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Abstract: A wide range of applications such as health, human comfort, agriculture, food processing
and storage, and electronic manufacturing, among others, require fast and accurate measurement of
humidity. Sensors based on optical fibers present several advantages over electronic sensors and great
research efforts have been made in recent years in this field. The present paper reports the current
trends of optical fiber humidity sensors. The evolution of optical structures developed towards
humidity sensing, as well as the novel materials used for this purpose, will be analyzed. Well-known
optical structures, such as long-period fiber gratings or fiber Bragg gratings, are still being studied
towards an enhancement of their sensitivity. Sensors based on lossy mode resonances constitute
a platform that combines high sensitivity with low complexity, both in terms of their fabrication
process and the equipment required. Novel structures, such as resonators, are being studied in order
to improve the resolution of humidity sensors. Moreover, recent research on polymer optical fibers
suggests that the sensitivity of this kind of sensor has not yet reached its limit. Therefore, there is still
room for improvement in terms of sensitivity and resolution.

Keywords: optical fiber humidity sensors; fiber Bragg gratings; long period fiber grating; photonic
crystal fiber; tapered optical fiber; modal interferometer; Fabry-Pérot interferometers; resonators;
lossy mode resonances

1. Introduction

Humidity has an important influence on several industrial processes such as electronic, food or
pharmaceutical manufacturing, food storage, etc. All these processes, which can be affected by
humidity, require continuous monitoring of air humidity. In addition, proper humidity levels can be
critical to the quality of the product and having the right humidity level can contribute to diminishing
energy consumption [1].

Optical fiber humidity sensors (OFHSs) offer several advantages over electronic humidity sensors
such as miniature design, durability, the possibility of working on flammable environments and
at higher temperature and pressure ranges, and, most important, their electromagnetic immunity.
Therefore, they can withstand the kind of harsh and demanding conditions found in industrial processes.

However, there are some facts that have prevented OFHSs from being a common commercial
product. The fabrication of optical fiber sensors is not yet a sufficiently repeatable process to become
a serial fabrication product. Some optical structures have a certain degree of uncertainty inherent to
the fabrication process. However, the main inconvenience is related to the cost of optical equipment.
Halogen white light sources and standard optical fibers can be found on the market at affordable prices,
but spectrometers, optical spectrum analyzers (OSA), and other optical equipment have relegated
OFHSs to specific applications where there is no other option, as detailed below.
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Great research efforts have been made in recent years and results have been generated for various
applications. The accurate measurement of relative humidity (RH) is critical in some industries,
such as the semiconductor industry, where the performance of fabricated devices is dependent on the
humidity [2], as well as in the electronics industry. Recently, another application for these OFHSs has
been found in high-energy physics (HEP), in experiments performed at the European Organization for
Nuclear Research (CERN) [3,4].

More application fields can be found, some of them related to structural health monitoring,
which is an important case where relative humidity (RH) sensors can find application [5–8].
OFHSs offer the possibility of monitoring civil engineering structures, using, for instance, fiber Bragg
gratings (FBG) [6,7], or even obtaining distributed measurements for large structures combining
Optical Time Domain Reflectometry (OTDR) with chemically sensitive water swellable polymers
(hydrogels) [9]. In addition, the FBG sensors mentioned above have the potential to act as road
parameter sensors (humidity, ice, temperature, etc.) [7]. Another application found for distributed
measurement is for tunnel leakage detection [10]. The possibility of making distributed measurements
is one of the strongest advantages of OFHS [11,12]. Another sector where this kind of sensor is useful
is food processing and storage [6]. Furthermore, humidity control is essential for the correct storage of
valuable artwork, such as in museums or archives [2].

Apart from the aforementioned applications, continuous RH measurement and control is
important for human comfort such as in air-conditioning monitoring and achieving controlled hygienic
conditions [6]. In addition, OFHSs have found new applications in clinical treatment due to the need
for humidification of inspired gases in critical respiratory care [13,14].

The present paper reports the current trends of optical fiber humidity sensors. Novel optical
structures, as well as recently studied materials, will be analyzed and commented on. Then, a detailed
analysis of OFHSs based on lossy mode resonances will be made. This kind of sensor occupies a
unique position alongside optical fiber sensors due to its relatively simple fabrication process and
high sensitivity to the surrounding medium refractive index (SMRI). Finally, some concluding remarks
about the sensing performance of all these sensors will be expounded.

2. Recent Trends in Optical Fiber Humidity Sensors

Here, a brief review of the most recently developed OFHSs will be presented. The OFHS have
been classified according to their working principle. The first group includes OFHS based on the
optical absorption of materials, which were the first kind of OFHS developed. The next group includes
OFHS based on fiber Bragg gratings (FBG) and long-period fiber gratings (LPFG). Another possibility
for the development of OFHS is based on interference, which can be divided into several kind of
interferometers such as Fabry-Pérot, Sagnac, Mach-Zehnder, Michelson, and modal interferometers.
The next category includes OFHS based on micro-tapers, micro-ring, and micro-knot resonators
(MKR), as well as other sensors based on whispering galleries modes (WGM). Finally, OFHS based on
electromagnetic resonances, specifically lossy mode resonances (LMRs), will be discussed. A scheme
of the proposed classification is shown in Figure 1.
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2.1. Optical Absorption Sensors

These sensors are based on the interaction of the evanescent field with the coating used as the
sensitive material, providing changes of the transmitted optical power along the whole spectrum.
For this kind of sensor, plastic-cladding silica (PCS) optical fiber or plastic optical fibers (POF) are
commonly used, although there are other possibilities such as the side-polished optical fiber (D-shape).
Some of these optical fibers present advantages such as low fabrication cost [15], the possibility of
measuring with a simple setup, and high reliability, but they have some disadvantages. The main
disadvantages are related to the method of measurement, which only detects changes on the
transmitted optical power; these changes might be affected by undesired factors such as fluctuations
in the light source.

Most recent research has focused on the study of materials that are becoming common in the
development of optical fiber sensors. These materials are being studied for their ability to improve
certain characteristics of OFHS, such as response time or sensitivity. The studied materials are tungsten
disulfide [16], reduced graphene oxide (rGO) [17], and zinc oxide [18].

Tungsten disulfide (WS2) has been studied because the physical adsorption of the water molecules
onto the WS2 layer is accompanied by a moderate degree of charge transfer, enabling fast response
times [16]. A D-shape optical fiber was coated with WS2, as can be seen in Figure 2, and this OFHS has
shown a sensitivity of 0.1213 dB/%RH and a resolution of 0.475%RH. The rising time is about 1 s and
the recovery time is about 5 s.
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Figure 2. (a) D-shape optical fiber coated with tungsten disulfide coating and (b) SEM image of
the surface of the coating at a magnification of 31270. Reprinted from [16] with permission from
OSA Publishing.

The sensor developed with rGO has focused on achieving high sensitivity for high humidity
values. It displays a linear response in the 70%–95%RH range, a sensitivity of 0.31 dB/%RH, and its
response speed is faster than 0.13%RH/s.

On the other hand, there are certain materials that provide high sensitivity in extremely
low-humidity environments [19], which is very useful in applications such as lithium-ion battery
manufacturing, semiconductor fabrication, archival storage and preservation, and the pharmaceutical
industry. This OFHS was fabricated using a U-bent optical fiber coated with silica film by sol–gel
process and doped with methylene blue. For RH ranging from 1.1% to 4.1%, the sensor shows a
linear relationship, with a sensitivity of 0.087 dB/%RH and a limit of detection of 0.062%RH [19].
The response and recovery time of the sensor is 20 s–3 min depending on the RH variation.

With regard to novel structures, the use of 2-mm hydrogel spheres for humidity detection should
be mentioned [20]. Rather than coating the bare optical fiber core with a coating of even thickness,
the reported sensor exploits hydrogel spheres on the fiber core (see Figure 3). Nevertheless, the sensing
range of the current sensor is still very narrow, from 70% to 90%, due to the moisture absorption
behavior of the hydrogel used.
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Reprinted from [20] with permission from Elsevier.

2.2. Fiber Bragg Gratings

A Bragg grating is an optical structure that consists of a periodic perturbation of the refractive
index of a waveguide. A FBG is formed by exposure of the core of the optical fiber to an intense
optical interference pattern of ultraviolet light [21]. The exposure produces a permanent increase
in the refractive index of the core of the fiber, creating a fixed index modulation according to the
exposure pattern [22]. When light is launched into the optical fiber, a small amount of light is reflected
at each periodic refraction change. All the reflected light signals combine coherently into one large
reflection at a particular wavelength when the grating period is approximately half of the input light’s
wavelength [22]. The grating does not affect light propagating at wavelengths different from the Bragg
wavelength, which satisfies Equation (1):

λB = 2nΛ (1)

where λB is the Bragg wavelength, n is the effective refractive index of the grating in the fiber
core, and Λ is the grating period. Due to the mask dimensions and the characteristics of standard
communications single mode optical fibers (SMF), Bragg wavelength is usually located at the infrared
range. More recent research involves the use of micro-structured [23] plastic optical fibers (POFs) or
SMF with reduced core diameter to be able to work in the visible-near-infrared range [24].

Hygroscopic materials are commonly used to develop OFHSs using FBGs because of the strain
they can apply to the FBG when swelling [25]. A large number of research papers [25–33] have
been published recently dealing with this optical structure and, despite its low dynamical range and
sensitivity, FBGs still attract great interest due to their inherent multiplexing capability and high
quality [33]. Moreover, etching the cladding of a FBG and coating it with a sensitive layer enhances the
sensitivity of this optical structure [25].

Several polymeric materials have been coated onto a FBG and tested for humidity sensing
purposes such as polyimide [4,31], di-ureasil, [34] or poly(methyl methacrylate) (PMMA) [25,28],
among others. The sensitivity of FBGs developed in [4], coated with polyimide by dip-coating,
range from 1.4 to 5.6 pm/%RH depending on the thickness of the coating. However, the same
material has provided greater sensitivities (13.6 pm/%RH) when coated by another method (in situ
imidization) [31]. According to the results of both papers, the sensitivity increases with the thickness
of the coating. When compared with polymer-based solutions, the proposed di-ureasil layer shows an
enhanced sensitivity of 22.2 pm/%RH [34].

Graphene oxide [32] and carbon nanotubes (CNT) [33] have also been tested as the sensitive layer
for FBG-based RH sensors. CNTs, coated onto an etched FBG, provide the highest sensitivity found for
conventional FBGs OFHS, which is 31 pm/%RH [33]. A representation of this optical device can be
seen in Figure 4.
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Figure 4. Schematic of an optical fiber humidity sensor using fiber Bragg gratings.

Concerning the cross thermal sensitivity, which is inherent to FBGs, it has been compensated for
in [30] by inscribing the grating on a High-Birefringent (Hi-Bi) optical fiber. Due to the birefringence of
the fiber, the FBG exhibits a reflectivity spectrum dominated by two separated Bragg wavelengths,
whose separation depends only on the temperature.

Finally, recent research has focused on improving the sensitivity by using PMMA-based
micro-structured polymer optical fiber Bragg gratings (POFBG) [27]. This structure has been
demonstrated to have a superior response with very low hysteresis, improved sensitivity (35 pm/%RH),
and an increased stable operation temperature if it is annealed at high humidity (90%RH). Some results
related to this optical device are shown in Figure 5.

Figure 5. (a) Measured humidity response at 25 ◦C of PMMA mPOFBG annealed up to 90%RH
versus time and humidity; (b) Microscope image of the end facet of PMMA mPOF; (c) Corresponding
stabilized response of the PMMA mPOFBGs annealed up to 90% and 10%. Reprinted from [27] with
permission from OSA Publishing.

2.3. Long-Period Fiber Gratings

Long-period fiber gratings (LPG) consist of a periodic modification of the refractive index of the
core of a single-mode optical fiber (SMF). In opposition to FBG, which have a sub-micron period and
couple light from the forward-propagating mode of the optical fiber to a backward counter-propagating
mode, LPGs have a period typically in the range of 100 µm to 1 mm. This provokes in LPGs a
coupling of light between the guided core mode and various co-propagating cladding modes [35,36].
This coupling produces a series of attenuation bands in the optical fiber transmission spectrum,
each one centered at a different resonant wavelength. A portion of the electromagnetic field of
the cladding modes penetrates the surrounding medium in the form of an evanescent wave [37].
Although LPGs were initially developed as rejection-band filters [38], they also present interesting
characteristics for sensing.

Several kinds of materials have been explored as coatings for the development of LPG-based RH
sensors, including polymers [39,40], hydrogels [41], gelatin [42], cobalt-chloride-based materials [43],
and SiO2 nanospheres [44]. Most recent research has focused on studying the performance of this sensor
for low values of RH (0.4% to 36%RH) and temperature (−10 to 20◦C) and subjected to radiation [37].
For this purpose, the material chosen for the coating was titanium dioxide and the sensitivity obtained
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was 1.4 nm/%RH at low RH values, which is a high sensitivity for a LPG. Measured spectra of device
developed in [37] are shown in Figure 6.
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A novel method for the fabrication of LPGs (schematized in Figure 7) has been developed in [45].
It combines the fiber side-polishing and fiber etching methods to create air gaps on the polished region
that reach the core of the optical fiber. After coating this device with calcium chloride, we obtained a
sensitivity as high as 1.36 nm/%RH in the range 55%–90%RH.
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Another novel approach for the development of OFHS based on LPG was studied in [46]. First,
a LPG was coated by layer-by-layer nano-assembly (LbL) method with PAH/PAA. Then, by chemically
removing half of the LPG coating, the main attenuation band was split into two different contributions.
The coated LPG contribution remained and a second band appeared because of the removing process.
As was expected, this new band corresponds to the half-uncoated LPG area. When this semi-coated
LPG was also exposed to RH and temperature tests, the two new attenuation bands presented different
behaviors for humidity and temperature. The dual-wavelength-based measurement provided a
simultaneous monitoring of RH and temperature, with sensitivity ratios of 63.23 pm/%RH and
410.66 pm/◦C for the attenuation band corresponding to the coated contribution, and 55.22 pm/%RH
and 405.09 pm/◦C for the attenuation band corresponding to the uncoated grating.
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2.4. Modal Interferometers

Fiber optics technology offers many degrees of freedom for the generation of modal
interferometers. Therefore, several structures have been studied, all of them providing advantages
such as stability, compactness, small size, lightness, etc. [47–49]. The interferometric phase difference
is built up by considering the difference in the effective refractive indices of different fiber modes [50].
There are alternative topological configurations such as Michelson or Mach-Zehnder interferometers,
which can be implemented by means of splicing different types of fibers in a hybrid structure [51] or
by other methods [52].

2.4.1. Photonic Crystal Fibers

Photonic crystal fibers (PCF) can be included as Mach-Zehnder interferometers (MZI),
although they can also be used as Michelson or Sagnac interferometers [53]. These fibers are
characterized by a complex pattern of microscopic air-holes in the transverse plane that runs all
along the fiber [53–55] . PCFs are attracting great interest due to the different alternatives to construct
all-fiber modal interferometers such as tapered PCF or hybrid structures [53]. The key element in these
interferometers is a microscopic region in which the voids of the PCF are fully collapsed [53]. The two
collapsed interfaces between PCF and SMF segments produce the excitation and recombination of core
and cladding modes [56]. A scheme of the optical structure and the obtained transmitted spectrum can
be observed in Figure 8.
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In [57] it is reported that a coating is not needed with these interferometers to obtain a
temperature-insensitive OFHS. Coating the PCF with hygroscopic materials such as agarose [58,59],
polyvinyl alcohol (PVA) [60], or poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) [56]
improves the sensitivity of these interferometers, reaching 2.35 nm/%RH in the range 75%–95%RH.
However, these materials present non-linear behavior, although linearization can be achieved by using
a digital processing algorithm [56].

2.4.2. Tapered Optical Fibers

As previously mentioned, MZI require two different optical paths for generating interference.
One optical path is the core of the optical fiber, while the other optical path is the cladding, where the
cladding modes are guided through. For this reason, it is necessary to allow the cladding modes to
propagate through the cladding to obtain a modal interferometer based on MZI. Several approaches
have been followed for this purpose.

One of the most well-known structures is the non-adiabatic tapered optical fibers (NATOF).
In NATOFs the fundamental mode is coupled to higher order modes, which generate modal
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interference and, therefore, an oscillatory optical power output [61–63]. In a tapered SMF, the central
region of the taper acts as a multimode fiber and the light is now guided through the cladding of the
fiber, which makes the surrounding medium play the role of the new cladding [61]. This coupling
of modes in the taper waist makes the taper very sensitive to surrounding medium refractive index
(SMRI) changes, allowing its use as an OFHS by adding an appropriate coating. The silica taper
developed in [64], with a waist diameter of 3.8 µm, has demonstrated RH sensitivity of 97.76 pm/%RH
with a cross thermal sensitivity of only −0.048%RH/◦C, without any extra functional coatings. In a
similar way, the micro-wires utilized in [65,66] do not require additional coatings for obtaining an
OFHS, providing sensitivities of 114.7pm/%RH in the 30%–90%RH range [65] and 0.14 rad/%RH in
the 20%–70%RH range [66].

Double in-line adiabatically tapered optical fibers (see Figure 9) can also be considered a modal
MZI [67]. The first tapered region diffracts the fundamental mode and consequently allows the
cladding modes to become excited. The differences between the effective refractive indices of the
core and cladding modes result in phase shifting. Increasing the RH affects the effective RI of the
cladding modes, with the RI of the core mode remaining unmodified. Based on that working principle,
sensitivities of 20 pm/%RH were obtained, without any sensitive layer. The main disadvantage is its
high temperature sensitivity.
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Figure 9. Scheme of a double in-line tapered optical fiber conforming to a modal
Mach-Zehnder interferometer.

2.4.3. Modal Interferometers Obtained by Different Combinations of Fibers

Another method to obtain a MZI is by splicing a standard SMF to a thin-core optical fiber, as was
studied in [29]. A fraction of the light that was being guided through the core of the SMF is guided
through the cladding of the thin-core fiber. Therefore, light has two different optical paths and the
interferometer is generated. Furthermore, a FBG was written onto the thin-core section, which was
also coated by Layer-by-Layer nano-assembly (LbL), so simultaneous measurement of temperature
and RH can be accomplished. The estimated resolution of the sensor is 0.78%RH.

More approaches have been followed in the last few years to advance modal interferometry.
In [51], the MZI is constructed of two waist-enlarged tapers and other explored options are one
waist-enlarged taper followed by an offset [68]. These optical structures provide a good interference
pattern and changes on the transmitted optical power of 0.35 dB/%RH [51]. Recently developed
Michelson interferometers are quite similar to previous MZI, with the difference of light going through
each optical path twice, as schematized in Figure 10. Therefore, similar structures were used for the
development of these interferometers, which provides sensitivities of 135 pm/%RH [69].
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The single mode-multimode-single mode (SMS) fiber structure has found many applications
owing to its unique spectral characteristics [70]. The physical principle of this interferometer is that
light transmitted through the fundamental mode of the SMF is coupled to several modes into the
MMF section and re-coupled to the fundamental mode of the SMF at the end of the MMF segment [70].
A SMS optical fiber coated with PVA provides a sensitivity of 90 pm/%RH [71], whereas by combining
SMS optical structure, the tapering method, and a coating consisting of SiO2 nanoparticles, the OFHS
developed in [72] and shown in Figure 11 offers a sensitivity of 584.2 pm/%RH.
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2.4.4. Complex Refractive Index Materials Coated onto Modal Interferometers

An interesting study is the performance of modal interferometers, such as SMS structures,
when they are coated with a material having a complex RI. As has been shown, the sensitivity
to the external RI can be increased by coating the multimode segment [70,73]. The studies performed
in [74,75] focused on coatings with materials having a complex RI and on the optimization of the
coating parameters for achieving the maximum sensitivity. The most important conclusion extracted
from [74] is that there is an optimum thickness of the coating that leads to a higher sensitivity to the
thin-film refractive index, thin-film thickness, and surrounding medium refractive index. When the
thickness of the coating approaches this optimum value, there is an attenuation of the observable
interference pattern. This is the so-called fading region. This fading region is caused by the attenuation
bands produced by the material having a complex RI. These attenuation bands are obtained at certain
thicknesses of the coating and they experience a wavelength shift as the thickness increases. That is
the reason for the interference pattern disappearing and appearing again. A similar study has been
performed with photonic crystal fibers (PCF) [56], which behave following the same trend. Therefore,
the fade region indicates the optimum thickness for obtaining the highest sensitivity.

2.5. Fabry-Pérot Cavities

One optical phenomenon extensively used for the development of optical fiber sensors and
specifically for OFHSs fabrication is Fabry-Pérot interferometer (FPI). FPIs are based on the interference
caused by multiple reflections of light between two reflecting surfaces. Transmitted beams, being in
phase, generate constructive interference, whereas whether the transmitted beams are out of phase or
not, destructive interference occurs and this corresponds to a transmission minimum. Constructive
interference corresponds to a high-transmission peak of the etalon. Whether the multiply reflected
beams are in phase or not depends on the wavelength of the light, the angle at which the light travels
through the etalon, the thickness of the etalon, and the refractive index of the material between the
reflecting surfaces [76]. This section focuses only on FPIs developed by coating the end facet of the
optical fiber [77].

In such FPIs the two semi-reflective surfaces are generated by the fiber–coating interface and
by the coating-air interface. Transparent conducting oxides have been proven a good choice for this
optical structure, due to their optical constants and especially for humidity sensing purposes. The good
performance of metal oxides as humidity transducers is due to the electrostatic attraction between the



Sensors 2017, 17, 893 10 of 23

oxygen of the water molecule and the cationic side of the metal oxide surface, caused by the polar
nature of the water molecule [78].

Different materials have been studied, such as tin dioxide coated onto the end facet of a SMF [77],
which presents a large dynamical range (90 nm), low response time, and a sensitivity of 1.27 nm/%RH.
The optical response of tin dioxide to RH shows high linearity and low hysteresis, making it a good
option for the development of OFHSs. Experimental results for this optical device are depicted in
Figure 12.
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Other humidity-sensitive materials used in FPIs include semiconductors [77,79], ceramics [80],
polymers [81,82], etc. Porous anodic alumina has been studied and a sensitivity of 0.31 nm/%RH
was achieved [80]. An important factor that must be taken into account when working with porous
materials is the required time for complete desorption of water, which can range from a few seconds [82]
to 22 minutes [80], depending on the size of the pore, among other factors.

A different approach is followed when the FPI is generated by a water-swelling material.
Previous FPIs were based on changes in the RI of the material due to the water absorbed into
the pores [80] and/or onto the metal oxide surface [77,79]. Water-swelling materials change their
dimensions when they are subjected to changes of RH. Therefore, the length of the etalon is modified
and subsequently the interference condition changes. This is the working principle of the FPI developed
in [81], which is developed with a 10-µm Nafion film and has a sensitivity of 3.5 nm/%RH. This is the
highest sensitivity found in this review.

2.6. Sagnac Interferometers

The most well-known application for Sagnac interferometers is as a gyroscope [83], but they
have also been widely studied and applied in other sensor applications [84]. Sagnac interferometers
use a coherent monochromatic light source. Monochromatic light makes interfering behavior more
predictable and coherence is required for phase shift detection [85]. The laser beam is split into two
different beams forced to follow a single path but in opposite directions. After rounding the enclosed
area, the two beams are recombined in the splitter and the phase shift becomes an optical power output
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variation. Two different approaches have recently been proposed [86]. Both of them use a similar setup
(see Figure 13), which includes a broadband light source (BBS) and an optical spectrum analyzer (OSA).
The main difference is related to the use of an additional sensitive layer in one case [86], whereas in
the other case the sensing principle is based on the interaction between the evanescent field of a high
birefringence (Hi-Bi) optical fiber [87] and the humidity of the environment.
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Polyvinyl alcohol (PVA) is used as the sensitive material in the first approach [86]. It was coated
onto a chemical etched polarization maintaining optical fiber (PMF), which forms one of the arms of the
interferometer. The other arm is formed by an unmodified PMF. Therefore, interference will happen
owing to the relative-phase difference introduced to the guided modes by the PMFs. The obtained
attenuation bands, with attenuations of 20 and 25 dB, have a FWHM of 11.8 and 5.2 nm, respectively.
A sensitivity of 111.5 pm/%RH was achieved within the humidity range 20–80%RH with a response
time of about six seconds. Moreover, the sensitivity to temperature is only 7.2 pm/◦C.

Greater sensitivities were obtained in [87]. The fabrication of this Sagnac interferometer,
represented in Figure 13, requires a more complex setup for the fabrication of the sensitive optical
fiber, which is a Hi-Bi optical fiber that consists of an elliptical microfiber. Furthermore, polarization
controllers were needed. The final device shows a sensitivity of 422 pm/%RH with response times of
only 60 ms. The ability of measuring RH without adding any coating enables faster measurements.

2.7. Resonators and Whispering Galleries Modes

The optical devices explained in this section are based on microtapers. In the first subsection,
the microtapers constitute the resonator, while in the second subsection they are used to couple the
light to the resonator structure.

2.7.1. Microloop and Microknot Resonators

This optical structure presents a desired characteristic for all optical sensors: their high Q factor.
The Q factor is related to the quality of the filter performance and involves higher resolution for a
sensor. Resonators can be fabricated in different ways.

In microloop resonators, due to the diameter of the fiber, a large fraction of the guided field is left
outside the fiber as evanescent waves. Then, these evanescent waves can be self-coupled to the parallel
segment of the microfiber and interfere with the light being guided through the loop. A microfiber
loop resonator developed using standard SMF [88] achieved a sensitivity of 1.8 pm/%RH without any
sensitive coating. Its Free Spectral Range (FSR) is 350 pm and the fringe contrast reaches 7 dB.

A similar structure is the so-called microknot resonator. Two different microknot resonators
(MKR) were developed in [89]. One of them was made of silica (standard SMF) and the other one was
built using polymethyl methacrylate (PMMA) as the waveguide. The silica MKR (1.2 µm diameter)

https://creativecommons.org/licenses/by-nc-nd/4.0/
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had a Q factor of 15,000 and a FSR of 0.22 nm. The PMMA MKR (2.1 µm diameter) showed a Q factor
of 20,000 and a FSR of 0.17 nm. This last device has reached sensitivities of 8.8 pm/%RH (~8 times
higher than the silica MKR) with a high resolution of 0.0023 RH. The greater sensitivity found for this
optical structure is 490 pm/%RH [90] for a microknot developed with polyacrylamide (PAM), which is
depicted in Figure 14.
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2.7.2. Whispering Galleries Modes

This kind of resonator consists of two optical structures, the waveguide and the coupler.
The dielectric resonator, with circular structures, supports the electromagnetic surface oscillations,
which are evanescently coupled to the waveguide. Total internal reflections from the resonator’s
curved surface confine the energy of the light inside the resonator, generating some transmission
dips. The spectral positions of the transmission dips are strongly dependent on the geometry of the
resonator and the optical properties of the resonator material. They offer high resolution and the ability
to measure really low RH values.

A tapered optical fiber was used as the waveguide and a silica microsphere was used as the
resonator structure [91,92]. The resonator was coated with SiO2 nanoparticles by layer-by-layer
nano-assembly. This OFHS has a resolution of 0.003%RH [91] using the coated WGM microspheres at
low RH (0%–12%RH). The other material tested using a similar structure was agarose, which provides
a sensitivity of 518 pm/%RH [92]; the obtained results are shown in Figure 15.
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Finally, a similar structure but with toroidal form was used in [93] and is shown in Figure 16,
achieving a sensitivity of 12.98 pm/%RH in the range 0%–12%RH. The silica microtoroid was coated
with poly(N-isopropylacrylamide), which improves the sensitivity of the device by nearly two orders
of magnitude. The Q-factor was 2 × 105, providing high resolution.
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3. Optical Fiber Humidity Sensors Based on Lossy Mode Resonances

The first time dealing with lossy mode resonances (LMR), these were confused with surface
plasmon resonance (SPR) [94], but, despite its similarities, important differences can be distinguished
between the phenomena. What makes them similar is that both are electromagnetic resonances
that generate an attenuation band on the transmitted spectrum. However, in SPRs there is energy
transference from light to free electrons of the noble metal, whereas in LMRs the light is coupled with
the coating. Another difference is the possibility of being observed on the transverse magnetic (TM)
and transverse electric (TE) modes, which might simplify the required setup and number of materials
available for LMR generation, which broadens the application of LMR-based sensors. The possibility of
generating several attenuation bands at tunable wavelengths is another advantage of LMRs. However,
one of the most relevant factors that make LMRs a good choice for optical fiber sensors development
is their ability to generate an optical phenomenon that can be detected by the wavelength detection
method with the same material that acts as the sensitive layer to the parameter to be measured.

The structure of a LMR-based device consists of a waveguide, which allows for accessing the
evanescent field, coated with a thin film of the appropriate material. The condition for LMR generation
is that the real part of the thin film permittivity is positive and higher in magnitude than both its own
imaginary part and the real part of the material surrounding the thin film [95]. LMRs are generated
when there is a resonant coupling of light to modes guided in the external coating. Figure 17 shows
the fundamental mode (HE1,1) confined in the fiber core except at 1420 nm, where a fraction of the
power transmitted by the core mode is coupled to the thin film, generating the LMR. It also shows one
cladding mode (TE1,1) that is confined at the cladding at 1690 nm, but is guided through the coating
for wavelengths smaller than 1420 nm [96].
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Several materials, including metal oxides such as ITO [97], SnO2 [98,99], In2O3 [100], TiO2 [95] or
polymers such as poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) [101], have been
tested and checked for LMR generation. The large amount of available materials enables the
development of optical fiber sensors for a wide range of applications [63,102–105]. Besides the research
on the appropriate materials, LMR supporting structures have evolved and they have been studied on
a wide range of optical fibers.

The first LMR-based devices were developed on plastic-clad silica (PCS) optical fiber (200 µm
diameter). Then, by chemically removing the cladding the evanescent field becomes accessible,
which is one of the requirements for LMR generation. ITO was the first material tested and was
coated by dip-coating [102], but other metallic oxides have been studied, such as tin dioxide [106].
The results obtained by this combination (LMR generated by tin dioxide and PCS) show a sensitivity
of 0.1 nm/RH% in the range from 20% to 80%RH [106]. Adding an external layer, which is
sensitive to humidity, the sensitivity of the device improves, reaching values around 1 nm/%RH [97].
Characterization of this last device is shown in Figure 18.
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Figure 18. Spectral response of the (a) non-tuned and (b) tuned sensors for 20% and 90%RH. Dynamical
response of the sensors to changes in the RH of the external medium (c) non-tuned sensor and
(d) tuned sensor (non-tuned sensor (20 PAH/PAA bilayers) and tuned sensor (100 PAH/PAA bilayers)).
Reprinted from [97] with permission from Elsevier.
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A method to decrease the resonance width and increase the sensitivity of LMR-based sensors is
currently being studied [96,99,107]. Side polished optical fibers enable distinguishing between the TM
and the TE modes of the LMR [108], obtaining a narrower attenuation band. Moreover, working with
the fundamental mode provides better sensitivity than working with several modes [96,108,109].

Therefore, using a SMF improves the previously obtained sensitivities. Different approaches can
be followed when working with SMF such as using side polished optical fibers, tapered optical fibers,
or cladding etched SMF (CE-SMF). The first two methods have been used for the development of
several kinds of sensors [63,101]. The latter has been recently studied towards humidity sensing [99].
Etching the cladding of a SMF with hydrofluoric acid (HF) reduces the cladding diameter, allowing
the interaction with the evanescent field.

Two different materials have been tested with CE-SMF structure, indium oxide [100] and tin
oxide [99]. Both transparent conductive oxides meet the requirements for LMR generation. The real part
of the refractive index of tin oxide is slightly greater, increasing the sensitivity of the final device [99].
The wavelength of the LMR shifts more than 30 nm for RH changes from 20% to 90% when working
with indium oxide. The LMR generated by tin oxide has a sensitivity of 1.9 nm/%RH for the same
range of RH. Static and dynamic characterization of this sensor is plotted in Figure 19. In addition,
this optical structure has an unnoticeable cross thermal sensitivity. High linearity and low hysteresis
are other characteristics of this kind of sensor.
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An interesting comparison between SMS and LMR was developed in [110] by coating a SMS
and a PCS (200 µm diameter) with a combination of titanium (IV) oxide nanoparticles (TiO2) and
poly(sodium 4-styrenesulfonate) (PSS). When comparing the sensitivity to relative humidity changes,
the LMR-based device shows a tenfold improvement compared to the SMS-based device. Therefore, it
is proved that it is better to use an LMR-based device if high sensitivity is needed. However, the SMS
structure provides narrower attenuation bands than LMR generated onto PCS fibers. In any case,
coating the SMS structure with the thin film provides better sensitivity than the naked SMS.
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Table 1. Summary of the most relevant results found for the interval 2010–2016.

Reference Year Method Sensing Material Range Sensitivity/Resolution Response Time Comments

Optical absorption sensors

[16] 2016 D-shape SMF WS2 35–85% 0.123 dB/%RH & 0.475 %RH 1–5 s -
[17] 2014 D-shape SMF rGO 75–95% 0.31 dB/%RH 0.13%RH/s -

Fiber Bragg gratings

[31] 2015 ∆λB,strain Polyimide 11–97% 13.6pm/%RH 22–29 min In situ imidization
[33] 2014 Etched FBG, RI CNT 20–90% 31 pm/%RH & 0.03%RH 9.7–39.4 min -
[27] 2016 Bragg on POF PMMA 10–90% 35 pm/%RH Annealed 90%RH

Long-period fiber gratings

[37] 2014 RI, λ TiO2 0–75%RH 1.4 nm/%RH at low RH - Radiation&Ta<0◦C
[45] 2010 RI, λ Calcium chloride 55–90%RH 1.36 nm/%RH - Air gap LPG
[46] 2015 RI, swelling PAH/PAA 20–80%RH&25–85◦C 63 pm/%RH & 411pm/◦C - RH & Tª

Interferometers

Fabry–Pérot

[77] 2015 RI, absorption SnO2 20–90%RH 1.26nm/%RH & 0.06%RH - -
[81] 2014 Swelling, RI Nafion 22–80%RH 3.5 nm%RH & 3 × 10−4%RH 242 ms (∆RH=3%)

Sagnac

[87] 2016 Elliptical microtaper No coating 30–90%RH 422 pm/%RH 60 ms
[86] 2013 Etched PMF PVA 20–80%RH 111.5 pm/%RH 6s

Modal Interferometers

[56] 2016 Photonic crystal fiber PAH/PAA 20–75%RH
75–95%RH

0.29 nm%RH
2.35 nm/%RH 200 ms -

[64] 2013 Tapered optical fiber No coating 30–90%RH 97.8 pm/%RH 188 ms -
[72] 2016 SMS SiO2 nanoparticles 44–98.6%RH 584.2 pm/%RH - -

Resonators

[88] 2013 Microloop No coating 50–80%RH 1.8 pm/%RH - -
[89] 2010 Microknot Silica or PMMA microfiber 20–96%RH 17–98%RH 1.2 pm/%RH 8.8 pm/%RH <0.5 s -
[93] 2013 Microtoroid+tapers poly(N-isopropylacrylamide) 0–60%RH 13 pm/%RH 1.6 s<t<5 s Q-factor

Lossy Mode Resonances

[106] 2013 Dip-coating (PCS 200 µm) SnO2 20–90%RH 0.1 nm/%RH - -
[102] 2012 LbL onto PCS 200 µm In2O3+PAH/PAA 20–80%RH 0.935 nm/%RH - -
[99] 2016 Sputtering onto CE-SMF SnO2 20–90%RH 1.9 nm/%RH 1.5–4 s -
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LMRs can be combined with another optical phenomenon such as Localized Surface Plasmon
Resonance (LSPR). This was demonstrated by using the Layer-by-Layer nano-assembly (LbL) method
to develop a polymeric coating loaded with Ag nanoparticles (Ag NPs) onto an optical fiber [111].
The LSPR band showed a slight intensity variation with RH changes but no significant wavelength
dependence was observed. Therefore, the LSPR band can be used as a reference wavelength.
Furthermore, the polymeric coating with silver nanoparticles is twice as sensitive (0.943 nm per %RH)
to RH changes than the polymeric overlay only (0.44 nm per %RH).

This paper has tried to encompass the most recent and relevant research papers involving optical
fiber humidity sensors. The main optical structures used for that purpose were briefly explained,
intending to provide a complete guide of recent developments in this application field. Table 1
summarizes some of the most relevant results.

4. Conclusions

There are several ways to measure relative humidity by optical setups and by OFHS and several
application fields where this kind of sensor can be exploited, such as radiation environments or
watertight containers, or for example vacuum-packed foods, where other sensors might alter the
environment and distort the measurement. Although there are structures that have not been analyzed,
some interesting conclusions can be extracted from those that have been explained here.

Novel materials, understood as novel nanostructured materials (nanotubes, quantum dot), are still
appearing and show promising properties for humidity sensing. Polymeric coatings and inorganic
salts might present nonlinear behavior, especially at high relative humidity values, where they have
their greatest sensitivity. Metal oxides and semiconductor oxides seem to be a good choice for obtaining
linear responses and good sensitivity in the 20%–90%RH range. Their response times are usually
shorter than those of water-swelling materials.

With regard to optical structures, there should be an agreement between the desired spectral
width of the attenuation band and its dynamic range. Another important factor that must be taken
into account is the complexity of the required fabrication process. Modal interferometers developed by
splicing together different kind of fibers represent the largest number of publications in recent years.
In addition, polymeric optical fibers and photonic crystal fibers have shown their strength for optical
fiber sensor development.

FBGs and LPFGs require specific equipment for inscribing the grating onto the optical fiber.
They are not too sensitive to external parameters by themselves and need an external coating besides
the grating. However, recent research has demonstrated that improved sensitivities can be obtained
with these optical structures. Moreover, they compensate for their small dynamical range with their
high resolution.

For LMRs, a previous process is required to access the evanescent field. This process is simpler
than that required for writing a grating and usually consists of a chemical method to partially or
completely remove the cladding. LMRs allow for generating an attenuation band with the same
material that will act as a sensitive layer, simplifying the process of obtaining an optical fiber
humidity sensor.

Finally, Fabry-Pérot interferometers, developed by coating the tip of an optical fiber, seem to be a
good choice to obtain optical fiber humidity sensors because of their good performance and the relative
ease of obtaining them. They are also a less invasive way to measure with optical fibers. The highest
sensitivity found in this review corresponds to this optical structure dealing with hygroscopic materials.
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