. In order to summarize the ratio 
of signal energy distribution in different stages clearly, the mean and standard deviation are shown 
in Table 2. 

 
Figure 7. Ratio of signal energy diagram of the four deformation stages. Figure 7. Ratio of signal energy diagram of the four deformation stages.



Sensors 2017, 17, 789 10 of 13

Table 2. The mean and standard deviation of the ratio of signal energy for different AE signals at the
different deformation stages.

Eigenvalue Scheme Elastic Stage
(%)

Yield Stage
(%)

Uniform Plastic Stage
(%)

Necking Stage
(%)

mean

1 0.0125 0.1082 0.0645 0.0081
2 0.0101 0.1256 0.0736 0.0094
3 0.0139 0.1090 0.0667 0.0083
4 0.0103 0.1200 0.0639 0.0086
5 0.0124 0.104 0.0639 0.0086
6 0.0096 0.1050 0.0643 0.0081

standard
deviation

1 0.0057 0.1145 0.0808 0.0075
2 0.0060 0.1209 0.0830 0.0054
3 0.0052 0.1107 0.0774 0.0067
4 0.0068 0.1222 0.0811 0.0055
5 0.0062 0.1145 0.0811 0.0056
6 0.0084 0.1255 0.0830 0.0065

Differences can be observed on two major aspects, the ratio value magnitude and the data
distribution range, which are consistent with the above theoretical analysis during a tensile process.

In order to further test this method in a different propagation path and coupled stiffness, the other
AE signals from the tensile test are analyzed. One of them is with a different vibration transmitting
distance. As mentioned previously, Figure 7 shows the ratio of signal energy diagram of scheme 1,
at Table 1. Accordingly, the ratio of signal energy diagram of scheme 5, at Table 1, is shown in Figure 8.
The mean and standard deviation of the ratio with other different vibration transmitting distances are
also listed in Table 2.
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The specimen geometry in Figures 7 and 8 is 8 mm in width, 5 mm in thickness, and 88 mm in
length, which is introduced at Table 1. Correspondingly, for the specimen in Figure 9, its geometry is
12 mm in width, 3 mm in thickness, and 60 mm in length, which is named as scheme 6, at Table 1.

The mean and standard deviation of each scheme at different stages of tensile test are also
illustrated in Table 2.

The results in Figures 8 and 9 are similar with those in Figure 7. According to Table 2, the ratio
of signal energy between two frequency ranges remains nearly the same in all six different schemes
regardless of their geometries and distances from sensor location. It affirms that the ratio can be used
as an indicator to identify the deformation degree of certain metals.
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5. Conclusions 

In this work, a new AE characteristic parameter, a ratio of signal energy at tensile frequency 
range to signal energy at frictional frequency range, is proposed. Since the AE signal associated with 
metal deformation is affected by the degree of coupling, the propagation distances, and the geometry 
structures, signal energy is not appropriate to determine the deformation degree of the metal. 
However, the ratio of signal energy can be used to determine the deformation degree of metals 
regardless of the devices’ geometries and distances from the sensor location as mentioned above, 
which is based on the assumption that the produced friction signals remain unchanged during the 
process of tension. In order to extract signals from metal deformation and friction signals, an EMD 
calculation was employed in this study. When the data volume is large enough and the mechanical 
testing machine is precise enough, the condition monitoring and assessment of pressure vessels can 
be achieved based on AE signal analysis.  
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5. Conclusions

In this work, a new AE characteristic parameter, a ratio of signal energy at tensile frequency
range to signal energy at frictional frequency range, is proposed. Since the AE signal associated
with metal deformation is affected by the degree of coupling, the propagation distances, and the
geometry structures, signal energy is not appropriate to determine the deformation degree of the
metal. However, the ratio of signal energy can be used to determine the deformation degree of metals
regardless of the devices’ geometries and distances from the sensor location as mentioned above,
which is based on the assumption that the produced friction signals remain unchanged during the
process of tension. In order to extract signals from metal deformation and friction signals, an EMD
calculation was employed in this study. When the data volume is large enough and the mechanical
testing machine is precise enough, the condition monitoring and assessment of pressure vessels can be
achieved based on AE signal analysis.
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