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Abstract: Thermal infrared imaging has been proposed, and is now used, as a tool for the
non-contact and non-invasive computational assessment of human autonomic nervous activity
and psychophysiological states. Thanks to a new generation of high sensitivity infrared thermal
detectors and the development of computational models of the autonomic control of the facial
cutaneous temperature, several autonomic variables can be computed through thermal infrared
imaging, including localized blood perfusion rate, cardiac pulse rate, breath rate, sudomotor
and stress responses. In fact, all of these parameters impact on the control of the cutaneous
temperature. The physiological information obtained through this approach, could then be used
to infer about a variety of psychophysiological or emotional states, as proved by the increasing
number of psychophysiology or neurosciences studies that use thermal infrared imaging. This paper
presents a review of the principal achievements of thermal infrared imaging in computational
psychophysiology, focusing on the capability of the technique for providing ubiquitous and unwired
monitoring of psychophysiological activity and affective states. It also presents a summary on the
modern, up-to-date infrared sensors technology.

Keywords: thermal imaging systems; computational psychophysiology; autonomic nervous system;
thermal detectors; microbolometers

1. Introduction

Understanding psychophysiological and emotional states of a conversational interlocutor is
a key point for establishing a proper communication, tying social and affective bonds, choosing
social strategies and setting a contingent interaction. Typically, psychophysiological and emotional
states have been, and still are, assessed through behavioural analysis and/or the measurements of
several Autonomic Nervous System (ANS) parameters, like galvanic skin response [1], hand palm
temperature [2], modulations of heart beat and/or breathing rate [3], and peripheral vascular tone [4].
Classical approach for monitoring these ANS variables requires the use of contact sensors or devices,
thus resulting invasive for the subject and, overall, biasing the estimation of the emotional state, since
the compliant participation of the individual is required.

To overcome the limitations of contact sensors, computational psychophysiology based on
imaging approaches has been suggested. Among these, thermal InfraRed (IR) imaging has been
proposed as a potential solution for the quantitative assessment of several psychophysiological
parameters associated with ANS activity [5].

Thermal IR imaging or infrared thermography is a widespread imaging technique used to
accurately evaluate the thermal distribution of a body without any contact between the sensors and
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the body itself. Thermal imaging devices, or thermal cameras, are able to capture the infrared radiation
emitted by the body and to convert it into a radiometric thermal image that is a digital map of the
superficial temperature distribution of the body itself.

During the last decades, thermal IR imaging has become a cutting edge technique in many
application fields, from mechanical and electrical inspection to building diagnostics, from optical gas
detection to automation and industrial safety. Up-to-date IR detectors, both based on cooled and
uncooled technology, guarantee a high thermal resolution and accuracy. Furthermore, the impressive
spread of IR technology, together with the miniaturization of IR detectors, conducted the manufacturer
houses to produce even mobile thermal cameras.

In the biomedical field, thermal IR imaging allows the contactless and non-invasive recording of
the cutaneous temperature through the measurement of the spontaneous thermal irradiation of the
human body.

Quantitative parameters modelling the cutaneous temperature distribution and time-evolution are
often obtained using bioheat transfer models (BHTM) [6,7]. The first BHTM equation was elaborated by
Pennes [8]. He developed a blood perfusion model based on experimental measurement of the human
forearm. This model allowed the estimation of the heat transport and temperature variation within
biological tissue, hypothesizing that the temperatures of blood incoming and outgoing capillaries
were both constant for any small volume of tissue. Among the others, a new version of BHTM was
recently developed by Shrivastava et al. considering the conservation of thermal energy in a heated,
vascularised and finite tissue [6]. The model is constituted by two linear, coupled differential equations
depending on tissue volume averaged temperature and blood volume averaged temperature.

Through the use of IR thermography, it is also possible to obtain information on the ANS activity,
since, beyond being the main regulator and controller of some vital functions, such as heart rate,
digestion, respiratory rate and perspiration, it directly controls the thermal exchanges between the
human body and the surrounding environment. The human face is of special importance since it
is naturally exposed to social communication and interaction, thus offering an excellent region for
computational psychophysiology based on thermal IR imaging. In fact, several autonomic parameters
such as heart rate, cutaneous blood perfusion, breathing rate, and the sudomotor response [9–17] have
been estimated through the analysis of the modulation of facial cutaneous temperature.

The reason that makes thermal IR imaging particularly suitable for the neurosciences and applied
psychophysiology is the possibility to assess the psychophysiological state of one or more subjects at
once, while preserving an ecological context of interaction, which is guaranteed by the absence of any
contact device. In addition, modern thermal IR imaging devices can rely on both high spatial (up to
1280 × 1024 pixels) and temporal recording resolution (up to 200 full frames per seconds).

Given the proper choice of IR imaging systems, optics, and solutions for tracking the regions
of interest (ROIs), it is also possible to avoid any behavioural restriction on the subject [18,19].
This possibility is particularly important, for example, in psychometrics studies or human artificial agent
interaction or developmental psychology fields, with non-collaborative subjects like children [20,21].
Although the present review is focused on applications of thermal IR imaging on computational
psychopshyiology and neurosciences, it is worth noticing that the impressive advancement of thermal
IR imaging is positively impacting on the medical diagnostics. Fields of interest are the vascular
disorders, endocrinology, traumatology and orthopaedics, neurology, neonatology, oncology. A very
strong interest is regarding also sport medicine [22]. An up to date review of thermal IR imaging for
biology and medicine has been recently provided by Vardasca and Gabriel [23]. Areas of interest are
microvascular imaging, diagnosis of venous diseases, diagnosis of orthopaedic injuries in childhood,
total body cryotherapy, evaluation of myogenous temporomandibular disorders and myofascial
trigger points, assessment of physical fitness level, monitoring and prevention of sport injuries,
thermal characterization of swimming technique, application to safety studies of vaccines, oncobiology,
racehorse performance. The possibilities for using thermal IR imaging in medicine and biology are
continuously increasing, with a growing attention to the technology and its development.
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In the same way, detection and recognition of emotional states through thermal IR imaging have
gained an increasing interest. An interesting review on this topic was conducted by Clay-Warner and
Robinson in 2014 [24]. More recently, Salazar-López et al. investigated the cognitive neuropsychology
of emotions during emotional tasks [25], while Latif et al. explored the suitability of IR imaging
technique for affect detection by means of thermal image feature extraction using Gray Level
Co-occurrence Matrix (GLCM) [26]. Finally, another promising research field concerns face recognition
by means of thermal imaging. In the last years, Cho et al. presented a method for face recognition
based on the identification of vein bifurcation point pattern and gravity center of the thermal face,
by means of Modified Hausdorff Distance [27]. An interesting review on this topic has been conducted
by Ghiass et al. [28], through the description of several emerging methodologies in the field and the
references of the main available databases of infrared facial images. More recently, Hermosilla et al.
presented a novel method for face recognition based on the fusion of thermal and visible features
through the use of genetic algorithms [29].

This paper reviews the state of the art in the field of thermal IR imaging-based computational
psychophysiology, with a special emphasis on the technological aspects of modern thermal cameras.

2. Infrared Sensors Technology

IR imaging technology was introduced from the first half of the 20th century [30]. Since its
birth, it is possible to recognize three generations of infrared cameras [31,32]: the first generation
cameras were characterized by a single element detector, combined with two scanning mirrors to
create infrared images. Their main disadvantage was that they suffered from saturation problems.
Saturation indicates the limit of the highest irradiance that can be measured by a detector. For digital
sensors, since incident photoelectrons are converted in charges, each detector can store a maximum
amount of charges known as the full well capacity [32].

The second generation cameras were characterized by an increase in the number of detectors,
positioned in a large linear array or in two small 2-D array.

The third generation cameras, i.e., the ones currently used, are characterized by large focal plane
array (FPA) detectors, thus increasing the reliability and sensitivity of such infrared systems [33].
The main innovations characterizing modern cameras are the increased number of pixels, the
higher thermal sensitivity, and the increased acquisition frequency. Specifically, new materials for
detector with improved thermal sensitivity are now used, and high-density focal plane arrays (up to
1280 × 1024 pixels) are currently available on the commercial market. Moreover, read-out circuitry
using on-chip signal pre-processing led to the availability of commercial and user-friendly infrared
camera systems. The thermal sensitivity has been substantially reduced to less than 30 mK (20 mK for
nitrogen cooled cameras) with a spatial resolution of 25–40 µm.

The description of the factors qualifying the performances of a thermal imaging system is reported
in Appendix A.

2.1. Modern IR Thermal Detectors

FPA detector technologies are divided into two categories: thermal detectors (uncooled) and
quantum detectors (cooled). Modern uncooled detectors use sensors whose working mechanism is
based on a change of resistance, voltage or current when heated by IR radiation. Uncooled detectors are
mostly composed by pyroelectric and ferroelectric materials or based on microbolometer technology.
The thermal signal depends upon the radiant power but not upon its spectral content, i.e., it is
wavelength independent [34]. Some of the materials used for these sensor arrays are amorphous
silicon (a-Si), lead zirconium titanate (PZT), vanadium oxide (VOx), lead lanthanum zirconate titanate
(PLZT), lead scandium tantalate (PST), lead lanthanum titanate (PLT), lead titanate (PT), lead zinc
niobate (PZN), lead strontium titanate (PSrT), barium strontium titanate (BST), lanthanum barium
manganite (LBMO), barium titanate (BT), SbSi and polyvinylidene difluoride (PVDF). Nowadays,
VOx microbolomiter arrays are the most widely used technology for uncooled detectors. One of the
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most important parameters for uncooled detectors is the thermal conductance of the material (Gth).
An increase in thermal conductance, due to improvements in material processing technique, enhances
sensitivity, because Noise-Equivalent Temperature Difference (NEDT) is proportional to

√
Gth, at the

expense of time response, which is in turn inversely proportional to Gth [35].
Cooled detectors (i.e., quantum detectors) are made from materials such as InSb, InGaAs, PtSi,

HgCdTe (MCT), and layered GaAs/AlGaAs for Quantum Well Infrared Photon (QWIP) detectors.
Nowadays, HgCdTe is the most widely used semiconductor material for cooled IR detectors. Beyond
ensuring the use of large number of pixels, high frame rate, and a high thermal resolution, it is
characterized by a multicolour functionality, i.e., multiband detection capabilities [36].

The working process of a quantum detector is based on the change of state of electrons in
a crystal structure reacting to incident photons. Incident photons, with sufficient energy, when hitting
the detectors material, stimulate the electrons in the valence band, causing their movement in the
conduction band. Thus the detector can carry a photocurrent, which is proportional to the intensity
of the incident radiation. These detectors are characterized by a selective wavelength dependence of
the response per unit incident radiation power. They have both perfect signal-to-noise performance
and a very fast response [34]. These detectors are generally more sensitive than thermal detectors.
However, they require cooling, sometimes down to cryogenic temperatures using liquid nitrogen or
a small Stirling cycle refrigerator unit [37].

2.2. Theory of Thermographic Measurement

Thermal IR cameras convert the IR radiation into an electric output, i.e., a voltage output.
The conversion scheme is illustrated in Figure 1 [38].
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Figure 1. A thermal imaging system whose output is provided in temperature units (Fahrenheit,
Celsius, Kelvin, or Rankine) (Adapted from [38]).

The voltage output comes out from the infrared radiation according to Equation (1):

VDETECTOR = k·RD(λ)·Wtot(λ, T) (1)

where VDETECTOR is the detector output voltage, k is a constant depending on the specific optics
and detectors, RD(λ) is the detector’s responsivity (i.e., output voltage per input radiant power) and
Wtot(λ, T) is the IR emitted energy from the target object. In order to switch from the output voltage to
the correct temperature value, a calibration process is needed [38].

Calibration is used to calculate a temperature proportional output signal (IR or thermal image)
from the measurement signal (raw image) taking into account all technical and physical properties of
the IR camera [39]. The calibration is executed on a number of blackbody measurements at known
temperatures, radiance levels, emissivities, and distances. This creates a table of values based on the
A/D counts from the temperature/radiance measurements. Whereby, a series of calibration curves are
created for each condition and stored in the camera system’s memory as a series of numeric curve-fit
tables that relate radiance values to blackbody temperatures. When the system makes a measurement,
it takes the digital value of the signal at a given moment, it fits it into the appropriate calibration table,
and it calculates temperature [37]. Examples of calibration curves are shown in Figure 2 [38].

Moreover, it is worth noticing that thermal imaging technique is a radiometric measurement
method. Radiometry is the measurement of radiant electromagnetic energy, associated with the
IR spectrum. Thermal IR imaging is not based on the direct measurement of the temperatures,
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since thermal IR devices reveal the thermal energy of the radiations. The camera receives radiation
from the target object, plus radiation from its surroundings that has been reflected onto the object’s
surface. Both of these radiation components become attenuated when they pass through the
atmosphere. Therefore, an overriding issue is matching the detector’s response curve to what is
called an atmospheric window, i.e., the range of IR wavelengths that pass through the atmosphere
with little attenuation.
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Although the output is shown as an analog voltage, most systems operate in the digital domain [38].

Essentially, there are two of these windows, one in the [2–5.6] µm range, the short/medium
wavelength (SW/MW) IR band, and one in the [8–15] µm range, the long-wavelength (LW) IR band.
There are many detector materials and cameras with response curves that meet these criteria [37].

Since the atmosphere absorbs part of the radiation, it will also radiate some itself (Kirchhoff’s
law). The total radiation power received by the camera can be expressed as Equation (2):

Wtot = ε, τ·Wobj + (1− ε)·τ·Wamb + (1− τ)·Watm (2)

where ε is the object emissivity, τ is the transmission through the atmosphere, Wamb is the emitted
energy from the object surroundings, and Watm is the emitted energy from the atmosphere.

Thus, it is possible to distinguish three terms in Equation (2):

1. Emission from the object, i.e., ε·τ·Wobj:

2. Reflected emission from ambient source, i.e., (1− ε)·τ·Wamb, where (1 − ε) is the reflectance of the
object (it is assumed that the temperature is the same for all emitting surfaces within the half
sphere seen from a point on the object’s surface);

3. Emission from the atmosphere, i.e., (1− τ)·Watm, where (1 − τ) is the emissivity of the atmosphere.

To arrive at the correct target object temperature, the IR camera software requires inputs for the
emissivity of the object, atmospheric attenuation and temperature, and temperature of the ambient
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surroundings. Depending on circumstances, these factors may be measured, assumed, or found from
look-up tables. In order to determine the values of the temperature measured by each detectors,
Planck’s law is applied (Equation (3)):

Wtot(λ, T) = ε(λ)· 2πhc2

λ5
(

e
hc
λkT − 1

) × 10−6
[
W/m2, µm

]
(3)

where Wb is the blackbody spectral radiant emission at wavelength λ, c = 3 × 108 m/s is the velocity
of light, h = 6.6 × 10−34 J·s is Plank’s constant, k = 1.4 × 10−23 J/K is Boltzmann’s constant , T is
the absolute temperature of the blackbody and λ is the wavelength. Equation (3) shows the spectral
distribution of the object IR radiation. Integrating Equation (3) over an appropriate spectral band, it is
possible to obtain the total emittance of the object (Equation (4)):

Wtot(T) =
∫ λ2

λ1

ε(λ)· 2πhc2

λ5
(

e
hc
λkT − 1

) × 10−6dλ
[
W/m2

]
(4)

Equation (4) is usually integrated numerically or found by using lookup tables.

3. Applications in Psychophysiology

Thermal signatures of a variety of autonomic parameters have been identified. In particular, it
has been demonstrated that, through bioheat transfer models, it is possible to estimate at a distance
physiological parameters, such as the cardiac pulse, the breathing rate, the cutaneous blood perfusion
rate, the sudomotor response, and psychophysiological responses, as the stress response. This section
reviews the methods and the results for computational physiology and psychophysiology based on
thermal IR imaging. A general introduction on the measurement procedures for thermal imaging on
humans is described.

3.1. General Procedures for Thermal Imaging on Human Body

Thermal IR imaging permits the estimation of the superficial thermal pattern of the object of
measurement. When the object of measurement is the human body some consideration has to be taken
into account. In 2015, Fernàndes-Cuevas et al. summarized all the factors influencing the use of IR
imaging on humans [40]. The most important factors are listed below:

I The usage of vasomotor substances (i.e., coffee, tea, alchool, drugs, tobacco) has to be avoided by
the subjects the day of the experimental session [41]. The effects of the intake of these substances
would influence the cutaneous thermal pattern.

II The region of interset for the measurement has to be depilated at least 4 h before the examination
and the usage of moisturizing cream, make up or nail polish (in case of measurement on hands
or feet) has to be avoided [41].

III When executing a thermal imaging measurement, it is mandatory to control the tempearture and
humidity of the experimetal room. International Academy of Thermology (IACT) guidelines [41]
suggest a temperature range of 18–23 ◦C and a controlled humidity range. A humidity range
between 40% and 70% is reported in [40]. It is adviceble to execute the measurement in a large
room (minimal room size is 2 × 3 m [40]) with no direct ventilation on the subject and no direct
sunlight (no windows or with curtains or blinds).

IV The distance between the subject and the camera should be enough to fill the viewable image
area as to maintain adequate spatial resolution and interpretation accuracy, and the camera has
to be as much as possible orthogonal to the plane of the region of investigation, to maximize the
flux of thermal energy revealed by the camera [41].
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V Moreover, it is necessary an acclimatization phase of the subject within the 15 min before the
experimental session [41]. This phase is usefull both for thermal acclimatization and equilibrium
with the experimetal room and stabilization of the emotianal status of the subjects.

It is recommended to refer to IACT guidelines [41] and to [40] for further details.

3.2. Computational Physiology

3.2.1. Cardiac Pulse

Thermal IR imaging is able to estimate the cardiac pulse wave at a distance through the modelling
of the pulsatile propagation of blood in the circulatory system [10,42–45]. Indeed, when the heart
contracts during the ventricular systole, it generates a pressure wave, which propagates through the
arterial system. The arterial pulse reflects the heart activity thus providing a measure of cardiac
inter-beat intervals, heart rate, and its variability [44]. Garbey and colleagues [10] introduced
a novel method for the cardiac pulse estimation with thermography, based on the hypothesis that
the temperature modulation due to pulsating blood flow produces the strongest variation on the
temperature signal of a superficial vessel. This method is based on the information contained in
the thermal signal emitted from major superficial vessels and recorded through a highly sensitive
thermal imaging system. The proposed model describes the heat diffusion process on the cutaneous
layer originating from the core tissue and a major superficial blood vessel. Noise effect coming from
environment and instability in blood flow were taken into account in the model. Their simulation
demonstrated that the skin temperature waveform is directly analogous to the pulse waveform, except
for its smoothed, shifted, and noisy shape caused by the diffusion process. To compute the heart
modulation (pulse) frequency, a line-based region along the vessel was considered. Then, the authors
applied Fast Fourier Transform (FFT) to individual points along this line of interest, to capitalize on the
pulse’s thermal propagation effect. Finally, they use an adaptive estimation function on the average
FFT outcome to quantify the pulse. The experiments were conducted on 34 subjects, comparing
pulse computed from thermal signal analysis method with ground-truth measurement, given by
a standard contact sensor (piezoelectric device). The performance of the method ranged from 88.52%
to 90.33% depending on the clarity of the vessel’s thermal signal. Sun et al. [42] applied the same
method but working at 90 degrees across the direction of the target vessel. The overall accuracy of the
mean pulse measurement using the new method improved to 92.1% with respect to Garbey method.
The abovementioned methods were then improved by Bourlai et al. [43], through the application of
these methodologies on an automatic tracked ROI and the introduction of noise reduction through
a two-stage algorithm that discards problematic frames as a result of bad tracking. The new method
was tested on 12 subjects and reduced the instantaneous measurement error from 10.5 to 7.8%, while it
improved mean accuracy from 88.6 to 95.3%.

More recently, Farag et al. [44,45] introduced an automatic method to determine arterial pulse
waveforms through the use of thermal imaging. This method was based on the hypothesis of the
quasiperiodic thermal pattern on the skin due to the arterial pulse to automatically detect the areas
surrounding superficial arteries. Multiscale decomposition models, such as wavelet decomposition,
were applied to each thermal image to extract those scales containing most of the arterial pulse
information. The influence of irrelevant noise was thus minimized and the arterial waveform recovery
was more accurate. The coarser scales were used to track the Region of Interest (ROI) while the
finer scales were used to compute the arterial pulse through the periodicity detection (PD) algorithm:
a Region of Measurement (ROM) was chosen within each ROI and different ROM configurations were
tested (size, orientation, scale, and location); for each tested ROM, continuous wavelet analysis was
run to remove high frequency noise and to extract arterial pulses structures; maxima were calculated
from the resulting waveform which in turn correspond to the systolic peaks (used to compute heart
rate, beat to beat, and heart rate variability). The PD algorithm identified the optimal ROM in terms of
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the periodicity of the waveform and of its relevance to the true arterial pulse propagation. Validation
of the method on 8 subjects showed perfect matching with oximeter data [45].

3.2.2. Breathing Rate

Breathing function consists of inspiration and expiration cycles during which heat exchanges
occur between airflows and nostrils. These exchanges generate a periodic or quasiperiodic thermal
signal in the proximity of the nostrils that oscillates between high (expiration) and low (inspiration)
values. This phenomenon can be captured by thermal imaging system at a distance, achieving an
accuracy of 96.43% [9].

In classical respiratory studies, a thermistor is usually positioned near the nostrils to capture this
phenomenon and produce a representative breath signal [46]. Thermal imaging behaves therefore as
a virtual thermistor, since it captures the same process, but at a distance. The estimation of breathing
rate through thermal imaging is very accurate as proved by comparison with respiratory ground-truth
signals acquired with conventional sensors [47,48]. Murthy et al. [47] found a high degree of chance
corrected agreement (k = 0.92) between the airflow monitored through thermal imaging and oro-nasal
thermistors. Correlation coefficients between the thermally and mechanically (LifeShirt technology;
see [48]) recorded breath rate signals resulted maximized over a sample of 25 subjects, under shallow,
normal, and forced ventilations [48]. Lewis et al. [48] showed also the possibility of estimating the
relative tidal volume from thermal imaging (Figure 3). The correlation coefficient between the thermal
and mechanical recordings over the same sample was 0.90.
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Statistical methods have also been proposed to compute the contactless breathing signature.
The algorithm used by Murthy et al. [49] was based on the method of moments and Jeffrey’s divergence
measure. This method has been tested on 10 subjects leading to a mean accuracy of 92% compared
with the respiratory belt data at the thorax. Multiresolution analysis has been used as well [19,50].
Fei and Pavlidis [51] applied wavelet analysis in order to extract the breathing content from the
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mean temperature of the nostrils. They found a high degree of agreement between the thermally
recovered breathing waveform and the corresponding thermistor over a sample of 20 subjects. In the
work of Chekmenev et al. [50], the nasal region was tracked over time and for each frame the ROI
was decomposed and averaged at three different scales. Wavelet transform was then applied to the
resulting signal. The scale that contains most of the breathing information was extracted and used to
compute the breathing rate. This approach has been tested on four subjects and the results perfectly
matched the piezoelectric measure device signals.

Thermal IR imaging has been also used to recover breath-related thermal variations from nasal,
ribcage, and abdomen regions of interest in children, both healthy and with respiratory pathology.
Goldman [52] proved that thermal IR imaging reliably acquires time-aligned nasal airflow and
thoraco-abdominal motion without relying on attached sensor performance and detects asynchronous
breathing in paediatric patients. Fei and colleagues [53] introduced a novel methodology to monitor
sleep apnea through thermal imaging. The nostril region was segmented and tracked over time via
a network of cooperating probabilistic trackers. Then, wavelet decomposition was applied on the
average thermal signal of the nostril region, carrying the breathing information. The experimental
set included 22 subjects (12 men and 10 women). The sleep-disordered incidents were detected by
both thermal and standard polysomnographic methodologies. A high accuracy level was achieved,
thus confirming the validity of the proposed approach for nonobtrusive clinical monitoring of sleep
disorders [53].

More recently, Hu et al. [54] used a dual system based on both visible and thermal imaging to
monitor the breathing function. Visible images were used for face, nose and mouth detection through
a cascade classifier based on Viola-Jones algorithm and for the tracking of these regions over time.
ROIs coordinates were then used to extract the breathing signal on thermal video. An example of
the procedure is shown in Figure 4. In terms of breathing rate estimation, the method achieved
a correlation of 0.971 with a reference method and the Bland-Altman plot with 95% limits of agreement
ranged from −2.998 to 2.391.
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3.2.3. Cutaneous Blood Perfusion

Bioheat transfer models allow the estimation of the cutaneous perfusion from high resolution IR
image series [55,56]. Pavlidis and Levine [56] suggested to use cutaneous perfusion rate changes in
the periorbital region as a performing channel for a new generation of deception detection systems,
based on the flight-fight response of the inquired subject to sensitive questions. An application of the
method on the wrist is reported in Figure 5.Sensors 2017, 17, 1042 10 of 20 
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The models adopted are derived from previous works of Fujimasa et al. [57], Pavlidis and
Levine [56], and Merla and colleagues [55]. According to these models, cutaneous temperature change
over a short time is mainly due to the heat gain/loss via convection attributable to blood flow of
subcutaneous blood vessels and the heat conducted by subcutaneous tissue. The models showed
that the blood flow rate and the cutaneous blood flow depend mostly on the time-derivative of the
cutaneous temperature and on the difference between the temperatures of the cutaneous layers and
the inner tissues [55]. It has been demonstrated that it is therefore possible to transform raw thermal
image series in cutaneous blood flow image series. The method has been validated by comparison
with laser Doppler imagery. Merla and colleagues showed that, in 20 healthy subjects, cutaneous
blood flow values, simultaneously computed by thermal IR imagery and measured by laser Doppler
imaging, linearly correlate (R = 0.85, Pearson Product Moment Correlation) [55]. The method has been
applied in psychophysiology for deception detection [56] and emotion assessment [2].

Furthermore, in 2009, Gorbach et al. compared IR imaging data with full-field laser perfusion
imager (FLPI) to assess vascular responses of the human hand to inspiratory gasp and hand cooling [58].
The highest spatial correlation was found between the mean derivative IR image and the mean raw
FLPI image for the baseline condition. After cooling, a temperature increase of ~0.5 ◦C was observed
in thenar and hypotenar areas; in the same areas, an increase of perfusion was observed through FLPI.
The combination of both IR imager and FLPI was considered an ideal approach to investigating the
dynamics of thermal and perfusion heterogeneity in human skin.

3.2.4. Sudomotor Response

Electrodermal responses represent one of the most widely employed psychophysiological
measures of autonomic nervous system activity. The Skin Conductance Response (SCR) and related
measures, like galvanic skin response (GSR), have been shown to correlate with the number of active
sweat glands, which activation can be easily visualized through facial thermal IR imaging by the
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appearance of cold dots over the face. Together with the palm area, strong sweat gland activation is
shown in the maxillary, perioral, and nose tip regions.

Multiresolution analysis of the temperature signals reveals tonic (baseline and/or general) and
phasic (event-related) components strongly correlated with GSR sympathetic constituents [12,13,16,59].
For example, Pavlidis et al. [13] showed very high correlation coefficients between the GSR and the
thermal measurement on the finger (rMIN = 0.968) and on the perinasal region (rMIN = 0.943).

Moreover, it has been demonstrated that the maxillary area contains information about the
sympathetic response almost as much as the GSR channel [12]. As a support of this founding, several
studies showed that the identification of active eccrine sweat glands by thermal imaging may have
utility as a psychophysiological measure of sudomotor activity and may substitute the GSR signals
when a contact method is either unavailable or undesirable [2,5,12,16,60].

Recently, thermal IR imaging has been applied, together with standard GSR, to examine fear
conditioning in posttraumatic stress disorder (PTSD) [61]. The authors studied fear processing in PTSD
patients with mild symptoms and in individuals who did not develop symptoms, through the study
of fear-conditioned response (Figure 6). The authors found that the analysis of facial thermal response
during the conditioning paradigm performs like GSR to detect sympathetic responses associated with
the disease.
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MLT seemed to have an influence on the temperature decrease of the nose, during the simulated city 
drive. No significant effects were observed on the forehead [62]. 

In 2012, Pavlidis and colleagues [13] tried to assess the stress level by measuring transient 
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cognitive, emotional, sensorimotor, and mixed stressors was studied on 59 drivers in a simulation 

Figure 6. Facial thermal changes in a representative subject. On the left: the average temperature before
the acoustic stimulation; on the right: soon after the acoustic stimulation. A general temperature drop
can be observed over the whole face, with the onset of sudomotor response as highlighted by the dotted
pattern of the temperature associated with the emotional sweating response. In particular, while the
cheeks do not change their average temperature values and pattern, nose tip, perioral, maxillary and
forehead regions clearly present a temperature decrease due to the appearance of colder dotted spots.
The temperature decrease is particularly appreciable on the nose tip, where blue areas can be easily
spotted. The circles over the face are paper markers put on to facilitate the tracking of the region of
interest along the procedure. The black-contour circular region on the nose tip is the region of interest
from which the temperature data have been extracted [61].

3.3. Computational Psychophysiology

3.3.1. Stress Response

IR thermal imaging is a suitable technique in the stress research field, because of its
non-invasiveness. In 2007, Or et al. conducted a study about occupational ergonomics on professional
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drivers, assessing mental workload using thermal IR imaging. The authors studied the thermal
response on subjects executing simulator driving tasks both in the city and on the highway while
cognitively engaged with a Mental Loading Task (MLT). Significant differences were observed in
the nose temperature across all conditions, compared to the baseline session (pre-driving). The MLT
seemed to have an influence on the temperature decrease of the nose, during the simulated city drive.
No significant effects were observed on the forehead [62].

In 2012, Pavlidis and colleagues [13] tried to assess the stress level by measuring transient
perspiratory responses on the perinasal area using thermal IR imaging. These responses proved to
be a good indicator of stress response, because sympathetically driven. The authors applied this
approach in the context of surgical training and, more recently, on drivers [63]. The effects of cognitive,
emotional, sensorimotor, and mixed stressors was studied on 59 drivers in a simulation experiment.
Perinasal perspiration, revealed by thermal imaging, together with the measure of steering angle and
the range of lane departures on left and right side of the road showed a more dangerous driving
condition in case of sensorimotor and mixed stressors with respect to the baseline condition. A safer
driving was adopted in case of emotional and cognitive stressors.

Besides, concerning the human-computer interaction field, Puri et al. [64] and Zhu et al. [65] used a
Stroop task to elicit signs of frustration. Based on frontal regions, they observed that, compared with the
resting state, stress increased blood volume into supraorbital vessels. Kang et al. [66] used thermal IR
imaging to assess affective training times by monitoring the cognitive load through facial temperature
changes. Learning proficiency patterns were based on an alpha-numeric task. Significant correlations,
ranging from −0.88 to 0.96, were found between the nose tip temperature and the response time,
accuracy, and the Modified Cooper Harper Scale ratings. Through this work, the authors demonstrated
that thermal IR imaging is a sensitive tool to assess learning and workload. Engert et al. [15] explored
the reliability of thermal IR imaging in the classical setting of human stress research. Thermal responses
were compared to gold standard stress markers (heart rate, heart rate variability, finger temperature,
alpha-amylase, and cortisol) in healthy subjects participating in two standard and well-established
laboratory stress tests: the cold pressor test [67] and the trier social stress test [68]. Both tests showed
evidence of thermal responses of several regions of the face. The authors found a weak correlation
between the thermal responses and the established stress markers but, on the other hand, the thermal
imprints correlated with stress-induced mood changes. In contrast, the established stress markers did
not correlate with stress-induced mood changes. These results suggested that thermal IR imaging is
an efficient technique for the estimation of sympathetic activity in the stress research field.

3.3.2. Social Interactions

In the prospective of studying the human emotional and affective state, it’s very interesting to
investigate what happens when two or more persons are interacting. Nowadays, many studies have
been conducted on social interaction using thermal imaging. Indeed, thanks to its non-invasiveness,
it is considered one of the most suitable method in this research field. Aureli et al. [69] studied
the interaction between mother and her own infant (3–4 month old babies) during the Still-Face
Paradigm [70]. Infants interacted with their mothers during a four phase experiment: (i) normal
interaction episode, in which the mother freely interacted with her infant; (ii) “still-face” episode,
in which the mother stopped playing with her infant and became unresponsive and with a neutral
facial expression; (iii) reunion episode, in which the mother resumed the interaction; (iv) toy-play
episode, in which the mother added a toy during the interaction. From the behavioural analysis,
the authors found that infants recognized the interruption of the interaction during the still-face episode
and increased the engagement with the environment, decreasing their communicative engagement.
Concerning the thermal data analysis, they observed an increase in temperature on the nose tip and
on the forehead comparing the still face episode to the toy-play condition. Thermal data were, thus,
consistent with behavioural data, since they reflected a stronger activation of the parasympathetic
with respect to the sympathetic system.



Sensors 2017, 17, 1042 13 of 21

Ebisch et al. [71] focused on the interaction between mother and her own child (pre-scholar
age child). They studied whether maternal empathy is concomitant with synchrony in autonomic
responses between mother and child. They analysed simultaneously the facial thermal response of
mother and her own child, while the last was involved in a distressing situation. The mother observed
her own child through a one-way mirror. The results showed evidence for a direct affective sharing,
involving autonomic responses. An example of the thermal pattern recorded on a mother-child dyad
is showed in Figure 7. In Figure 8, a graphical representation of temperature variation of mother and
child groups during baseline and experimental phases is reported.Sensors 2017, 17, 1042 13 of 20 
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The study was then extended on an additional group of females, who were not mothers of the
child they were looking at (other women) [72]. The results showed that mother-child dyads have
a faster empathic responses to the child’s emotional state than other women-child dyads.
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Güney et al. [73] reported a case study, examining the intra- and inter-personal emotion regulation
of a patient with somatic symptom disorders (SSDs) while interacting with his romantic partner,
in comparison with a healthy control couple. The couples experienced a baseline, anger and relaxation
tasks experiment. Measuring participants’ facial temperature, heart rate and GSR, they found
significant differences with respect to healthy controls couple. In particular, all participants, except
patient's partner, experienced an increase in temperature from baseline to relaxation. This was probably
due to a complementary down-regulation of physiology in her interaction with the patient. The patient
showed also a higher mean value of GSR and heart rate then his partner throughout all the experimental
phases, reflecting a higher autonomic activity regulation.

A virtual social interaction has been the matter of study of Paolini et al. [74]. They assessed
the autonomic response of the subjects during ostracism experience in the context of an online ball
tossing game (i.e., Cyberball). This autonomic response is stronger when individuals are ostracized by
teammate (vs. outgroup) members. Similar pattern of temperature variations emerge when individuals
observe an ostracism episode involving ingroup members.

Thermal IR imaging has been recently used also in interaction between humans and “social
robots”. A first attempt has been made in the Robot AVatar thermal-Enhanced (RAVE) prototype
project: a robot engage babies’ interest and identify babies’ emotional arousal signatures of being
“ready to learn”, classifying the facial thermal responses of the babies. In turn, the robot will make
available to the baby socially interactive and spontaneous language samples assigned to them with
virtual humans [20,21].

4. Discussion

Thermal IR imaging has been proved to be a reliable method for ubiquitous and automated
monitoring of psychophysiological activity. It provides a powerful and ecological tool for
computational physiology. The reliability and validity of this technique were proven by comparing data
simultaneously recorded by thermal imaging and gold standard methods, as piezoelectric pulse meter
for pulse monitoring, piezoelectric thorax stripe or nasal thermistors for breathing monitoring, skin
conductance, or galvanic skin response (GSR). Concerning the latter, several studies have demonstrated
that funcional Infrared Imaging (fIRI) and GSR have a similar detection power [12,13,15,59,61]. These
results rely on the impressive advancement of the technology for thermal IR imaging. Modern devices
ensure a high spatial resolution (up to 1280 × 1024 pixels with up to a few milliradians in the field
of view), high temporal resolution (full-frame frequency rate up to 150 Hz), and NEDT values up to
20 mK at 30 ◦C in the spectral range [3–5] µm. The commercial availability of 640 × 480 focal plane
array of uncooled and stabilized sensors (spectral range 7.5 ÷ 13.0 µm; full-frame frequency rate
around 30 Hz; thermal sensitivity around 30 mK at 30 ◦C) allows this technology to be integrated
into automated systems for remote and automatic monitoring of physiological activity. Real-time
processing of thermal IR imaging data and data classification for psychophysiological applications is
possible as the computational demand is not larger than that required for 640 × 480 pixels visible-band
imaging data [5,18,75]. Thermal IR imaging has been indicated as a powerful tool to create, given
the use of proper classification algorithms, an atlas of the thermal expression of psychophysiological
responses [76,77]. This would be based on the characterization of the thermal signal in facial regions of
autonomic valence (nose or nose tip, perioral or maxillary areas, periorbital and supraorbital areas
associated with the activity of the periocular and corrugator muscle and forehead), to monitor the
modulation of the autonomic activity. Several studies have already shown the possibility of using
thermal IR imaging in psychophysiology (see [5,78] for reviews). These studies cover a number of fields,
including developmental psychology and maternal empathy [71,72,79], social psychology [15,80],
and up to lie detection [56,81,82].

However, several limitations exist for using thermal IR imaging in the real world. In order to
avoid to misinterpret the thermal reactions of the body, attributing physiological valence to mere
thermoregulatory or acclimatization processes, it is mandatory to take adequate countermeasures,
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concerning environmental conditions [5,40,41]. Besides, despite of the advantages offered by
thermal IR imaging, it has to be taken into account that thermal signal development as a result
of vascular change, perspiration, or muscular activity is rather slow with respect to other established
techniques. Proper considerations should therefore be taken when monitoring thermal signatures of
psychophysiological activity.

Taking into account these limitations, there is the concrete possibility of monitoring, in a realistic
environment, at a distance and, unobtrusively, several physiological parameters and affective states.
This is, in particular, possible thanks to tracking algorithms applied on thermal IR videos. Several
studies demonstrated the feasibility of applying tracking procedures on thermal images with high
accuracy [18,19], in order to obtain a reliable and stable monitoring of the thermal pattern of one or
more ROIs over time.

This opens the way for remote monitoring of the physiological state of individuals without
requiring their collaboration and without interfering with their usual activities, thus suggesting the
possibility of adding information of psychophysiological valence to behavioural or other typologies of
investigation. One still unexplored but intriguing aspect is the study of possible correlation between
individual thermal signatures and psychometric indexes, in order to assess, for example, whether
given personality traits lead to inter-individual differences in the facial thermal signature of autonomic
activity or affective state or whether specific thermal expressions of specific personality or sociality
traits exist. Of course, thermal IR imaging is not the first and unique attempt to explore these
possibilities [83,84], but thermal IR imaging seems to be one of the most ecological ones in this
perspective. As such, thermal IR imaging provides an extraordinary opportunity to add physiological
information to psychometric features, toward more robust classification of the individual’s affective
states, emotional responses, and profile. A major issue that needs to be addressed for the practical
application of thermal IR imaging in support of psychometrics concerns the adequacy of the method for
identifying specific emotional or affective state at individual level. A first attempt in this perspective
has been done by Cruz-Albarràn and colleagues [85]. In a recent work, they used a top-down
hierarchical classifier to detect human emotions (i.e., joy, disgust, anger, fear and sadness) on 25 subject
through thermal IR imaging. They were able to classify the emotions with an accuracy level of 89.9%.
Apart from this recent and preliminary study, there is still an open issue concerning the specificity
of the technique for the identification of specific emotional states and their corresponding thermal
signatures. A definitive answer to this question is currently not available, given the fact that it is
still not very well assessed how specific it is the autonomic reaction to different emotional states and
their combination.

Finally, it is worth noticing that the impressive spread of IR technology, together with the
miniaturization of IR detectors, conducted the manufacturer houses to produce mobile thermal
cameras. During the last years, indeed, FLIR (Wilsonville, OR, USA) and Opgal (Karmiel, Israel) were
the first companies to commercialize mobile thermal devices designed to be integrated on mobile
phones. Some of the features are reported in Table 1.

Table 1. Technical features of modern mobile thermal devices.

Feature FLIR One Pro® FLIR Lepton® Radiometric Opgal Therm-App® TH

Size (w × h × d) 68 × 34 × 14 mm 11.8 × 12.7 × 7.2 mm 55 × 65 × 40 mm
Weight 36.5 g 0.9 g 123 g

FPA 160 × 120 pixels 80 × 60 pixels 384 × 288 pixels
NEDT 0.15 ◦C <0.05 ◦C <0.07 ◦C

Operating temperature range 0 ◦C to +35 ◦C −10 ◦C to +80 ◦C −10 ◦C to +50 ◦C

While FLIR One Pro® and Opgal Therm-App® TH are strictly designed for mobile applications for
smartphone and tablets, FLIR Lepton® is customizable. Thanks to its microscopic dimensions, it is fully
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embeddable on several devices, offering the possibility of both integrating into native mobile-devices
or other electronics as an IR sensor or thermal imager.

5. Conclusions

The impressive spread of IR detectors technology together with the development of biological
models for computational physiology and psychophysiology, based on thermal IR imaging, open
the way for an innovative and up-to-date approach of thermography in the field of neurosciences.
The development of miniaturized and mobile thermal cameras offer the concrete possibility of
monitoring at a distance and, unobtrusively, several physiological parameters and affective states of
everyday life experiences and will constitute definitely the core of the future research in this area.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Measurement Properties and Specification of IR Thermal Camera

A number of factors qualifies the performances of a thermal imaging system. These are:
Repeatability. A particular camera, under the same environmental conditions, will have a statistical

repeatability of measurement, typically close to the NETD value, which is the amount of incident
signal temperature that would be needed to match the internal noise of the detector such that the
signal-to-noise ratio is equal to one. Typical value of this parameter is below 20–30 mK @ 30 ◦C for
cooled detectors and 30–50 mK @ 30 ◦C for good quality microbolometers.

Accuracy. Most thermal cameras have a specified accuracy of±2 ◦C or±2% of reading (sometimes
also ±1 ◦C or ±1%). This means that the camera, under any environmental condition (within
specification), at any time, will give a reading within the accuracy specification.

Stability. The thermal stability of a sensor is defined as the percentage possible error in the
measurement per unit (K or ◦C). This kind of error is caused by several factors, like the physical
expansion of embedded components or the effect of thermal fluctuation on the performance of
electronic components of the detector. These effects causes the thermal drift error, i.e., a slight deviation
of measurement result per ◦C.

Optics and focal length. Thermal cameras lenses are not composed of simple regular glass, as glass
reflect thermal radiation rather than allowing it to pass through the lenses. Commonly used materials
for thermal lenses are germanium (Ge), chalcogenide glass, zinc selenide (ZnSe) and zinc sulfide (ZnS).
They are characterized by good transmission for wavelengths in the LW (long-wavelength) IR range
((8–15) µm). Lenses are commonly identified by their focal length f, defined as the distance from the
front of the lens to the point at the back where it focuses the energy of the object of measure. It is
expressed in millimeters.

Field of View (FOV). FOV is the subtended angle (expressed in angular degrees or radians per side
if rectangular, and angular degrees or radians if circular) over which the optical system will integrate
all incoming radiant energy. It is a parameter depending on the camera lens and on the focal plane
array dimension. It is related to the focal length, as shown in Equation (A1):

FOV = tan−1 d
2f

(A1)

where d = Focal Plane Array diagonal (mm), f = focal length (mm), FOV = field of view (degrees).
According to (1), as the focal length increases, the field of view for that lens will be narrower
and viceversa.

Instantaneous Field of View (IFOV). The IFOV corresponds to the angular projection of the detector
element on the target [86]. It defines the spatial resolution, i.e., the size of smallest object that can be
viewed or resolved at a specific distance from the camera.
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