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Abstract: Depth information has been used in many fields because of its low cost and easy availability,
since the Microsoft Kinect was released. However, the Kinect and Kinect-like RGB-D sensors show
limited performance in certain applications and place high demands on accuracy and robustness of
depth information. In this paper, we propose a depth sensing system that contains a laser projector
similar to that used in the Kinect, and two infrared cameras located on both sides of the laser projector,
to obtain higher spatial resolution depth information. We apply the block-matching algorithm to
estimate the disparity. To improve the spatial resolution, we reduce the size of matching blocks, but
smaller matching blocks generate lower matching precision. To address this problem, we combine
two matching modes (binocular mode and monocular mode) in the disparity estimation process.
Experimental results show that our method can obtain higher spatial resolution depth without loss of
the quality of the range image, compared with the Kinect. Furthermore, our algorithm is implemented
on a low-cost hardware platform, and the system can support the resolution of 1280 × 960, and up to
a speed of 60 frames per second, for depth image sequences.

Keywords: depth sensing; binocular structured light; spatial resolution; Kinect; speckle pattern

1. Introduction

At present, human computer interaction based on three-dimensional (3D) depth information
has become highly attractive in the areas of image processing and computer vision, which further
promotes the development of 3D depth acquisition technology. In addition, the recently developed
3D depth sensors, such as the Microsoft Kinect (Microsoft Corporation, Redmond, Washington, DC,
USA) [1], have been applied in more fields, such as gesture recognition [2–5], intelligent driving [6,7],
surveillance [8], 3D reconstruction [9,10], and so on. 3D depth acquisition technology measures the
distance information between objects and a depth sensor. It represents a non-contact, non-destructive
measurement technology.

The fully studied methods for acquiring depth information can be classified into two categories:
passive methods and active methods.

Binocular stereo vision is an active research topic in passive methods. Some authors [11,12] have
implemented an entire stereo vision process on a hardware platform accompanied by progress of
the algorithms and field programmable gate array (FPGA) technology. However, the considerable
computational expense still limits its industrialization, as some algorithms have to be realized on a
custom-build FPGA. One the other hand, stereo vision still does not have a good method to acquire the
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dense disparity map for a large textureless area, such as a white wall. Therefore, no related electronic
products have yet been released.

Time-of-Flight (ToF) and structured light [13,14] is mainly used in the active depth sensing method.
The ToF technology acquires the distance information based on measuring the flight time along the
light path. Samsung released the first complementary metal oxide semiconductor (CMOS)-based ToF
sensor in 2012, where synchronized depth (480 × 360) and RGB images (1920 × 720) can be obtained
by a single image sensor [15]. The Kinect 2 (Kinect for XBox One) issued in 2013 by Microsoft is also
based on the ToF principle [16]. However, in terms of miniaturization and integration, the advantages
of technology based on structured light are not ignored. In addition to the Microsoft Kinect, other
companies have also researched and released their own depth-sensing cameras, or intend to integrate
them into their electronic products. For example, in 2013 Apple purchased Primesense and claim an
important invention patent: “Depth Perception Device and System” [17], and intends to employ it
as an input device for human–machine interfaces for their product. In early 2014, Intel announced a
three-dimensional depth imaging device, the “RealSense 3D Camera,” and the products RealSense
R200 and SR300 have been on the market since 2016. In February 2014, Google announced a new
project “Tango,” which intends to make a smartphone with 3D visual recognition capabilities. In 2015,
the Microsoft holographic visor “Hololens” appeared on the market.

However, the depth-sensing systems based on structured light are not mature when compared to
two-dimensional (2D) imaging systems. The resolution and accuracy of the depth image are lower,
and the performance is not very reliable in the use of moving objects or dynamic scenes. In [18,19], the
authors combine color images to restore the corresponding depth image. The methods can improve
the image quality and reduce the noise of the acquired depth map, but the improvement of the
measurement precision is limited.

Moreover, the hardware implementation of depth sensors based on structured light remains a
black box, to a large extent, in the literature. In [20], we have proposed a full very large scale integration
(VLSI) implementation method to obtain a high-resolution and high-accuracy depth map based on
randomized speckle patterns. Then it was found that the spatial resolution of the depth map has the
potential to be further improved. Thus, in this paper, we add an infrared camera at the right of the
laser projector and employ the local binocular stereo matching algorithm to improve the performance
of the depth map.

Several binocular structured light approaches have been proposed for acquiring a disparity map.
Different projected patterns and disparity estimation methods are employed. Ma et al. combined a
color-coded pattern based on vertical stripes and the semi-global stereo matching (SGM) algorithm
to obtain a dense facial disparity map [21]. An et al. provided the comparative analysis of various
structured lighting techniques with a view for facial reconstruction [22]. Nguyen et al. employed the
dot-coded pattern to enhance textures on plants, and five pairs of RGB cameras to reconstruct the whole
plants [23]. In this system, stereo block matching is applied to calculate the matching results. The gray
or color-coded patterns mentioned above are sensible to ambient light and the surface color of objects.
Yang et al. used the light stripes and corresponding decoding method to measure the 3D surfaces [24].
However, this method is not suitable for moving objects. The experimental setup proposed by
Dekiff et al. also used the speckle pattern and digital image correlation [25]. There is a triangulation
angle of about 30◦ between the two cameras. It is a short-range measurement system. The measuring
distance is under 1 m and the size of the measuring field is approximately 24 cm × 18 cm. The Intel
RealSense Camera SR300 includes two infrared cameras and has similar performance.

Our key contribution in this paper, beyond [20], is that an infrared camera is added at the right
of the laser projector, then the binocular matching mode, performed between the captured left and
right patterns, is employed to improve the spatial resolution in the X-Y direction. The mismatching
and occlusion is unavoidable in the binocular matching process, so the monocular matching mode,
performed between the left and the reference patterns, is also employed to revise the matching results.



Sensors 2017, 17, 805 3 of 18

Finally, the complete system is implemented and verified on a low-cost hardware platform with a laser
projector and two-camera setup.

The rest of this paper is organized as follows: In Section 2, the basic principles mentioned in our
depth-sensing method are briefly introduced. The acquisition steps of the depth map from projected
speckle patterns are described in Section 3. Section 4 gives the full-pipeline architecture of our proposed
method. Section 5 discusses the utility of our method and presents some simulation results. The paper
ends with some conclusions in Section 6.

2. Related Ranging Principles

In [20], a consistency enhancement algorithm is proposed to make the intensity of the pattern
formed at different distances as consistent as possible so as to ensure the matching accuracy in the
disparity estimation process. However, the surface material of the objects also affects the projected
pattern, so we have to select a larger block, compared with the smallest size in theory, to perform the
block-matching step. Therefore, we add an infrared camera at the right of the laser projector in order
to capture a pattern that is nearly consistent with the captured left pattern. Then the smallest image
block can be employed in the binocular matching mode performed between the captured left and right
patterns so as to improve the spatial resolution of the depth map.

Figure 1 shows the position relationship between the projector and cameras. One camera is added
to the right of the laser projector compared with traditional depth-sensing method. The experimental
platform contains a projector which projects a speckle pattern similar to that used in the Kinect and two
cameras with the same performance parameters. The projector is between the two cameras. The three
units are located in the same straight line and the optical axes of each are parallel. In our depth-sensing
method, the triangulation principle and digital image correlation (DIC) are related. The triangulation
principle is to transform the disparity to distance information through the geometrical relationship.
Generally, the digital image correlation (DIC) is performed to identify the corresponding points in the
individual images.
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2.1. Triangulation Principle

In the binocular stereo system, the problem of occlusion is unavoidable. Thus, we combine the
monocular ranging method to compensate for the disparity of the occluded areas. In this section, the
ranging principle and the transformation relationship of the two displacement vectors from two modes
are introduced. The ranging method is based on the triangulation principle. As shown in Figure 2,
point At is an arbitrary point in the 3D space marked by the speckle pattern. The two points, Pl and
Pr, respectively, are the projection of At on the left and right camera imaging planes, so they are the
corresponding image points of At in the left and right two images. According to photogrammetry,
if we obtain the displacement of the test point At in two images, we can obtain the vertical distance
from point At to the ranging sensor. The two cameras are located as shown in Figure 1, and their
coordinates only differ as per the translation distance in the X direction. Thus, the image planes of the
two cameras are on the same plane, and the epipolar lines are aligned with the scanline of the image.
Therefore, the displacement ∆y in the Y direction can be ignored, we only require an estimate of the
displacement ∆x in the X direction between the projection point of At on the left and right camera
imaging planes. We assume that the optical focal length of the image sensor is f , µ is the physical
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pixel-pitch, and s is the baseline distance between the laser projector and image sensor. According to
the relationship between similar triangles, we can obtain the proportional relationship d− f

d = 2s−ll−lr
d ,

where the parameter d is the distance between the sensor and the point At. Then the depth value of
point At can be calculated as

d =
2s f

ll + lr
=

2s f
µ∆xbi

(1)

where ∆xbi represents the displacement of the corresponding image points Pl , Pr, respectively, on the
left and right images.
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Next, the depth sensing technology with only the left-side camera is discussed. In the process, we
need to acquire a reference image from the left camera at a known distance. As shown in Figure 2, the
point Ar is the position of point At at the reference distance. According to the relationship between

similar triangles, we can obtain the proportional relationship d− f
d = s−ll−le

s and
dre f− f

dre f
=

s−ll−le−µ∆xle f t
s .

Then the depth value of point At can be calculated as

d =
1

− µ
s f ∆xle f t +

1
dre f

(2)

where ∆xle f t represents the displacement of the corresponding image points Pl , Pre f , respectively, on
the left and its reference images.

From Equations (1) and (2), we can observe that the inverse of distance d follows a linear
relationship with the displacement ∆xbi or ∆xle f t; thus, there is a simple linear relationship between the
two disparities. The point At can be located in front of, or behind, the reference point Are f , so the value
of displacement ∆xle f t can be positive or negative. In this paper, we set a direction for the displacement.
The projection point Pl is assigned as the end point of the vector, and the projection point Pr or Pre f

as the start point of the vector. Then we can get
→

∆xle f t =
→

Pre f Pl = −∆xle f t and
→

∆xbi =
→

P′r Pl = ∆xbi.
Combining Equations (1) and (2), we can obtain the relationship of the two displacement as follows:

→
∆xbi = 2

→
∆xle f t +

2s f
µdre f

(3)
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2.2. Digital Image Correlation

The digital image correlation (DIC) algorithm was developed at the end of last century and has
been widely used to analyze deformation and identify the corresponding points between different
images [25,26]. Its principle is to match subsets from different digital images by an appropriate
similarity calculation method. The process is to ensure the parameters in the displacement shape
function through a correlation function. The displacement mentioned in the Section 2.1 is contained in
these parameters.

Assume that the coordinate of point Pl in the first image (left speckle image) is (x0, y0). In order
to determine the corresponding point (x′0, y′0) in second image (right or reference speckle image), a
square subset around the central point (x0, y0) is extracted. Each point in the subset is represented
by (x, y). If the represented subset’s surface is perpendicular to the optical axis, it only brings in
rigid displacement; the mapping position (x′, y′) in the second image of each point in this subset is
calculated by:

x′ = x + u (4)

where u is the displacement of the subset center point in the X direction (the displacement in the Y
direction can be ignored in our paper), while, in most situations, the speckle pattern projected on the
tested object may be deformed. Thus we introduce the first-order displacement shape function to
approximate the mapping position

x′ = x + u + ux(x− x0) + uy(y− y0) (5)

where the parameters ux, uy are the components of the first-order displacement gradient. Lu and
Cary [27] propose a DIC algorithm using a second-order displacement shape function for large
deformations, but it has twelve parameters which increases the computational difficulty and complexity.
Therefore, the displacement is estimated according to Equation (5). The block-matching algorithm
is employed to estimate the displacement u in Equations (4) and (5), which is also ∆xbi or ∆xle f t in
Section 2.1. In the implementation process, first we assign different initial values for parameters ux

and uy, and then extract the different subsets with the size of m×m from the second image. Finally,
Equation (6) is employed as similarity criterion to find the optimal matching subsets:

C
(
u, ux, uy

)
=

∑ ∑ f (x, y)g(x′, y′)√
∑ ∑ f (x, y) f (x, y)

√
∑ ∑ g(x′, y′)g(x′, y′)

, (6)

where the f (x, y), g(x′, y′) are, respectively, the discrete gray value of the first and second patterns.
The digital image correlation (DIC) algorithm is a local stereo matching algorithm. In addition to

this algorithm, there are other stereo matching algorithms, such as semi-global block matching [28],
belief propagation, graph cuts [29], and so on. However, these algorithms are not adaptable to our
system. The reasons are as follows. Firstly, in the structured light ranging, the projected pattern is
coded following a certain principle. The decoding method that is the ranging algorithm is designed
according to the coding method. In this paper, the speckle pattern is binary, and composed of
randomly distributed isolated speckles. Every image block extracted from the pattern is unique, so the
block-matching algorithm is enough to decode the pattern. Secondly, other stereo matching algorithms
are very complex and utilized to optimize the depth map, such as the problems of texturelessness
and occlusion. In our paper, the infrared camera only can capture the projected image itself without
additional information from the surrounding environment, such as the color or gray information.
The edge information and other features of objects are very difficult to calculate from the captured
image, so the optimization of these stereo-matching algorithms for our result is limited. On the
other hand, the scene has been marked by the projected spots, so there is no textureless area, and the
occlusion area that exists in binocular matching can be corrected by the monocular matching results.
Thirdly, our system is implemented and verified on a hardware platform. An iterative algorithm is
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always used in the other stereo matching algorithms to find the optimal solution of the established
energy function while the iterations are different for every pixel or image, so the hardware costs are
uncertain, which does not conform to the hardware design principle. Finally, considering the trade-off
between accuracy and hardware costs, we employ the block-matching algorithm in our system design.

3. The Depth-Sensing Method from Two Infrared Cameras Based on Structured Light

Figure 3 shows the flowchart of our method. The method can be divided into seven steps and the
details are described as follows:
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Step 1: Encode the space using the speckle-encoded pattern.

Based on the active mode, the projector projects the speckle-encoded pattern to encode or mark
the space or object. The pattern is fixed and composed by the randomly distributed spots that are
formed by interference of coherent laser beams. The basic design principle of projected patterns is that
the pattern in any sub-window is unique and fully identified.

Step 2: Capture and solidify the reference pattern Rl from the left camera.

As shown in Figure 1, the two identical cameras are symmetrically arrayed on the both sides of
the pattern projector and the optical axes of the cameras and projector are parallel with each other.
The narrow band-pass filters are pasted on the lens of two cameras so the infrared light within a scope
of certain wavelengths, which are adopted by the projector, can only be captured. This design mainly
eliminates the disturbance of other wavelengths of light or sources and obtains a clear and stable
encoded pattern projected by the projector.

Before working, we need to capture and solidify the left-side reference pattern for disparity
estimation. The reference pattern is generated by capturing the speckle pattern projected on the
standard plane perpendicular to the optical axis (Z-axis) of the laser projector and cameras. The vertical
distance dre f between the standard plane and the depth sensor is known. The selection must ensure
that a majority part, or the whole speckle pattern, can be projected onto the standard plane and can
also occupy the entire field of view of the left image sensor. Then the reference speckle pattern is
processed by the speckle pattern preprocessing module described in step 3, and the fixed image is
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stored in memory. In the normal processing stage, the system only needs to read the reference speckle
pattern from memory for the disparity estimation of the captured speckle pattern image.

Step 3: Preprocess the captured or input speckle patterns Il, Ir from the two cameras.

For the original speckle patterns taken directly from the cameras, the intensity and the size of the
spots formed with laser interference decrease with the increment of the projection distance and may be
uneven in the whole image. Hence, a consistency enhancement algorithm proposed in [20] is used
to enhance the input speckle patterns to make it more discriminative so as to improve the matching
accuracy. The algorithm combines grayscale transformation and histogram equalization, is suitable for
hardware implementation, and can be described as

f ∗(x, y) =

{
β× ( f (x, y)− f (x, y)), if f (x, y) ≥ f (x, y)

0, if f (x, y) ≤ f (x, y)
(7)

where f (x, y) is the average gray value of the subset with the center pixel (x, y) and β = grayre f / f (x, y)
is a scale factor.

Step 4: Detect the shadow area of the enhanced patterns Il, Ir.

As shown in Figure 4, because of the distance difference between the foreground and background,
a blank area or no projection area is formed, that is, the shadow area. The subset in the shadow area is
unable to use Equation (6) to calculate the correlation coefficient. This will affect the next disparity
estimation step. Hence, in the preprocessing module for the image Il and Ir, the shadow area is
detected and marked. The disparity estimation will not be performed in the marked area. The shadow
area detecting method used to detect the number of pixels of speckle spots within a certain size of
the subset. If the number is less than a threshold, the center pixel of the subset is in the shadow area,
otherwise the pixel is in the projection area.
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Figure 5. The speckle pattern and the results after preprocessing: (a) the speckle pattern; (b) the 
consistency enhancement result; and (c) the shadow detection result. 

Figure 4. Schematic diagram of the principle of shadow formation.

For the left camera, the shadow area shl is located at the left side of the projection prol of the
foreground while, for the right camera, the shadow shr is at the right side of pror. It is clear that the
edge of the shadow area is correlated with the edge of the foreground. This characteristic can be used
to segment the object located in the foreground.

The results after preprocessing for a captured speckle pattern are shown in Figure 5. It is obviously
that, in Figure 5b, after consistency enhancement, the intensity of spots in whole speckle pattern is
more consistent. The captured speckle pattern is from left camera, thus in Figure 5c, the shadow of the
object is at the left side of the projection.
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Step 5: Estimate the disparity based on the two block matching modes.

In binocular matching, occlusion is unavoidable. In the matching between left and right patterns,
there are mismatching areas caused by occlusion. In order to solve this problem and improve the
matching accuracy, we employ two matching modes in our paper. One is to estimate the disparity
between the left and right pattern, called the binocular mode, another is between the left pattern and
its reference pattern fixed in memory, called the monocular mode.

For the monocular mode, Equation (4) is employed to estimate the displacement. As shown in
Figure 6, we extract a square image block (or subset) of size m×m from the left speckle pattern. Due
to the position of the image sensors and the laser projector, the block matching algorithm is confined
along the X-axis only. Thus, a search window of size m×M from the left reference speckle pattern
is extracted, and the central pixel of the image block and the searching window share the same Y
coordinates. The m parameters are odd numbers, and m� M. Then the full-search block-matching
method and the correlation Equation (6) are used to find the optimum matching block and estimate
the displacement ∆xle f t of the center pixel of the image block. Finally, we use Equation (3) to convert
the displacement ∆xle f t to ∆x′bi.
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For the binocular mode, the baseline length is twice that of the monocular mode; therefore, the
deformation is larger and needs to be considered. In the matching process, Equation (5) is employed to
estimate the displacement. The parameter ux is set as 0, and uy is set as –3/8, 0, 3/8, respectively. We
round the calculated the pixel position to extract a square block from search window. The remaining
process is the same as the monocular mode and then we acquire the displacement ∆xbi for the center
pixel of the image block.

Step 6: The integration of two displacements and the depth mapping.

As shown in Figure 7, the field of view (FoV) of the left image sensor can be divided into two
parts. One is the field of the crossed part, the other is the uncrossed part. For the pixel in the crossed
part, if

∣∣∆x′bi − ∆xbi
∣∣ < th, then ∆xbi is selected as the final displacement ∆x, otherwise we compare

the maximum correlation coefficients of the two matching modes and the larger one is selected as the
final displacement ∆x. For the pixel in the uncrossed part, we cannot obtain the displacement ∆xbi,
therefore, the ∆x′bi is selected as the final displacement ∆x.
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Based on the obtained the final displacement ∆x, we can calculate the distance information for
the target object by triangulation according to Equation (1).

Step 7: Obtain the depth map.

Move the center pixel of the image block to the next neighboring pixel in the same row, and repeat
steps 5 and 6 to obtain distance information for the neighboring pixel. Then the whole depth image
can be obtained on the pixel-by-pixel and line-by-line basis.

4. Hardware Architecture and Implementation

In this paper, our method is implemented on a hardware platform. Figure 8 shows the architecture
of our depth-sensing method. There are three main modules in the FPGA, i.e., consistency enhancement,
shadow detection, and disparity estimation, and two external modules, the microcontroller unit (MCU)
and flash memory. On the one hand, the MCU controls the reading and writing of the flash memory.
Before processing, the reference image Rl needs to be solidified in flash memory in advance, so the
MCU will send a writing signal to control the flash memory through the inter-integrated circuit (I2C)
bus. In the processing stage, the FPGA reads the reference data from flash memory; thus, the writing
signal needs to be changed as a reading signal. On the other hand, there are some thresholds in our
method, such as the grayre f in the consistency enhancement and the threshold th in the displacements
integration step. The MCU help us to adjust these thresholds outside the FPGA.
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However, there is a slight difference in the binocular mode because the deformation is considered 
in our paper. The matching block extraction contains an extra submodule, i.e., the deformation 
block extraction submodule, and an example for this submodule is given in Figure 10 by = 3 
and = 0, = ±1, 0. For every central pixel in the searching window, we extract three matching 
blocks marked in red, black, and green. The deformation templates have been stored in advanced. 
Then a 3 × 5 block with central pixel  is multiplied with the three templates. If the pixel in the 
template is one, the corresponding pixel in the block will be retained to form the matching block. 

Figure 8. Architecture of the depth sensing method.

The pipeline framework is the heart of the hardware implementation. For example, the input
image is scanned from the upper-left pixel to the lower-right pixel to generate a fixed data stream.
However, every pixel is processed with the surrounding pixels in steps 3, 4 and 5. Then the block
extraction submodule is essential in the three main modules. As show in Figure 9, the m− 1 line buffers
and m×m D-trigger are used in this submodule to extract a m×m image block. The length of the line
buffer is equal to the image width and each D-trigger represents a clock cycle delay. The extraction of
the searching window also uses the same architecture, except the length of the D-trigger is changed
to M.

Sensors 2017, 17, 0805; doi: 10.3390/s17040805 10 of 18 

 

lR

rI

lI

β

β
*
rf

rf

lf

rf

lf

*
lf

rI

lI

lI

lR

leftxΔ

_ max,bi bix CΔ

bix′Δ

xΔ

_ maxleftC
_ maxleftC

shth

*
lf

 
Figure 8. Architecture of the depth sensing method. 

 
Figure 9. Block extraction submodule. 

In disparity estimation, after the extraction of the image block and the searching window, the − + 1 matching blocks in the searching window and image block are fed into the correlation 
submodule to calculate the correlation coefficients according to Equation (6). Then, the max 
submodule selects the max coefficient  and acquires the corresponding displacement. 
However, there is a slight difference in the binocular mode because the deformation is considered 
in our paper. The matching block extraction contains an extra submodule, i.e., the deformation 
block extraction submodule, and an example for this submodule is given in Figure 10 by = 3 
and = 0, = ±1, 0. For every central pixel in the searching window, we extract three matching 
blocks marked in red, black, and green. The deformation templates have been stored in advanced. 
Then a 3 × 5 block with central pixel  is multiplied with the three templates. If the pixel in the 
template is one, the corresponding pixel in the block will be retained to form the matching block. 

Figure 9. Block extraction submodule.

In consistency enhancement module, after the block extraction module, there is an average
submodule to calculate the average gray value of the extracted image block. Then comparator and
multiplier are employed to enhance the central pixel according to Equation (7). In the shadow detection
module, the comparator and counter are employed for the extracted image block to detect whether the
central pixel is in the shadow area.

In disparity estimation, after the extraction of the image block and the searching window, the
M− m + 1 matching blocks in the searching window and image block are fed into the correlation
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submodule to calculate the correlation coefficients according to Equation (6). Then, the max submodule
selects the max coefficient Cmax and acquires the corresponding displacement. However, there is a slight
difference in the binocular mode because the deformation is considered in our paper. The matching
block extraction contains an extra submodule, i.e., the deformation block extraction submodule, and
an example for this submodule is given in Figure 10 by m = 3 and ux = 0, uy = ±1, 0. For every
central pixel in the searching window, we extract three matching blocks marked in red, black, and
green. The deformation templates have been stored in advanced. Then a 3× 5 block with central pixel
R23 is multiplied with the three templates. If the pixel in the template is one, the corresponding pixel
in the block will be retained to form the matching block.Sensors 2017, 17, 0805; doi: 10.3390/s17040805 11 of 18 
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Figure 10. Deformation block extraction submodule.

For the last two submodules, displacement conversion and triangulation, we establish two lookup
tables (LUTs), which store the calculating results in ROM, according to Equations (1) and (3) in
Section 2.1, respectively. Every input displacement corresponds to a register address, and the result is
read from the corresponding address.

5. Experimental Results and Discussion

We designed an FPGA hardware platform, as shown in Figure 11, to verify the depth sensing
algorithm proposed in this paper. On the platform, we use the near-infrared laser projector (emitting
laser speckle pattern), similar to that used in Kinect and two identical IR image sensors (receiving
the laser speckle pattern, with output resolution supporting 1280 × 960 at 60 Hz), which are
fixed on an aluminum plate. Our proposed depth-sensing method is verified on an Altera FPGA
(type: EP4CE115F23C8N, Intel Corporation, Santa Clara, CA, USA).
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5.1. The Validation of the Transforming Relationship between Two Displacements

In this part, we validate the transforming relationship between the two displacements ∆xbi and
∆xle f t from two matching modes. We capture a set of left and right speckle patterns projected on a
standard plane that is perpendicular to the optical axis (Z-axis) of the laser projector and parallel to
the left reference speckle pattern plane. The distance information of every speckle pattern is known,
and the range is from 0.7 m to 4.46 m. The tested displacements ∆xbi and ∆xle f t for each pattern are
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estimated and listed in Tables 1 and 2. In the two tables, the theoretical displacements calculated from
Equations (1) and (2) are also listed, where the related camera parameters f = 4.387 mm, µ = 3.75 µm,
the baseline s = 74.6 mm, and dr = 2 m. From Tables 1 and 2, it can be found that the error of ∆xbi is
slightly larger than that of ∆xle f t. The reason is that the baseline of the binocular mode is twice the
length of that of the monocular mode. For displacements ∆xbi, from 0.7 to 2.5 m, the error of the test
value decreases with the increase in distance. After 2.5 m, the error fluctuation is stable between 0.47
and 0.61. For displacements ∆xle f t, the error of the test value around the reference distance is at a
minimum and the error between the theoretical and test values is no more than one pixel. In Figure 12,
we plot the ranging curves calculated from Equations (1) and (2) and the transforming curve from
Equation (3) and, additionally, the test displacements are also plotted and represented, shown as blue
plots. It intuitively shows that all of the blue plots are basically on the red line.

Table 1. A list of the displacements ∆xbi at different distance.

Distance(m) Theory Value Test Value Distance(m) Theory Value Test Value

0.7 250.06 250.79 ± 0.94 2.7 64.67 64.21 ± 0.51
0.9 193.08 193.66 ± 0.75 2.9 60.08 59.60 ± 0.59
1.1 157.96 158.58 ± 0.71 3.1 56.21 55.71 ± 0.57
1.3 134.26 135.05 ± 0.74 3.3 52.88 52.35 ± 0.63
1.5 116.36 116.83 ± 0.65 3.5 49.91 49.33 ± 0.58
1.7 102.55 102.73 ± 0.61 3.7 47.19 46.62 ± 0.58
1.9 92.06 92.06 ± 0.53 3.9 44.80 44.24 ± 0.61
2.1 83.12 83.15 ± 0.56 4.1 42.61 42.02 ± 0.47
2.3 75.76 75.70 ± 0.53 4.3 40.64 40.04 ± 0.50
2.5 70.07 69.99 ± 0.50 4.46 39.11 38.45 ± 0.58

Table 2. A list of the displacements ∆xle f t at different distance.

Distance(m) Theory Value Test Value Distance(m) Theory Value Test Value

0.7 81.40 81.79 ± 0.67 2.7 −11.30 −11.37 ± 0.80
0.9 52.90 53.20 ± 0.59 2.9 −13.59 −13.75 ± 0.58
1.1 35.34 35.64 ± 0.58 3.1 −15.53 −15.67 ± 0.43
1.3 23.50 23.87 ± 0.58 3.3 −17.20 −17.36 ± 0.43
1.5 14.55 14.75 ± 0.47 3.5 −18.68 −18.89 ± 0.42
1.7 7.64 7.73 ± 0.32 3.7 −20.04 −20.22 ± 0.37
1.9 2.39 2.41 ± 0.28 3.9 −21.24 −21.37 ± 0.44
2.1 −2.08 −2.09 ± 0.30 4.1 −22.33 −22.49 ± 0.50
2.3 −5.76 −5.69 ± 0.51 4.3 −23.32 −23.45 ± 0.45
2.5 −8.60 −8.72 ± 0.68 4.46 −24.08 −24.28 ± 0.50Sensors 2017, 17, 0805; doi: 10.3390/s17040805 12 of 18 
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5.2. The Spatial Resolution in X-Y Direction 

In this paper, we divide the speckle pattern into blocks (or subsets) to estimate the disparity of 
every pixel. According to the triangulation principle, the spatial resolution in the X-Y direction is 
proportional to the size of the divided block and is inversely proportional to distance. The 
relationship can be expressed as 

∆ ∝ , (8)

where  represents the block size. In our method, reducing the size of the matching block is 
performed to improve the spatial resolution of the depth map, but it will reduce the matching 
accuracy. Therefore, we analyze the error rate of different sizes of blocks at different distances to 
select the appropriate block size. The two matching modes are performed from 0.7 m to 4.46 m 
with block sizes of 25 × 25 and 17 × 17, and ∆  and ∆  represent the estimated displacements, 
respectively. In the experimental results, we find that, with the larger block size of 25 × 25, there are 
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5.2. The Spatial Resolution in X-Y Direction

In this paper, we divide the speckle pattern into blocks (or subsets) to estimate the disparity of
every pixel. According to the triangulation principle, the spatial resolution in the X-Y direction is
proportional to the size of the divided block and is inversely proportional to distance. The relationship
can be expressed as

∆X(Y) ∝
mµ

f
d, (8)

where m represents the block size. In our method, reducing the size of the matching block is performed
to improve the spatial resolution of the depth map, but it will reduce the matching accuracy. Therefore,
we analyze the error rate of different sizes of blocks at different distances to select the appropriate block
size. The two matching modes are performed from 0.7 m to 4.46 m with block sizes of 25 × 25 and
17 × 17, and ∆x25 and ∆x17 represent the estimated displacements, respectively. In the experimental
results, we find that, with the larger block size of 25 × 25, there are no mismatching pixels in the
two matching modes. Then, when the smaller block size of 17 × 17 is used, for every pixel, if
|∆x25 − ∆x17| > 0.25 pixel, we assume that the matching result is an error. Table 3 lists the error
rate of the two matching modes with the block size of 17 × 17. The results show that almost no
mismatching appears in binocular mode before 3.5 m and the error rate is also very low from 3.7 m
to 4.1 m. Therefore, the 17 × 17 block can be selected to perform the DIC algorithm. Moreover, it is
obvious that, in monocular mode, the matching results are very fine around the reference distance;
in other distances, the mismatching appears—especially at 0.7 m, the mismatching is very serious.
In addition, the main calculation is performed in the disparity estimation step (step 5). Although the
two matching modes are performed in the present method, we adopt the smaller block without the
increase of the calculation amount in comparison to the 25 × 25 block size.

Table 3. The error rate (‰) of the two matching modes at different distance.

Distance (m) Binocular
Mode

Monocular
Mode Distance (m) Binocular

Mode
Monocular

Mode

0.7 0 0.48 2.7 0 0.03
0.9 0 0.22 2.9 0 0.03
1.1 0 0.18 3.1 0 0.04
1.3 0 0.06 3.3 0 0.03
1.5 0 0 3.5 0 0.08
1.7 0 0 3.7 0.01 0.07
1.9 0 0 3.9 0.01 0.06
2.1 0 0 4.1 0.03 0.06
2.3 0 0 4.3 0.09 0.06
2.5 0 0 4.46 0.20 0.09

5.3. The Analysis and Comparison of Results

Firstly, we employ our method to test people based on our hardware platform and the results
are shown in Figure 13. Figure 13a is the output depth image from the monocular mode, with some
mismatching happening on the finger part, as shown in the green circle. Figure 13b is the output depth
image from the binocular mode, in which the fingers are clearer. However, the occluded areas marked
by red curves impact the quality of the whole image. Thus, we correct the occluded areas through
Figure 13a to generate the final depth image, as shown in Figure 13c. Comparing Figure 13a with
Figure 13b, it is clear that the recognition ability of the monocular mode for tiny objects is lower than
that of the binocular mode and mismatching is easier to appear on the similar objects in monocular
mode after reducing the block size. Conversely, the noise on the body is slightly greater in Figure 13b.
The reason is that the surface of the body is relatively complex. The occlusion also exists on the surface.
The black area around the person is the detected shadow area and the final result (Figure 13c) proves
that our method can primarily integrate the advantage of Figure 13a,b.
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In order to test the spatial resolution of our system and intuitively compare the results with other
similarly devices, such as the Xtion Pro, Kinect, Kinect 2, and Realsense R200, the depth maps on the
several straight sticks with known width, as shown in Figure 14, are obtained and shown in Figure 15.
The widths of the straight sticks are 5, 8, 10, 12, 15, 20, and 25 mm, from left to right. As shown in
Figure 15, the results from our method are always better than that from the Kinect, Xtion Pro and
Realsense. For example, it is obvious that the first stick still can be better identified at a testing distance
of 1.5 m in Figure 15f, but it only can be identified at 0.7 m in Figure 15b,c,e. At 1.9 m, there are still
six sticks in our depth map, but only three sticks in other three maps. Moreover, it is obvious that the
noise in Figure 15e is great and the depth map on the flat object always flickers. The reason is that
Intel sacrifices the performance of the Realsense in order to reduce the dimensions. The dimensions
of the RealSense R200 are only 101.56 mm (length) × 9.55 mm (height) × 3.8 mm (width), which is
the smallest depth sensor at present. Compared with the Kinect 2, our results is slightly better before
1.5 m, because the Kinect 2 cannot identify the first stick at 1.5 m. Beyond the testing distance of 1.5 m,
our method smooths the depth of the thinner sticks that cannot be tested. However, the Kinect 2 can
mark these uncertain areas, although it also cannot obtain the depth value of these objects, such as
the location of the first stick from 1.5 m to 3.1 m. Although there are some problems in our method,
the results from Figures 13 and 15 still prove that the present method not only improves the spatial
resolution of the depth image, but also ensures the quality of depth image.

In Figure 15, we simplify the tested scene and objects, measuring the spatial resolution of different
devices under an ideal circumstance. The results are optimal to a large extent. In practical applications,
the scenes and structure of objects are complicated, and the tested results will be affected. Therefore, in
the following, we presented more experimental results and discussed them.

As shown in Figure 16, we tried our system on some capital letters. The strokes are 10 mm (the
upper line) and 15 mm (the lower line), respectively, which have been labeled in Figure 16a. The
testing distance is about 1.15 m. In Figures 14 and 15, sticks with the width of 10 mm and 15 mm are
the third and fifth ones, respectively. It can be concluded that the two sticks can be tested by these
depth sensing devices at 1.15 m. The test results in Figure 16 are consistent with this conclusion. All
devices can detect that there are some objects at this position. However, it is different to accurately
recognize which letters they are. For example, for the letter “N,” in Figure 16b,c,e, the test results in
the upper line are poor. In the lower line, the results in Figure 16b,c slightly improve, but they look
more like the letter “H.” Figure 16d,f show an improvement over the other three, but there are also
problems in the test results. The holes in the letter “A” are not detected by our system or Kinect 2.
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At last, we performed an experiment in a complex scene with furniture and present the results 
here in Figure 17. Table 4 shows the working mode and performance features of every device. The 
Xtion and Kinect employ the same chip (Primesense P1080), and the performance features are 
almost the same, so we do not list them in this table. Firstly, from Figure 17, we can see that the 
depth capture distance of our system and Kinect 2 is obviously an improvement over the other 
devices. Only Object ⑧  can be tested in Figures 17d,f. Secondly, the Kinect 2 adopts ToF 
technology, while other devices are all based on structured light. Object ⑥ can be tested in Figures 
17b,c,f. However, Kinect 2 cannot be detected it in its range limit. Therefore, we consider that 
sometimes the structured-light technology is better than the ToF technology. Finally, the optical 
phenomena will affect the measurement results. In Figure 17d, there are some noises on Object ②, 
which is a mirror reflection object. The surface of Object ③ absorbs the light, which significantly 
affects the performance of the depth measurement based on active vision. 
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At last, we performed an experiment in a complex scene with furniture and present the results here
in Figure 17. Table 4 shows the working mode and performance features of every device. The Xtion
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and Kinect employ the same chip (Primesense P1080), and the performance features are almost the
same, so we do not list them in this table. Firstly, from Figure 17, we can see that the depth capture
distance of our system and Kinect 2 is obviously an improvement over the other devices. Only Object
8© can be tested in Figure 17d,f. Secondly, the Kinect 2 adopts ToF technology, while other devices are

all based on structured light. Object 6© can be tested in Figure 17b,c,f. However, Kinect 2 cannot be
detected it in its range limit. Therefore, we consider that sometimes the structured-light technology is
better than the ToF technology. Finally, the optical phenomena will affect the measurement results.
In Figure 17d, there are some noises on Object 2©, which is a mirror reflection object. The surface of
Object 3© absorbs the light, which significantly affects the performance of the depth measurement
based on active vision.Sensors 2017, 17, 0805; doi: 10.3390/s17040805 16 of 18 
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Table 4. The performance comparison. 

Item Kinect Kinect 2 Realsense R200 Our Method
Working mode Structured light ToF Structured light Structured light 

Range limit 0.8~3.5 m 0.5~4.5 m 0.4~2.8 m 0.8~4.5 m 
Framerate 30 fps	 30 fps Up to 60 fps Up to 60 fps 

Image resolution 640 × 480 512 × 424 Up to 640 × 480 Up to 1280 × 960 
Bits of depth image 10bits unpublished 12bits 12bits 

Vertical Field 43° 60° 46° ± 5° 43° 
Horizontal Field 57° 70° 59° ± 5° 58° 
Output interface USB 2.0 USB 3.0 USB 3.0 USB 3.0 

6. Conclusions 

In this paper, an FPGA hardware design method for a depth sensing system based on active 
structured light is presented to improve the spatial resolution of the depth image with two infrared 
cameras. Firstly, the infrared cameras, based on narrow band-pass filtering, cooperate with the 
infrared laser to capture the clearer speckle pattern, which is projected by laser and used to mark the 
space. Secondly, we improved the spatial resolution in the X-Y direction by reducing the size of the 
matching block, but the smaller size reduces the matching strain precision. Thus, the two matching 
modes are combined to obtain more precise data. Moreover, the method solves the occlusion 
problem existing in traditional binocular stereo systems. Thirdly, we introduce the full pipeline 
architecture of the depth sensing method and verified it on an FPGA platform. However, if our 
system is to be widely adopted in the future, some optimization is needed to limit hardware 
resources and power consumption, and more and various scenes are also needed to verify the 
system; this will be the focus of our future work. 
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Table 4. The performance comparison.

Item Kinect Kinect 2 Realsense R200 Our Method

Working mode Structured light ToF Structured light Structured light
Range limit 0.8~3.5 m 0.5~4.5 m 0.4~2.8 m 0.8~4.5 m
Framerate 30 fps 30 fps Up to 60 fps Up to 60 fps

Image resolution 640 × 480 512 × 424 Up to 640 × 480 Up to 1280 × 960
Bits of depth image 10bits unpublished 12bits 12bits

Vertical Field 43◦ 60◦ 46◦ ± 5◦ 43◦

Horizontal Field 57◦ 70◦ 59◦ ± 5◦ 58◦

Output interface USB 2.0 USB 3.0 USB 3.0 USB 3.0

6. Conclusions

In this paper, an FPGA hardware design method for a depth sensing system based on active
structured light is presented to improve the spatial resolution of the depth image with two infrared
cameras. Firstly, the infrared cameras, based on narrow band-pass filtering, cooperate with the infrared
laser to capture the clearer speckle pattern, which is projected by laser and used to mark the space.
Secondly, we improved the spatial resolution in the X-Y direction by reducing the size of the matching
block, but the smaller size reduces the matching strain precision. Thus, the two matching modes are
combined to obtain more precise data. Moreover, the method solves the occlusion problem existing in
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traditional binocular stereo systems. Thirdly, we introduce the full pipeline architecture of the depth
sensing method and verified it on an FPGA platform. However, if our system is to be widely adopted
in the future, some optimization is needed to limit hardware resources and power consumption, and
more and various scenes are also needed to verify the system; this will be the focus of our future work.
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Appendix A

In the depth images from the Kinect 2 in Figure 15d, the uncertain areas in the depth images
are marked by dark pixels. This makes the depth of the measured sticks difficult to be distinguished
from the uncertain area. Therefore, we made a small change in Figure 15d, as shown in Figure A1b;
the uncertain areas are marked by white pixels.
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