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Abstract: In wireless sensor networks (WSNs), each sensor node can estimate the global parameter
from the local data in a distributed manner. This paper proposed a robust diffusion estimation
algorithm based on a minimum error entropy criterion with a self-adjusting step-size, which
are referred to as the diffusion MEE-SAS (DMEE-SAS) algorithm. The DMEE-SAS algorithm
has a fast speed of convergence and is robust against non-Gaussian noise in the measurements.
The detailed performance analysis of the DMEE-SAS algorithm is performed. By combining the
DMEE-SAS algorithm with the diffusion minimum error entropy (DMEE) algorithm, an Improving
DMEE-SAS algorithm is proposed for a non-stationary environment where tracking is very important.
The Improving DMEE-SAS algorithm can avoid insensitivity of the DMEE-SAS algorithm due to the
small effective step-size near the optimal estimator and obtain a fast convergence speed. Numerical
simulations are given to verify the effectiveness and advantages of these proposed algorithms.

Keywords: robust diffusion estimation; self-adjusting step-size; non-Gaussian noise; wireless sensor
networks

1. Introduction

The problem of parameter estimation, which is the indirect determination of the unknown
parameters from measurements of other quantities [1–6], is a key issue in the signal processing
field. Distributed estimation has become very popular for parameter estimation in wireless sensor
networks. The objective is to enable the nodes to estimate a vector of parameters of interest in a
distributed manner from the observed data. Distributed estimation schemes over adaptive networks
can be mainly classified into incremental strategies [7–9], consensus strategies [10,11], and diffusion
strategies [12–22]. In the incremental strategies, data is processed in a cyclic fashion through the
network. The consensus strategies rely on the fusion of intermediate estimates of multiple neighboring
nodes. In the Diffusion strategies, information is processed at all nodes while the nodes communicate
with all their neighbors to share their intermediate estimates. The diffusion strategies are particularly
attractive because they are robust, flexible and fully-distributed, such as the diffusion least mean
squares (DLMS) algorithm [12]. In this paper, we focus on the diffusion estimation strategies.

The performance of distributed estimation degrades severely when the signals are perturbed
by non-Gaussian noise. Non-Gaussian noise may be natural, due to atmospheric phenomena,
or man-made, due to either electric machinery present in the operation environment, or multipath
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telecommunications signals [23–25]. Recently, some researchers focus on improving robustness for
non-Gaussian noise of distributed estimation methods. The efforts are mainly directed at searching
for a more robust cost function to replace the MSE criterion, which is optimal only when the
measurement noise is Gaussian. To address this problem, the diffusion least mean p-power (DLMP)
based on p-norm error criterion was proposed to estimate the parameters of the wireless sensor
networks [26]. The correntropy as a nonlinear similarity measure has been successfully used as a
robust and efficient cost function for non-Gaussian signal processing [27–30]. In [27], two robust
MCC based diffusion algorithms, namely the Adapt-then-Combine (ATC) and Combine-then-Adapt
(CTA) diffusion maximum correntropy criterion (DMCC) algorithms, are developed to improve the
performance of the distributed estimation over network in impulsive noise environments.

The error entropy criterion based on the minimum error entropy (MEE) method also has shown
its ability to achieve more accurate estimates than mean-square error (MSE) under non-Gaussian
noise [31–37]. In [31], the diffusion minimum error entropy (DMEE) was proposed. The DMEE
algorithm achieved improved performance for non-Gaussian noise with the fixed step-size, but it still
suffers from conflicting requirements between convergence rate and the steady-state mean square
error. A large step-size leads to a fast convergence rate but a large mean-square error at the steady state.
For this problem, variable step-size techniques have been widely used to improve the convergence of
diffusion LMS algorithms remarkably by adjusting the step-size appropriately [38–41]. Lee et al. [38]
proposed a novel variable step-size diffusion LMS algorithm which controls the step-size suboptimally
to attain the minimum mean square error at each time instant. In [41], Abdolee investigated the
effect of adaptation step-sizes on the tracking performance of DLMS algorithms in networks under
non-stationary signal conditions. However, to the best of our knowledge, the variable step-size
technique has not been extended to the field of distributed minimum error entropy estimation for
non-Gaussian noise yet.

In this paper, we incorporate the minimum error entropy criterion with self-adjusting step-size
(MEE-SAS) [42] into the cost function in diffusion distributed estimation. Then, we figure out the
diffusion-strategy solutions, which are referred to as the diffusion MEE-SAS (DMEE-SAS) algorithm.
Numerical simulation results show that the DMEE-SAS algorithm outperforms DLMS, DLMP and
DMEE algorithms when the noise is modeled to be non-Gaussian noise. We also design an Improving
DMEE-SAS algorithm by using a switching scheme between DMEE-SAS and DMEE algorithms for
a non-stationary environment, which tracks the changing estimator very effectively. The Improving
DMEE-SAS algorithm can avoid the small effective step-size of the DMEE-SAS algorithm when it is
close to the optimal estimator.

We organize the paper as follows. In Section 2, we briefly revisit the minimization error entropy
criterion. In Section 3, firstly, we propose the DMEE-SAS algorithm and analyze the mean, mean square
and instantaneous MSD performance for the DMEE-SAS algorithm. Then, we propose the Improving
DMEE-SAS algorithm for a non-stationary scenario. Simulation results are shown in Section 4. Finally,
we draw conclusions in Section 5.

2. Minimization Error Entropy Criterion

Considering the limited computational capability and limited memory space for nodes in real
distributed networks, this paper is based on an MEE criterion, which is simple enough and has good
estimation accuracy. Important properties of MEE can be found in [32,35,37]. In many real world
applications, the MEE estimator can outperform significantly the well-known MSE estimator and show
strong robustness to noises, especially when data are contaminated by non-Gaussian noises. In this
subsection, we introduce an MEE criterion, which could be used to derive a robust diffusion estimation
algorithm with a self-adjusting step-size (DMEE-SAS) algorithm.

The aim of the adaptive signal processing problem is to minimize the difference between the
desired and the system outputs, which is defined as error e. For the evaluation of the error entropy,



Sensors 2017, 17, 824 3 of 15

we seek to estimate entropy directly from the error samples. Therefore, system parameters can be
estimated by minimizing the Renyi’s entropy of the error e. Renyi’s entropy is given by

Hα (e) =
1

1− α
log

∫
qα (e) de, (1)

where qα (e) is the probability density function of a continuous error e, and α is a parameter. When
parameter α is set as 2, Equation (1) is quadratic Renyi’s entropy. Using a Gaussian kernel with kernel
size σ, we can obtain a convenient evaluation of the integral operator in the formulation of quadratic
Renyi’s entropy as follows:

H2(e) = −log
∫

q2 (e) de

= −log
∫ ( 1

N

N

∑
i=1

Gσ (e− ei)

)2

de

= − log(V(e)),

(2)

where e = [e1, e2, · · · , eN ] is N independent and identically distributed samples, and the Gaussian
kernel is defined as

Gσ
√

2(e− ei)=
1

σ
√

2π
exp(− 1

2σ2 (e− ei)
2).

The information V(e) is quadratic information potential and is defined as the expectation of
probability density function, V (e) = E [q (e)]. The quadratic information potential V(e) can be easily
estimated by using a simple and effective nonparametric estimator

V(e) =
1

N2

N

∑
i=1

N

∑
j=1

Gσ
√

2(ej − ei) ≤ V(0) =
1

σ
√

2π
. (3)

The maximum value of the quadratic information potential V(0) will be achieved when
e1 = e2 = · · · = eN . The above results are obtained in the case of batch mode, where the N data
points are fixed. For online training methods, in order to reduce calculation costs, the estimate of
quadratic information potential can be approximated stochastically by dropping the time average
in (3), leading to

V(ei) ≈
1
L

i

∑
j=i−L+1

Gσ
√

2(ei − ej), (4)

where L is the latest L samples at time i.
Obviously, to minimize the error entropy is equivalent to maximizing the quadratic information

potential since the log is a monotonic function. Therefore, the cost function for the MEE criterion is
given by

JMEE (e) = maxV(e). (5)

The selection of the kernel size σ is an important step in estimating the information potential and
is critical to the success of information theoretic criteria. In particular, increasing the kernel size leads to
a stretching effect on the performance surface in the weight space, which results in increased accuracy
of the quadratic approximation around the optimal point [43]. In order to ensure accuracy, in the
following, a large enough kernel size can be used during the adaptation process, which is commonly
used in information theoretic criteria [42,44].
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3. Proposed Algorithms

As mentioned in the Introduction, the diffusion minimum error entropy algorithm achieved
improved performance for non-Gaussian noise with the fixed step-size, but it still suffers from
conflicting requirements between convergence rate and the steady-state mean square error. Therefore,
we consider a new cost function, which can achieve fast convergence speed and strong robustness
against non-Gaussian noise.

3.1. Diffusion MEE-SAS Algorithm

Consider a connected wireless sensor networks with K nodes. k ∈ {1, 2, . . . , K} is the node index
and i is the time index. To proceed with the analysis, we assume a liner measurement model as follows:

dk,i = uT
k,i

w0 + vk,i, (6)

where w0 is a M× 1 deterministic but unknown vector, dk,i is a scalar measurement of some random
process, uk,i is the M× 1 regression vector at time i with zero mean, and vk,i is the random noise signal
at time i with zero mean. For each node k, we have

V(ek) =
1

N2

N

∑
i=1

N

∑
j=1

Gσ
√

2(ek,j − ek,i) ≤ V(0) =
1

σ
√

2π
, (7)

where ek,i = dk,i − uT
k,iw. The maximum value V(0) will be achieved when ek,i = ek,j, j = i− L + 1, i−

L + 2, · · · , i.
We seek an estimate of w0 by minimizing a linear combination of local information. As explained

in Section 2, minimizing a linear combination of the local information is equivalent to maximizing a
linear combination of the local quadratic information potential V(ek,i). To maximize the information
potential is equivalent to minimizing the following cost function:

Jk(w) = ∑
l∈Nk

cl,k[V(0)−V(el)]
2

= ∑
l∈Nk

Fl(w),
(8)

where
Fl(w) = [V(0)−V(el)]

2.

Nk denotes the one-hop neighbor set of node k, and {clk} are some non-negative cooperative
coefficients satisfying clk = 0 if l /∈ Nk, 1T

NC̄ = 1T
N and C̄1N = 1N . Here, C̄ is a N × N matrix with

individual entries {clk} and 1N is a N × 1 all-unity vector. The gradient of the individual local cost
function is given by

∇Jk(w) = ∑
l∈Nk

clk fl(w), (9)

where

fl(w) = (
2

σ2N2 )(V(0)−V(ek))
N

∑
i=1

N

∑
j=1

Gσ
√

2(ek,j − ek,i)(ek,j − ek,i)(uk,i − uk,j). (10)

We can replace the estimate of quadratic information potential by the stochastic quadratic
information potential, leading to

∇ Ĵk(w) = ∑
l∈Nk

clk f̂l(w), (11)
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where

f̂l(w) = (
2

σ2L
)(V(0)−V(ek,i))

i

∑
j=i−L+1

Gσ
√

2(ek,i − ek,j)(ek,i − ek,j)(uk,j − uk,i), (12)

where

V(el,i) ≈
1
L

i

∑
j=i−L+1

Gσ
√

2(el,i − el,j). (13)

Iterative steepest-descent solution for estimating w0 at each node k can thus be derived as

wk,i+1 = wk,i − µk∇ Ĵk(w)

= wk,i − µk
2

σ2L ∑
l∈Nk

clk[V(0)−V(el,i)]
i

∑
j=i−L+1

Gσ
√

2(el,i − el,j)(el,i − el,j)(ul,j − ul,i),
(14)

where µk is a positive step size. Using the general framework for diffusion-based distributed adaptive
optimization [13], an adapt-then-combine (ATC) strategy for diffusion MEE-SAS algorithm can be
formulated as

ϕk,i+1 = wk,i − µk
2

σ2L [V(0)−V(ek,i)]
i

∑
j=i−L+1

Gσ
√

2(ek,i − ek,j)(ek,i − ek,j)(uk,j − uk,i),

wk,i+1 = ∑
l∈Nk

clk ϕl,i+1.
(15)

According to Equation (15), the DMEE-SAS algorithm can be seen as a diffusion estimation
algorithm with variable step size µk(i), where

µk(i) = 2µk[V(0)−V(ek,i)]. (16)

The DMEE-SAS algorithm is described formally in Algorithm 1.

Algorithm 1: DMEE-SAS Algorithm
Initialize: wk,i = 0
for i = 1 : T
for each node k:

Adaptation
µk(i) = 2µk[V(0)−V(ek,i)]

ϕk,i+1 = wk,i − µk(i) 1
σ2L

i
∑

j=i−L+1
Gσ
√

2(ek,i − ek,j)(ek,i − ek,j)(uk,j − uk,i)

Combination
wk,i+1 = ∑

l∈Nk

clk ϕl,i+1

end for

In the adaption step of DMEE-SAS algorithm, V(0)−V(ek,i) is close to V(0) when the algorithm
starts, and it is close to 0 when the algorithm begins to converge. V(0)−V(ek,i) is always a non-negative
scalar quantity, which can accelerate the rate of convergence and achieve small steady-state estimation
errors. The fast convergence rate and the small steady-state estimation errors of the DMEE-SAS
algorithm can be established against non-Gaussian noise in the measurements.

3.2. Performance Analysis

In this section, we analyze the mean, mean-square and instantaneous MSD performance of the
DMEE-SAS algorithm. For tractability of the analysis, here we focus on the case of batch mode.
To briefly present the convergence property of the proposed algorithm in terms of global quantities,
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the following notations are introduced: M = diag{µ1 IM, . . . , µK IM}, Wi = col{w1,i, · · ·wK,i},
w(0) = col{w0, · · · , w0}, W̃i = col{w̃1,i · · · w̃K,i}, S = col{s1(w0), · · · , sK(w0)}, C = C̄T ⊗ IM, IM
is the identity matrix.

In order to make the analysis tractable, the followings are assumed:
Assumption 1: The regressor uk,i is independent identically distributed (i.i.d) in time and spatially

independent, and E[uk,i] = 0, Rk = E[uT
k,iuk,i].

Assumption 2: The input noise vk,i is super-Gaussian noise. In addition, vk,i and the regressor uk,i
are independent from each other. We have E[vk,i] = 0 and E[v2

k,i] = ξk.
Assumption 3: The step-sizes, µk, ∀k, are small enough such that their squared values

are negligible.

3.2.1. Mean Performance

Because the input signal and output noises are generated from stationary and ergodic processes,
the double time average in Equation (10) can be replaced by the expectation, leading to

fk(w) ≈ 2
σ2 (V(0)− E[Gσ

√
2(ek,j − ek,i)])E[Gσ

√
2(ek,j − ek,i)(ek,j − ek,i)(uk,i − uk,j)]. (17)

We consider the gradient error caused by approximating the quadratic information potential
V(ek,i) with their instantaneous values [45]. The gradient error at iteration i and each node k is defined
as follows:

sk(wk,i) = f̂k(wk,i)− fk(wk,i). (18)

Using Equation (15), the update equation of the intermediate estimate can be rewritten as

ϕk,i+1 = wk,i − µk( fk(wk,i) + sk(wk,i)). (19)

According to [44], when input signal-to-noise ratio is not too low, the error should be small
on the whole. Therefore, for a relative large kernal size σ, when w = w0, ((ek,i − ek,j)/σ ≈ 0 and
Gσ
√

2(ek,i − ek,j) ≈ 1
σ
√

2π
. Therefore, the Hessian matrix function Hk(w0) of Fl(w) is calculated as:

Hk(w0) =
∂ fk(w)

∂w
|w0

=
∂

∂w
2
σ2 (V(0)− E[Gσ

√
2(ek,j − ek,i)])E[Gσ

√
2(ek,j − ek,i)(ek,j − ek,i)(uk,i − uk,j)]

=
2
σ2 (V(0)− E[Gσ

√
2(ek,j − ek,i)])E[Gσ

√
2(ek,j − ek,i)(uk,i − uk,j)

T(uk,i − uk,j)−

1
σ2 Gσ

√
2(ek,j − ek,i)(ek,j − ek,i)

2(uk,i − uk,j)
T(uk,i − uk,j)]

+
2
σ4 E[Gσ

√
2(ek,j − ek,i)(ek,j − ek,i)(uk,i − uk,j)]

TE[Gσ
√

2(ek,j − ek,i)(ek,j − ek,i)(uk,i − uk,j)]

=
1

σ6π
E[v2

k,i
+ v2

k,j
]E[uT

k,iuk,i + uT
k,juk,j]

=
4ξkRk
σ6π

.

(20)

Based on the Theorem 1.2.1 of [46], we obtain

fk(wk,i) = fk(w0)− (
∫ 1

0
Hk(w0 − xw̃k,i)dx)w̃k,i

= −(
∫ 1

0
Hk(w0 − xw̃k,i)dx)w̃k,i,

(21)
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where w̃k,i = w0 − wk,i is the weight error vector for node k. We assume that the estimate of each node
converges to the vicinity of the unknown vector w0. Therefore, w̃k,i is small enough such that it is
negligible, yielding

fk(wk,i) ≈ −(
∫ 1

0
Hk(w0)dx)w̃k,i

= −Hk(w0)w̃k,i.
(22)

We can also obtain the approximation of the gradient error at the vicinity of w0, which is given by

sk(wk,i) ≈ sk(w0)

= f̂k(w0)− fk(w0)

=
2

σ2L
(V(0)− 1

L

i

∑
j=i−L+1

Gσ
√

2(vl,i − vl,j))
i

∑
j=i−L+1

Gσ
√

2(vk,i − vk,j)(vk,i − vk,j)(uk,j − uk,i).

(23)

Substituting Equations (22) and (23) into Equation (19), an approximation of intermediate estimate
can be obtained at the vicinity of

ϕk,i+1 = wk,i + µk(Hk(w0)w̃k,i − sk(w0)). (24)

By substituting Equation (24) into the second equation of Equation (15), we get the estimate of
unknown parameter as follows:

wk,i+1 = ∑
l∈Nk

clk[wl,i + µk(Hk(w0)w̃l,i − sl(w0))]. (25)

Using global quantities defined above gives the update equation for the network estimate vector as

Wi+1 = C(Wi + MHW̃i −MS), (26)

where H collects the Hessian matrix across the network into the global vector
H = diag(H1(w0), · · · , HN(w0)). Noting that Cw(0) = w(0), subtraction of both sides of Equation (26)
from w(0) gives

W̃i+1 = C(IMN −MH)W̃i + CMS. (27)

In view of assumptions A1 and A2, W̃i, H and C are independent of each other. Hence, taking
expectation of both sides of Equation (27) leads to

E[W̃i+1] = E[C](IMN −MH)E[W̃i] + CME[S]. (28)

We can easily find that E[S] = col{E[s1(w0), · · · , sN(w0)]} = 0, and Equation (28) has therefore
been reduced to this form

E[W̃i+1] = E[C](IMN −MH)E[W̃i]. (29)

From Equation (29), we observe that, in order to be stable for Algorithm 1 in the mean sense, the
matrix E[C](IMN −MH) should be stable. All the entries of E(C) are non-negative and all the rows of
it add up to unity. Therefore, to ensure the stability in the mean, it should hold that

|λmax{IMN −MH}| < 1. (30)
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We use the notion λmax(A) to denote the maximum eigenvalue of a Hermitian matrix A. Thus,
we note that a sufficient condition for unbiasedness is

0 < µk <
2

λmax{Hk(w0)} =
σ6π

2λmax {Rkξk}
. (31)

3.2.2. Mean-Square Performance

In order to make the presentation clearer, we shall introduce the following notation

Γ = (IMN−MH)CTΣC(IMN−MH).

Performing weighted energy balance on both sides of Equation (27) and taking expectations gives

E[
∥∥W̃i+1

∥∥2
Σ] = E[

∥∥W̃i
∥∥2

Γ
] + E[ST MCTΣCMS], (32)

where Σ is an arbitrary symmetric nonnegative-definite matrix, and the notion ‖a‖2
Σ = aTΣa represents

a weighted vector norm for any Hermitian Σ > 0. By defining

r = vec{E[Γ]}, θ = vec{Σ},

where the vec(.) notation stacks the columns of its matrix argument on top of each other. We can
modify Equation (32) to

E[
∥∥W̃i+1

∥∥2
θ
] = E[

∥∥W̃i
∥∥2

r ] + E[ST MCTΣCMS]. (33)

Using the following relationship of the vectorization operator and the Kronecker product [47]:

vec(ABC) = (CT ⊗ A)vec{B}.

We can obtain that
r = φθ, (34)

where
φ = E[(IMN−MH)⊗ (IMN−MH)]β, (35)

β = E[CT ⊗ CT ].

Considering Assumption 3, we can approximate Equation (35) as

φ ≈ (IM2 N2 − IMN ⊗MH −MH ⊗ IMN)β

= (IMN−MH)⊗ (IMN−MH)β.
(36)

Using the following relationship of the vectorization operator and the matrix trace [47]:

Tr{AT B} = vecT(B)vec(A).

We find that
E[ST MCTΣCMS] = vecT {Q} βθ, (37)

where
Q = E[MSST M].

Substituting Equations (34) and (37) into Equation (33), we can then reformulate recursion
as follows:

E[
∥∥W̃i+1

∥∥2
θ
] = E[

∥∥W̃i
∥∥2

φθ
] + vecT {Q} βθ. (38)
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It is known that Equation (38) is stable and convergent if the matrix φ is stable [48], form
the Equation

βT1M2 N2 = E[(C⊗ IM)1MN ⊗ (C⊗ IM)1MN ] = 1M2 N2 ,

We know that all the entries of β in Equation (37) are non-negative, and all its columns sum up to
unity. Using the property λ(A⊗A) = λ2(A), the stability of φ has the same conditions as the stability
of IMN −MH. Therefore, we choose the step size in accordance with Equation (31), which can keep
the DMEE-SAS stable in the mean-square sense.

3.2.3. Instantaneous MSD

In order to analyze instantaneous mean-square-error (MSD), we can exploit the liberty of choosing
θ at time i. Then, Expression (38) gives:

E[
∥∥W̃n+1

∥∥2
φi−nθ

] = E[
∥∥W̃n

∥∥2
φi−n+1θ

] + vecT {Q} βφi−nθ. (39)

The sum of both sides of Equation (39) for n = 0, 1, ..., i− 1 can be given by

E[
∥∥W̃i

∥∥2
θ
] = E[

∥∥W̃0
∥∥2

φiθ
] + vecT {Q}

i−1

∑
n=0

βφnθ. (40)

We can also adopt a similar way to describe the time instant i + 1, given by

E[
∥∥W̃i+1

∥∥2
θ
] = E[

∥∥W̃0
∥∥2

φi+1θ
] + vecT {Q}

i

∑
n=0

βφnθ. (41)

Subtraction of both sides of Equation (40) from Equation (41) gives

E[
∥∥W̃i+1

∥∥2
θ
] = E[

∥∥W̃i
∥∥2

θ
]− E[

∥∥W̃0
∥∥2

φi(IM2 N2−φ)θ ] + vecT {Q} βφnθ. (42)

By setting
θ = vec {IMN}

in Equation (44) and dividing both sides of it by N, the instantaneous MSD for the whole network are
computed by:

1
N

N

∑
k=1

E
[∥∥w̃k,i

∥∥2
]
=

1
N

E
[∥∥W̃i

∥∥2
]

, (43)

where W̃i can be obtained by the following iteration:

1
N

E[
∥∥W̃i+1

∥∥2
] =

1
N

E[
∥∥W̃i

∥∥2
]− 1

N
E[
∥∥W̃0

∥∥2
φi(IM2 N2−φ)vec{IMN}

] +
1
N

vecT {Q} βφivec {IMN} . (44)

3.3. An Improving Scheme for the DMEE-SAS Algorithm

The too small effective step size near the optimal estimator will hinder the tracking ability of the
DMEE-SAS algorithm in a non-stationary environment. In a non-stationary environment, the optimal
estimator has small changes. A random-walk model is commonly used in the literature to describe the
non-stationarity of the weight vector [48].

Therefore, we try to combine the DMEE-SAS algorithm with the DMEE algorithm [31] in a
non-stationary environment where tracking is important. The DMEE-SAS algorithm should be used
due to the faster convergence when the algorithm starts, and the DMEE algorithm should be used
when the algorithm begins to converge. We use the Lyapunov stability theory [49] to analyze the
switching time for each node.
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The Lyapunov energy function is a method for analyzing the convergence characteristics of
dynamic systems. The cost function can be viewed as a Lyapunov energy function. For the DMEE-SAS
algorithm, the continuous-time learning rule is

ẇ = −µDMEE−SAS
∂Jk(w)DMEE−SAS

∂w
. (45)

The temporal dynamics for the Lyapunov energy that describes the DMEE-SAS algorithm can be
obtained as follows:

J̇k(w)DMEE−SAS = ∑
l∈Nk

clk(−2)[V(0)−V(el,i)]
∂V(el,i)

T

∂w
ẇ

= ∑
l∈Nk

clk(−4)µk,DMEE−SAS[V(0)−V(el,i)]
2
∥∥∥∥∂V(el,i)

∂w

∥∥∥∥2

.

(46)

The individual local energy function for DMEE algorithm can be written as

Jk(w)DMEE = − ∑
l∈Nk

clkV(el,i). (47)

For the DMEE algorithm, the continuous-time learning rule is

ẇ = −µDMEE
∂Jk(w)DMEE

∂w
. (48)

In a similar way, the temporal dynamics for the Lyapunov energy that describes the DMEE
algorithm can be obtained as follows:

J̇k(w)DMEE = ∑
l∈Nk

clk
∂V(el,i)

T

∂w
ẇ

= ∑
l∈Nk

clk(−µl,DMEE)

∥∥∥∥∂V(el,i)

∂w

∥∥∥∥2

.

(49)

The switching time is determined as

∣∣ J̇k(w)DMEE−SAS
∣∣ > ∣∣ J̇k(w)DMEE

∣∣⇔ V(el,i) < V(0)− 1
2

√
µl,DMEE

µl,DMEE−SAS
(l ∈ Nk). (50)

When the condition of Equation (50) is met, we should switch from the DMEE-SAS algorithm to
the DMEE-SAS algorithm. We introduce the following auxiliary variable:

sk,i =

{
1, V(ek,i) < V(0)− 1

2

√
µk,DMEE

µk,DMEE−SAS
,

0, otherwise.

This yields the following algorithm, which we refer to as the improving DMEE-SAS algorithm:

ϕk,i+1 = wk,i − sk,iµk,DMEE−SAS
2

σ2L [V(0)−V(ek,i)]
i

∑
j=i−L+1

Gσ
√

2(ek,i − ek,j)(ek,i − ek,j)

(uk,j − uk,i)− (1− sk,i)µk,DMEE
1

σ2L

i
∑

j=i−L+1
Gσ
√

2(ek,i − ek,j)(ek,i − ek,j)(uk,j − uk,i)

wk,i+1 = ∑
l∈Nk

clk ϕl,i+1.

(51)
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For the purpose of clarity, we summarize the procedure of the Improving DMEE-SAS algorithm
in Algorithm 2.

Algorithm 2: Improving DMEE-SAS Algorithm
Initialize:
wk,i = 0

for i = 1 : T
for each node k:

Adaptation
each node calculates the switching time using Equation (50).
each node updates intermediate estimate ϕk,i according to the first equation of

Equation (51).
Combination
wk,i+1 = ∑

l∈Nk

clk ϕl,i+1

end for

4. Simulation Results

Twenty sensors are randomly placed in a square 100× 100 shown in Figure 1. The communication
distance is set as 50. In this paper, the performance of the steady-state network MSD [12] is adopted
for performance comparison. All of the performance measures are averaged over 100 trials.
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Figure 1. Network topology.

We employ the super-Gaussian distribution as the noise model in our simulations. We generate the
noise from the zero-mean generalized Gaussian distribution of probability density function qV(v) =∝
exp(− |v|p), where p is a positive shape parameter of probability density function [50]. We set p = 0.6
to make the noise distribution be super-Gaussian.

(a) In Stationary Environment

Here, the proposed DMEE-SAS algorithm performance is compared with that of some existing
algorithms in the literature. We assume the communication link is the ideal link. The unknown
parameter vector w0 is set to [ 1√

6
, 1√

6
, 1√

6
, 1√

6
, 1√

6
, 1√

6
]T .
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We set the window length L = 8 and kernel size σ=1.5 for both DMEE and DMEE-SAS algorithms.
Furthermore, the p is 1.2 for the DLMP algorithm. The steady state MSD curves are plotted in Figure 2.
It is found that the DMEE-SAS algorithm is robust to the non-Gaussian noises and performs better than
the DLMP algorithm [26] and DLMS [12]. The DMEE-SAS algorithm achieves a better convergence
performance than the DMEE [31] algorithm when the DMEE-SAS and DMEE algorithms achieve
comparable performance.
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D
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B
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DLMP
DMEE−SAS
DMEE
DLMS

Figure 2. Transient mean-square-error (MSD) curves.

(b) In Non-stationary Environment

Here, the simulations are carried out in the same environments as those shown in stationary
environment, except for the optimal estimator w0. We compare the proposed Improving DMEE-SAS
algorithm with other algorithms.

Motivated by [51], we assume a time-varying w0 of length 6 as follows:

w0
i =

1
2
[a1,i, a2,i, a3,i, a4,i, a5,i, a6,i]

T ,

where ak,i = [cos(wi + (k−1)
2 π)] for k = 1, 2, 3, 4, 5, 6 and w = π

3000 .
The unknown link is assumed to change at time 6000. In Figure 3, the Improving DMEE-SAS

algorithm can detect the weight vector change and the performance of it is better than the DLMS
algorithm. We observe that Improving DMEE-SAS and DMEE algorithms achieve comparable
performance and Improving DMEE-SAS achieves better convergence performance than the DMEE
algorithm. When compared with the DMEE-SAS algorithm, the Improving DMEE-SAS algorithm
exhibits a significant improvement in performance when the estimate is close to the optimal estimator.
The Improving DMEE-SAS algorithm achieves a low MSD and fast rate of convergence in the
non-stationary environment.
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Figure 3. MSD learning curves in a non-stationary environment.

5. Conclusions

In this paper, a robust diffusion estimation algorithm with self-adjusting step-size is developed
which is called the DMEE-SAS algorithm. The mean and mean square convergence analysis of
this new algorithm are carried out, and a sufficient condition for ensuring the stability is obtained.
Simulation results illustrate that the DMEE-SAS algorithm can achieve better performance than the
DLMS, robust DLMP, and DMEE algorithms in non-Gaussian noise scenario. In addition, we propose
the Improving DMEE-SAS algorithm, using it in the non-stationary scenario where the unknown
parameter is changing over time. The Improving DMEE-SAS algorithm combined the DMEE-SAS
algorithm with the DMEE algorithm, and it can avoid the small effective step-size of the DMEE-SAS
algorithm when close to the optimal estimator.
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