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Abstract: As known to us all, it is challenging to monitor wideband signals in frequency domain due
to the restriction of hardware. Several practical sampling schemes, such as multicoset sampling and
the modulated wideband converter (MWC), have been proposed. In this work, a co-prime array
(CA) based modulated wideband converter (MWC) spectrum sensing method is suggested. Our
proposed method has the same sampling principle as the MWC but has some advantages compared
to MWC. Firstly, CA-based MWC is an array-based MWC system. Each sensor is usually corrupted
by independent noise for an array system which can be used for noise averaging, while all channels
in conventional MWC have the same receiving noise. Secondly, by incorporating the co-prime
array, we can estimate the power spectrum of signal directly employing its second-order statistical
properties. Moreover, the system minimal sampling rate can be reduced further because of the
reduction of sampling channels. Simulation results show that our method has better performance
than traditional methods.

Keywords: co-prime array; modulated wideband converter; spectrum sensing; minimal
sampling rate

1. Introduction

Nowadays, spectral resources traditionally allocated to licensed users by governmental
organizations are becoming scant. Cognitive Radio (CR) is an emerging dynamic spectrum
management technology which can make the best use of spectral resources in wireless
communications [1,2]. How to monitor the spectrum reliably and fast is an essential goal for many
scholars [3]. A number of spectrum sensing methods exist, such as filterbank spectrum sensing
and multi-taper spectrum sensing, etc. [4]. However, all the above methods are based on Nyquist
sampling. In cognitive radio, it is necessary to sense a wide band of spectrum, leading to prohibitively
high Nyquist rates. So this will affect the cost and power assumption of high-speed analog-to-digital
converters (ADCs). Therefore, it is desirable to design a sub-Nyquist sampling scheme which can
effectively estimate the spectrum without loss of any information.

Recently, several sub-Nyquist sampling scheme for spectrum sensing are developed [5–8]. In [5],
the multi-coset sampling (MS) was used, where m low-rate cosets were chosen out of L cosets of
samples. These samples are obtained from time uniformly distributed samples taken at a same
sampling in each channel. And there is a different time offset in the sampling origin of each channel.
In [6], a synchronous multirate sampling (SMRS) scheme was developed. Unlike the MS method,
samples in SMRS are obtained at m different sampling rates and the sampling of all channels starts
simultaneously at a given time. The above multicoset or time-interleaved approach suffers from
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some practical issues. Firstly, the radio-frequency (RF) signal is sampled directly. As a result, the
signal bandwidth can exceed the analog bandwidth of ADCs. Another practical issue stems from the
time shift since it is difficult to maintain accurate delays or synchronization among the ADCs at such
high rates. To solve this problem, an analog system, referred to as the modulated wideband converter
(MWC) which is comprised of a bank of modulators and low-pass filters is adopted in [7–9]. However,
conventional MWC systems mainly have two disadvantages. One is that each channel has the same
noise, which can’t be used for noise averaging. The other is that we need to choose appropriate
periodic functions in different channels. These problems are overcome by adopting a uniform linear
array (ULA) based MWC system [10]. In [10], a ULA is used for spectrum sensing where a same
periodic function is chosen in each channel. Nevertheless, when signals have high carrier frequencies,
there may exist mutual coupling between sensor elements. Moreover, the number of transmissions
detected can be no more than the number of physical elements.

In this paper, we propose a spectrum sensing method using an improved MWC system based
on co-prime array. The radio frequency (RF) signal impinges on a co-prime array. The received signal
in each sensor is multiplied by a same periodic function, low-pass filtered and sampled at a low
rate. In the reconstruction process, an enhanced virtual ULA can be produced by vectorizing the data
covariance matrix of the co-prime array. It can detect more transmissions than ULA-based MWC or
can reduce the system sampling rate further when the number of transmissions is fixed. Besides, each
channel in our method is corrupted by different noise, so it has an advantage that the noise can be
averaged which will improve sensing performance.

Notations. ⊗ and � denote the Kronecker product and Khatri-rao product, respectively. vec(.)
the vectorization operator that turns a matrix into a vector by stacking all columns on top of the
another. ◦ denotes the element-wise product. The complex conjugate operator is (.)∗, the transpose
operator is (.)T , and the complex conjugate-transpose is (.)H . ∠(.) returns the phase of input. eig(.)
returns the eigenvalue of input matrix. d.e returns the nearest integer towards positive infinity.

2. Array Signal Model

Consider a co-prime linear array consisting of two uniform linear subarrays with 2M and N
sensor elements where M and N are co-prime integers and M < N. One has the position set S1 =

{Mnd, 0 ≤ n ≤ N − 1} and the other has position set S2 = {Nmd, 0 ≤ m ≤ 2M − 1} where d =

λmin/2. λmin denotes the wavelength corresponding to the highest frequency of interest. Since these
two subarrays share the first sensor, namely the reference sensor, there are N + 2M− 1 sensors totally.
Such array configuration allows most adjacent elements to be spaced farther apart, which is attractive
when it is necessary to reduce mutual coupling between sensor elements. Following each sensor
includes an analog front-end composed of a mixer with the same periodic function p(t), a low-pass
filter and a sampler at rate fs. The sensing system is depicted in Figures 1 and 2. In practice, to ensure
that all the mixing functions are the same without any distortions. We can first produce the satisfying
analog mixing signal p(t), then let it pass through a power divider to obtain several same versions of
p(t). Each version of the output of power divider can be used as the mixing function of each channel.

Figure 1. Co-prime array structure.
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Figure 2. The n-th sensor channel structure.

Assume that there are K uncorrelated transmissions {si(t)}K
i=1 impinging on the array which

have identical and known direction of arrival (DOA). Each transmission si(t) with the bandwidth
Bi is modulated by a carrier frequency fi ∈ R. So the received RF signal denoted as z(t) which is

bandlimited to F =
[
−− fNyq

2
fNyq

2

]
can be written as

z(t) =
K

∑
i=1

si(t)ej2π fit (1)

We define Bmax , maxK
i=1 Bi and assume mini 6=j | fi − f j| > Bmax. Then the Fourier transform of

z(t) can be written as

Z( f ) =
∫ ∞

−∞
z(t)e−j2π f tdt =

K

∑
i=1

Si( f − fi) (2)

where Si( f ) is the Fourier transform of si(t).

3. MWC Based on Co-Prime Array

The co-prime array model is depicted in Section 2. The received signal in each sensor is
multiplied by a periodic function p(t) whose period is defined as Tp = 1/ fp, low-pass filtered with
a filter that has cut-off frequency fs/2 and sampled at the low rate fs. Ts = 1/ fs is the sampling
interval. We define Fs , [− fs/2, fs/2] and Fp , [− fp/2, fp/2]. Referring to [7], we know that the
sampling rate of each channel fs must satisfy fs ≥ fp ≥ Bmax, through which all signal information
can be reserved in the baseband Fs without any loss. Here, for simplicity of analysis, we choose
fs = fp.

Consider the received signal zn(t) at the n-th sensor of the co-prime array

zn(t) =
K

∑
i=1

si(t + τn)ej2π fi(t+τn)

≈
K

∑
i=1

si(t)ej2π fi(t+τn) (3)

where τn = dn cos(θ)/c is the time delay for signal arriving at the n-th sensor with respect to the
reference sensor. θ is measured from the axis which is parallel to the linear array. We will show that θ

should not be equal to 90◦ because different time delays between different sensors are useful for the
estimation of carrier frequencies. dn ∈ {S1 ∪ S2} is the position of the n-the sensor. c is the speed of
wave propagation. The approximation in (3) stems from the narrowband assumption on si(t)ej2π fit.
We denote the Fourier transform of zn(t) as

Zn( f ) =
K

∑
i=1

Si( f − fi)ej2π fiτn (4)

A typical Zn( f ) is shown in Figure 3a. We only show the amplitude spectrum in the figure.
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Figure 3. Representations of spectrum at different stages. (a) Spectrum of original signal with K = 3.
(b–d) are the spectrum of each signal after mixing. (e) The spectrum of all signals after mixing.
(f) The spectrum of all signals after LPF and sampling.

In each sensor channel, it works like one channel of traditional MWC system [7]. So the
discrete-time Fourier transform (DTFT) of output yn[k] in the n-th channel can be written as

Yn(ej2π f Ts) =
L0

∑
l=−L0

clZn( f − l fp), f ∈ Fs (5)

where

cl =
1

Tp

∫ Tp

0
p(t)e−j2πlt/Tp dt (6)

and L0 is chosen as the smallest integer so that the sum contains all nonzero contributions of Zn( f )

over Fs. Here, we can choose L0 = d fNyq
2 fp
e. For the sake of concreteness, the mixing function p(t) is

chosen as a piecewise constant function that alternates between the levels ±1 randomly for each of P
equal time intervals. Formally,

p(t) = αk,
kTp

P
≤ t ≤

(k + 1)Tp

P
(7)

where 0 ≤ k ≤ P− 1. αk ∈ {+1,−1}. p(t) = p(t + nTp), n ∈ Z. Our only request for p(t) is that its
Fourier coefficients cl 6= 0,−L0 ≤ l ≤ L0.

Substituting (4) into (5), we have

Yn(ej2π f Ts) =
L0

∑
l=−L0

cl

K

∑
i=1

Si( f − fi − l fp)ej2π fiτn

=
K

∑
i=1

S̃i( f )ej2π fiτn , f ∈ Fs (8)
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where S̃i( f ) , ∑L0
l=−L0

clSi( f − fi − l fp) is a cyclic shifted and scaled version of Si( f ) in the interval
Fs. The whole processing flow in frequency domain is clearly shown in Figure 3.

We write (8) in matrix form as

Y(ej2π f Ts) = AS̃( f ), f ∈ Fs (9)

where Y(ej2π f Ts) = [Y1(ej2π f Ts), . . . , YN+2M−1(ej2π f Ts)]T and S̃( f ) = [S̃1( f ), . . . , S̃K( f )]T . The matrix
A is defined by

A =

 ej2π f1τ1 · · · ej2π fKτ1

...
. . .

...
ej2π f1τN+2M−1 · · · ej2π fKτN+2M−1

 (10)

From (9), we can easily get the discretized model under sampling rate fs in the time domain

y[k] = As̃[k] (11)

4. Reconstruction Method

4.1. Carrier Frequency Recovery

By invoking (11), the temporal covariance matrix can be written as

Ry = E{y[k]yH [k]}
= E{As̃[k]s̃H [k]AH}
= AE{s̃[k]s̃H [k]}AH

= ARs̃AH (12)

Because we assume that the baseband transmissions are uncorrelated with each other, Rs̃ =

E{s̃[k]s̃H [k]} is a diagonal matrix. Then, by vectorizing the covariance matrix Ry, we can get

ry = vec(Ry)

= (A∗ ⊗A)vec(Rs̃)

= (A∗ ⊗A)diag(Rs̃)

= (A∗ �A)rs̃ (13)

where rs̃ is a K× 1 vector including the diagonal elements of Rs̃. Note that the above equations hold
only when all transmissions are uncorrelated with each other. Here, we denote Aca , A∗ �A as the
manifold matrix of difference coarray. Obviously, the (l, k)-th element of Aca is given by

[Aca]l,k = e−j2π fkdn cos(θ)/c · ej2π fkdm cos(θ)/c

= ej2π fk(dm−dn) cos(θ)/c, l = (n− 1)(N + 2M− 1) + m (14)

where e−j2π fkdn cos(θ)/c is the (n, k)-th element of A∗ and ej2π fkdm cos(θ)/c is the (m, k)-th element of
A. dm, dn ∈ S1 ∪ S2. So we can easily get that the aperture of the difference coarray extends from
−(2M − 1)Nd to (2M − 1)Nd. But this difference coarray is not filled, there are some holes in it.
By referring to [11], we know that it has a contiguous set of elements from −(MN + M − 1)d to
(MN + M− 1)d, which acts like a filled virtual uniform linear array (ULA). To make it more clear, we
first define the weight function at each element position of the virtual ULA.
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Definition 1. (The weight function, w(l),−(MN + M − 1) ≤ l ≤ MN + M − 1). Consider a co-prime
array with its co-prime parameters M and N. Let S = S1 ∪ S2 be the element position set of physical array
and D = {l| − (MN + M− 1) ≤ l ≤ MN + M− 1} be the element position set of virtual ULA. The weight
function is the number of pairs (n, m) ∈ S2 which have a difference m− n = l, defined as

w(l) = Cardinality of the set M(l) (15)

M(l) =
{
(n, m) ∈ S2 | m− n = l

}
(16)

For example, if we choose M = 2, N = 3, then S = {0, 2, 3, 4, 6, 9} and D = {l| − 7 ≤ l ≤ 7}. The
weight function w(l) satisfies w(−7) = 1, w(−6) = 2, etc.

Based on (13), we denote [ry](n,m) as the row of ry, which is produced by the n-th row of A∗ and
the m-th row of A via Khatri-Rao product. So by choosing the continuous lags from −(MN + M− 1)
to (MN + M− 1) and taking the weight function into account, we can get a virtual ULA model

ryULA = BULArs̃ (17)

where the i-th (i = l + MN + M) element of ryULA is

[ryULA]i =
1

w(l) ∑
(n,m)∈M(l)

[ry](n,m), l ∈ D (18)

and BULA, namely the array manifold of the virtual ULA, has the structureej2π f1τ̃−MN−M+1 · · · ej2π fK τ̃−MN−M+1

...
. . .

...
ej2π f1τ̃MN+M−1 · · · ej2π fK τ̃MN+M−1


where τ̃n = dn cos(θ)/c,−(MN + M− 1) ≤ n ≤ MN + M− 1. Based on (17), we have the following
sufficient condition for unique solution to { fi}K

i=1. Obviously, rs̃ is equivalent to K coherent sources
with only one snapshot.

Theorem 1. Consider a co-prime array consisting of N + 2M− 1 sensor elements which can be transformed
into a virtual filled ULA in (17). If

MN + M > K (19)

then (17) has a unique solution of { fi}K
i=1.

Proof. Because rs̃ is equivalent to K coherent sources, we have dim(span(rs̃)) = 1. And the virtual
array acts as a filled ULA with inter-element spacing d satisfies d ≤ c

2 fNyq
and the number of virtual

elements is 2MN + 2M− 1. So we refer the reader to [10] which deals with the physical ULA case.
With these substitutions, the result follows from Theorem 1 in [10].

Next, we define

RyULA = ryULArH
yULA

= BULArs̃rH
s̃ BH

ULA

= BULARs̃s̃BH
ULA (20)
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Because

rank(RyULA) = rank(Rs̃s̃) = 1 (21)

we need to implement a spatial smoothing step to enhance the rank of the covariance matrix. As
analyzed above, the virtual ULA has the element position from−(MN + M− 1)d to (MN + M− 1)d.
Now, we divide this virtual array into MN + M overlapping subarrays, each with MN + M elements.
The i-th subarray has sensors located at

{(−i + 1 + n)d, n = 0, 1, . . . , MN + M− 1} (22)

which corresponds to the (MN + M + 1− i)-th to (2MN + 2M− i)-th rows of ryULA. So we have

ryULAi = BULAirs̃ (23)

where BULAi is a (MN + M)×K matrix consisting of the (MN + M + 1− i)-th to (2MN + 2M− i)-th
rows of BULA which has the structure

BULAi =

 ej2π f1(1−i)d cos(θ)/c · · · ej2π fK(1−i)d cos(θ)/c

...
. . .

...
ej2π f1(MN+M−i)d cos(θ)/c · · · ej2π fK(MN+M−i)d cos(θ)/c

 (24)

Obviously, from the above structure, we can get

BULAi = BULA1Φi−1 (25)

where Φ is a diagonal matrix with its diagonal elements as {e−j2π f1d cos(θ)/c, . . . , e−j2π fKd cos(θ)/c}. So,
we rewrite (23) as

ryULAi = BULA1Φi−1rs̃ (26)

Then, we can get the spatially smoothed matrix

Rss =
1

MN + M

MN+M

∑
i=1

RyULAi (27)

where

RyULAi = ryULAirH
yULAi

= BULA1Φi−1rs̃rH
s̃ (Φi−1)HBH

ULA1 (28)

The spatially smoothed matrix Rss can be used to estimate carrier frequencies by the
following theorem.

Theorem 2. Consider the spatially smoothed matrix Rss in (27) and define a K× K diagonal matrix Λs with
its diagonal elements as the covariances of K targets. Then, we have

Rss = R̃2

R̃ =
1√

MN + M
BULA1ΛBH

ULA1 (29)

Proof. The proof follows the same lines as Theorem 1 in [12], only substituting the values of BULA1

and Λs in our paper.
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By decomposing R̃ using the singular value decomposition, we have

R̃ = [U1 U2]

[
Λs 0
0 0

]
VH (30)

The columns of the matrix [U1 U2] are the left singular vectors of R̃, where U1 contains the
vectors corresponding to the first K singular values, Λs is a K × K diagonal matrix with the K first
singular values of R̃, and V contains the right singular vector of R̃. Based on (29) and (30), we know
that there exists an invertible K× K matrix T such that

U1 = BULA1T (31)

Consider the first MN + M− 1 rows of U1, we have

U11 = BULA11T (32)

Similarly, we can have the last MN + M− 1 rows of U1

U12 = BULA12T (33)

where BULA11 is the virtual sub-array consisting of element positions {0, d, . . . , (MN + M− 2)d} and
BULA12 is the virtual sub-array consisting of elements positions {d, 2d, . . . , (MN + M− 1)d}. So, we
can get the relationship between BULA11 and BULA12 as

BULA11 = BULA12Φ (34)

where Φ is a diagonal matrix which is defined in (26). So we rewrite (32) as

U11 = BULA12ΦT (35)

Here, we use the least squares recovery

Ψ = U†
12U11 (36)

Then, we have

f̂i = ∠(eig(Ψi,i))
c

2πd cos(θ)
(37)

where Ψi,i is the i-th diagonal element of Ψ.

Remark 1. It can be seen from (37) that θ can not be equal to 90◦. And the performance of carrier frequency
estimation is affected by θ. Because cos(θ) is the denominator term in (37), a small cos(θ) will amplify the
error which is caused by the calculation of Ψ. Assuming θ ∈ [0, 90◦)∪ (90◦, 180◦], the closer to 0◦ or 180◦ the
impinging direction θ is, the smaller the estimation error is. Conversely, the closer to 90◦, the larger the error
is. In practice, if we know that θ is approaching 90◦, we can add an adjustable known time delay line after each
sensor which is equivalent to rotating the array with a known angle. If we denote the man-made time delay as
dn cos(θa)/c, then the denominator term in (37) is modified as cos(θ) + cos(θa). In the following discussion,
we consider the case that θ is close to 0◦ or 180◦ for simplicity.
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4.2. Signal Power Spectrum Recovery

Once the carrier frequencies are recovered, the steering matrix defined in (17) can be constructed.
So in this subsection, we will first consider the power spectrum recovery of s̃[k]. After that, we will
investigate how to recover the power spectrum of s[k] from s̃[k].

By invoking (9), we consider the signal model in the frequency domain. Define the
autocorrelation matrix of Y(ej2π f Ts) as RY(ej2π f Ts) , E{Y(ej2π f Ts)YH(ej2π f Ts)}. Similarly, define
RS̃( f ) , E{S̃( f )S̃H( f )} and RS( f ) , E{S( f )SH( f )} for f ∈ Fs. Then, we have

RY(ej2π f Ts) = ARS̃( f )AH , f ∈ Fs (38)

Due to the assumption that all transmissions are uncorrelated with each other, so RS̃( f ), f ∈ Fs

and RS( f ), f ∈ Fs are both diagonal matrixes. Then, similar to the processing steps in (13) and (17),
by vectorization, removing the redundancies and choosing the continuous lags, we can get the virtual
array model in the frequency domain

rYULA( f ) = BULArS̃( f ), f ∈ Fs (39)

where rS̃( f ) is a K × 1 vector which contains the diagonal elements of RS̃( f ). Similarly, we denote
rS( f ) as a K × 1 vector which contains the diagonal elements of RS( f ). From (17), BULA is a
Vandermonde matrix, it has full column rank if and only if (2MN + 2M − 1) ≥ K. Referring to
Theorem 1, if the sufficient condition (19) is satisfied, BULA will have full column rank. Then we can
obtain the power spectrum of S̃( f ) by inverting the steering matrix,

rS̃( f ) = B†
ULArYULA( f ), f ∈ Fs (40)

As analyzed in the third section, S̃( f ) is a cyclic and shifted version of S( f ).
Consider the i-th transmission Si( f ′), f ′ ∈ Fp. It holds that

S̃i( f ′) = cla Si( f ′ − fi − la fp), (41)

where la is known as

la =

⌊
fi + f ′ + fp/2

fp

⌋
(42)

Then we have the relationship between the power spectrum of Si( f ′) and S̃i( f ′),

[rS̃( f ′)]i , E{S̃i( f ′)S̃∗i ( f ′)}
= E{cla Si( f ′ − fi − la fp)S∗i ( f ′ − fi − la fp)c∗la}
= |cla |

2E{Si( f ′ − fi − la fp)S∗i ( f ′ − fi − la fp)}
= |cla |

2[rS( f ′ − fi − la fp)]i (43)

where [rS̃( f ′)]i is the i-th element of the K × 1 vector rS̃( f ′) and [rS( f ′ − fi − la fp)]i is the the i-th
element of the K× 1 vector rS( f ′ − fi − la fp). After a change of variables,

[rS( f ′)]i =
1
|cla |2

[rS̃( f ′ − fi − la fp)]i, f ′ ∈ Fp (44)

Observing (43) and (44), the equality in (44) holds if and only if cla 6= 0.
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4.3. Comparison with Previous MWC Systems

By referring to conventional MWC [7] and ULA-based MWC [10], we can have the following
conclusions. Firstly, we compare our proposed CA-based MWC with ULA-based MWC and
conventional MWC. Our method processes the signal in the co-array domain, while the latter two
methods process signal in physical sensor (channel) domain. That means, if we fix the number
of physical sensors or channels as N + 2M − 1, then our proposed CA-based method can produce
a virtual ULA which has MN + M elements. It is much larger than that of ULA-based MWC
and conventional MWC which can increase the system’s robustness to noise. Another difference
is that our method can directly recover the power spectrum of impinging signal, while the latter
methods must first recover the signal itself after which the power spectrum is calculated. Here, we
need to point out a disadvantage as shown in (13) that the impinging signal for our method must
be uncorrelated with each other. Secondly, we compare CA-based MWC, ULA-based MWC with
conventional MWC. In our proposed CA-based MWC and ULA-based MWC, carrier frequencies are
first estimated, then the baseband transmissions are estimated. For conventional MWC, there’s no
need to estimate carrier frequencies, all RF signals are estimated directly. In addition, each channel
of CA-based MWC and ULA-based MWC is corrupted by independent noise, while each channel of
conventional MWC is corrupted by the same noise. Lastly, we compare our method with ULA-based
MWC. Besides a difference about the number of sensors, another difference is that our proposed
system is a sparse array system while ULA-based MWC is a filled array system. As we all know, the
closer the sensors are, the more correlated their samples are, which can affect the performance. The
differences among these three methods are shown clearly in Table 1 where × denotes “Not exist”.

Table 1. Comparisons of CA-based MWC, ULA-based MWC and MWC.

CA-based MWC ULA-based MWC MWC

Periodic function Same for all sensors Same for all sensors Different for all sensors
Number of channels N + 2M− 1 N + 2M− 1 N + 2M− 1

Noise of each channel Independent Independent Same
Processing domain Coarray Physical Physical

Number of virtual elements MN + M × ×
Reconstruction Power spectrum Original signal Original signal

5. Robustness Analysis for Imperfect p(t) Among Different Channels

Because the mixing function p(t) in each channel is produced by a power divider, there may be
amplitude and phase imbalances of p(t) among different channels. In this section, we will analyze
this issue.

Here, we denote the amplitude and phase imbalances of the n-th (n = 1, . . . , N + 2M− 1) channel
as δn and ϕn, respectively. We assume that the amplitude imbalances {δn}N+2M−1

n=1 are i. i. d random
variables with Gaussian distribution N (0, σ2

δ ) and the phase imbalances {ϕn}N+2M−1
n=1 are i. i. d

random variables distributed uniformly in [−ρ/2, ρ/2]. Moreover, {ϕn}N+2M−1
n=1 and {δn}N+2M−1

n=1 are
independent with each other. So, for the n-th channel, the imperfect mixing function pn(t) can be
modeled as

pn(t) = (1 + δn)e−jϕn p(t) (45)
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where p(t) is the ideal mixing function. We denote the Fourier coefficients of pn(t) as c̃n,l . Then,
we have

c̃n,l =
1

Tp

∫ Tp

0
pn(t)e−j2πlt/Tp dt

=
1

Tp

∫ Tp

0
(1 + δn)e−jϕn p(t)e−j2πlt/Tp dt

= (1 + δn)e−jϕn cl (46)

where cl is the ideal Fourier coefficients of p(t). Based on (8), we can obtain the perturbed model

Ŷn(ej2π f Ts) =
L0

∑
l=−L0

(1 + δn)e−jϕn cl

K

∑
i=1

Si( f − fi − l fp)ej2π fiτn

=
K

∑
i=1

S̃i( f )ej2π fiτn(1 + δn)e−jϕn , f ∈ Fs (47)

We write (47) in matrix form as

Ŷ(ej2π f Ts) =
K

∑
i=1

(ai ◦ p)S̃i( f ), f ∈ Fs (48)

where ai is the i-th column of A defined in (10) and p = [(1+ δ1)e−jϕ1 , . . . , (1+ δN+2M−1)e−jϕN+2M−1 ]T .
Then, we can easily get the temporal perturbed model under sampling rate fs as

ŷ[k] =
K

∑
i=1

(ai ◦ p)s̃i[k] (49)

Now we consider the covariance matrix R̂y = E{ŷ[k]ŷH [k]}. The structure of R̂y is given by the
following corollary.

Theorem 3. In the CA-based MWC system, if we consider the amplitude and phase imbalances for mixing
function p(t) among different channels, then the perturbed covariance matrix is given by

R̂y =
K

∑
i=1

[rs̃]i(aiaH
i ) ◦ E

= Ry ◦ E (50)

where [rs̃]i is the i-th element of rs̃ defined in (13). E is a matrix with 1 + σ2
δ on its diagonal and sinc2(ρ/2)

elsewhere.

Proof. The perturbed covariance matrix can be obtained by

R̂y = E{ŷ[k]ŷH [k]}

= E

{
K

∑
i=1

(ai ◦ p)(aH
i ◦ pH)|s̃i[k]|2

}

= E

{
K

∑
i=1

(aiaH
i ) ◦ (ppH)|s̃i[k]|2

}

=
K

∑
i=1

(aiaH
i ) ◦ E

{
(ppH)

}
[rs̃]i (51)
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We denote P = ppH , our task is to find the expectation of P. We first investigate the distribution
of diagonal elements of P. We have

E{[P]n,n} = E{(1 + δn)e−jϕn(1 + δn)
∗ejϕn}

= E{(1 + δn)
2}

= E{1 + δ2
n + 2δn}

= 1 + σ2
δ , n = 1, . . . , N + 2M− 1 (52)

For the off-diagonal elements of P, we have

E{[P]n,m} = E{(1 + δn)e−jϕn(1 + δm)
∗ejϕm}

= E{(1 + δn)(1 + δm)
∗ej(ϕm−ϕn)}

= E{ej(ϕm−ϕn)}
= E{ejβmn}, n, m = 1, . . . , N + 2M− 1, m 6= n (53)

where βmn , ϕm − ϕn, namely the difference of two independent random variables with uniform
distribution in [−ρ/2, ρ/2]. So we can easily obtain that the probability density function (pdf) of βmn

is a triangular function in the interval [−ρ, ρ]:

fβmn(β) =


ρ + β

ρ2 , −ρ ≤ β < 0

ρ− β

ρ2 , 0 ≤ β ≤ ρ

(54)

By integration, the expectation of [P]n,m is calculated as

E{[P]n,m} = E{ejβmn}

=
∫ ρ

−ρ
ejβ fβmn(β)dβ

=

(
sin(ρ/2)

ρ/2

)2

= sinc2(ρ/2) (55)

In (50), E = E{P} which completes the proof.

Using Theorem 3, we can know that the structured noise caused by the amplitude and phase
imbalances of p(t) can be written as

Ry − R̂y =
K

∑
i=1

[rs̃]i(aiaH
i ) ◦ (1− E)

= Ry ◦ (1− E) (56)

where 1 is an all-ones matrix with the size (N + 2M − 1) × (N + 2M − 1). Obviously, the
structured noise acts like the additive colored correlated noise which can degrade the final estimation
performance.

Corollary 1. Let ρ� 1, then the deviation of perturbed covariance matrix from the ideal covariance matrix is
given by

∥∥Ry − R̂y
∥∥

F = ‖rs̃‖2

√
(N + 2M− 1)[σ4

δ + (N + 2M− 2)ρ4/144] (57)
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where ‖.‖F is the Frobenius norm.

Proof. Obviously, the n-th diagonal element of Ry − R̂y have the following equation

∣∣(Ry − R̂y)n,n
∣∣2 =

K

∑
i=1
|[rs̃]i|2σ4

δ

= σ4
δ ‖rs̃‖2

2 (58)

For the (n, m)-th off-diagonal element of Ry − R̂y, we have

∣∣(Ry − R̂y)n,m
∣∣2 =

K

∑
i=1
|[rs̃]i|2

(
1− sinc2(ρ/2)

)2

=
(

1− sinc2(ρ/2)
)2
‖rs̃‖2

2 (59)

Then, we can easily get

∥∥Ry − R̂y
∥∥

F = ‖rs̃‖2

√
(N + 2M− 1)σ4

δ + (N + 2M− 2)(N + 2M− 1)
(
1− sinc2(ρ/2)

)2

= ‖rs̃‖2

√
(N + 2M− 1)[σ4

δ + (N + 2M− 2)
(
1− sinc2(ρ/2)

)2
] (60)

Due to the assumption that ρ � 1, so 1− sinc2(ρ/2) in (60) can be approximated as ρ2/12. Then we
can obtain (57).

6. Choice of Co-Prime Parameters

In Theorem 1, we know how to choose co-prime parameters M and N to satisfy the unique
recovery condition. In application, the number of total sensors is usually fixed, namely N + 2M− 1 =

Q. As analyzed in Section 3, a virtual array whose elements are given by the difference coarray can be
produced by vectorizing the data covariance matrix. Although the coarray of co-prime array has some
missing elements or ’holes’, we can only employ that part of the coarray which has the continuous
elements from−(MN + M− 1) to MN + M− 1. So it acts like a filled ULA which has 2MN + 2M− 1
elements. If we can increase the aperture of the virtual ULA, then the number of transmissions which
can be detected also increases. So we have the following optimization

max
M,N

2MN + 2M− 1

s.t. 2M + N − 1 = Q, M < N

gcd(M, N) = 1, M > 0, N > 0 (61)

where gcd(.) is a function which returns the greatest common divisor. According to Cauchy
inequality [13], we have the optimal solutions M∗ and N∗ satisfying 2M∗ = N∗ + 1 = (Q + 2)/2,
namely M∗ = (Q + 2)/4 and N∗ = Q/2 without considering the constrictions. Taking that M and N
are co-prime integers into account, we can search the satisfying optimal solution around (M∗, N∗).

7. Numerical Results

In this section, we assume fNyq = 10 GHz, θ = 0◦ and Bmax = 50 MHz. In traditional MWC
system, because the signal in each sampling channel comes from the same sensor, we can assume
that all sampling channels are corrupted by the same additive Gaussian white noise. However, in our
proposed array-based MWC system, we can assume that each sampling channel has uncorrelated
Gaussian white noise because we use different sensors to receive the signal in different sampling



Sensors 2017, 17, 1052 14 of 19

channels. For simplicity, we choose fs = fp = 1.3Bmax in all simulations. The Matlab codes of
conventional MWC system can be referred to [14].

7.1. Detection Performance

In this experiment, we will examine the detection performance of our proposed method. Here,
we set N = 3 and M = 2. So the first subarray has the sensor position [0, 3, 6, 9]d, and the second
subarray has the sensor position [0, 2, 4]d, with d taken as half of the wavelength corresponding to the
Nyquist rate. The first sensor of these two subarrays are co-located. So the total number of sensors in
our co-prime array is N + 2M− 1 = 6. Here, we compare our method with ULA-based MWC system.
In the latter case, the number of physical sensors is also set as 6, which is the same as that of co-prime
array. The Signal-to-noise rate (SNR) is set as 10 dB. Firstly, we assume that there are 3 transmissions
with the carrier frequencies as [−1, 1, 1.5] GHz. In Figure 4, it can be seen that 3 transmissions can
be detected clearly both in traditional ULA-based MWC system and our proposed CA-based MWC
system. In addition, in Figure 4 (bottom), one transmission is a little higher than 1.5 GHz. This is
caused by the randomness of p(t). For a specific run of CA-based MWC, it is possible that some
elements in {cl}L0

l=−L0
are close to zero, which will degrade the estimating performance. But the

probability is small. Then, we increase the number of transmissions to K = 7 with the carrier
frequencies as [−4,−2,−0.5, 1, 1.5, 3, 4] GHz. We can see from Figure 5 that our proposed method
can detect all the transmissions successfully while traditional ULA-based MWC fails.
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Figure 4. Detection performance in case of 3 transmissions with SNR = 10 dB.
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Figure 5. Detection performance in case of 7 transmissions with SNR = 10 dB.
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7.2. Sensing Accuracy

In the second experiment, we test the spectrum sensing accuracy of our proposed CA-based
MWC system, compared with ULA-based MWC [10], traditional MWC [6] and non-compressive
technique [9]. Because the number of uncorrelated transmissions which ULA-based MWC system
can detect is no more than the number of physical sensors [9], we assume there are 3 transmissions
with the carrier frequencies [−1, 1, 1.5] GHz. The SNR is ranged from 0 dB to 20 dB with step size 2 dB.
The other simulation parameters are the same as those in the first experiment, e.g. N = 3, M = 2.
So the total number of sensors used is N + 2M− 1 = 6. The number of sensors in ULA-based MWC
system is also chosen as 6. In addition, the non-compressive method comes from [9] where we make

the number of sampling channels equal to the decimator factor, namely
⌈

fNyq
fsys

⌉
= 154. Here, we

define the spectrum sensing accuracy as

ε =
1
J

J

∑
j=1

√√√√ 1
K

K

∑
i=1

[(
f̂ l
i,j − f l

i

)2
+
(

f̂ u
i,j − f u

i

)2
]

(62)

where f̂ l
i,j and f̂ u

i,j are the estimated lower boundary and upper boundary of the i-th transmission

in the j-th Monte Carlo simulation, respectively. f l
i and f u

i are the true lower boundary and upper
boundary of i-th transmission. fi is the true carrier frequency of the i-th transmission. Here, 200
Monte Carlo simulations are used.

It can be seen that in Figure 6 non-compressive method has the best performance because it
uses all Nyquist samples in signal processing. Array-based MWC methods, including CA-based
MWC and ULA-based MWC, outperform traditional MWC method. This is on one hand due to
the noise averaging in array-based system. On the other hand, array-based MWC methods have a
two-step processing procedure, namely estimating carrier frequencies before recovering baseband
transmissions, while conventional MWC method recovers the RF signal directly. Figure 6 also
shows that our method has better performance than ULA-based MWC system. This is because in
our method, a virtual ULA which has much larger aperture than ULA-based MWC system can be
produced. A larger amount of sensors can increase the robustness to noise and allows it to handle a
greater amount of sources. It can enhance CR performance.

Figure 6 is the result in the case of θ = 0◦. As analyzed in Section 4.1, the choice of θ

can affect the performance of carrier frequency estimation, which will affect the sensing accuracy
eventually. To investigate the sensing accuracy under different θ where θ ∈ [0◦, 90◦) ∪ (90◦, 180◦],
we fix SNR = 10 dB. For the interval [0◦, 90◦), we choose θ from 0◦ to 80◦ with step size 10◦. For the
interval (90◦, 180◦], we choose θ from 100◦ to 180◦ with step size 10◦. The other parameters are the
same as those of Figure 6. It can be seen from Figure 7 that the closer to 0◦ or 180◦ the impinging
direction θ is, the smaller the estimation error is. Conversely, the closer to 90◦, the larger the error
is. And our proposed CA-based MWC method has a better performance than ULA-based MWC. In
addition, we can see that the direction-of-arrival has no effect on conventional MWC method. This is
because conventional MWC is a one-sensor, multichannel system, it does not use the time delays
among different sensors which are caused by impinging angles. So conventional MWC method
outperforms our proposed CA-based MWC when direction-of-arrival is close to 90◦.
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Figure 6. Sensing accuracy vs. SNR for 3 transmissions.
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Figure 7. Sensing accuracy vs. direction-of-arrival for SNR = 10 dB.

7.3. Parameter Choice Demonstration

In the third experiment, we demonstrate the co-prime parameter choice criterion in the fifth
section. Unlike the above two experiments, we assume there are 22 physical sensors, namely
Q = 2M + N − 1 = 22 where M < N. So we can list all the co-prime pairs (M, N) which satisfy
the conditions, that’s (1, 21), (2, 19), (3, 17), (4, 15), (5, 13), (6, 11), (7, 9). For each co-prime pair, the
virtual ULA aperture is 2MN + 2M − 1. Figure 8 shows the virtual ULA apertures for different
(M, N). It can be seen that the virtual ULA apertures vary in different co-prime parameters and
the largest virtual ULA aperture appears when (M, N) = (6, 11). This result coincides with our
co-prime parameter choice criterion which says the largest virtual ULA aperture can be obtained
when (M, N) = (Q+2

4 , Q
2 ) = (6, 11).

Here, we also investigate the sensing performance under different co-prime parameters (M, N)

for a fixed number of physical sensors Q = 22. Because the co-prime parameter (1, 21) has
no sense in practice, we only compare the sensing accuracy under the co-prime parameters
(2, 19), (3, 17), (4, 15), (5, 13), (7, 9), (6, 11). The other simulation parameters are the same as that of
Section 7.2. It can been from Figure 9 that different co-prime parameters have different sensing
performance. The larger the virtual ULA aperture is, the better the performance is.
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Figure 8. Virtual ULA apertures in different co-prime parameters.

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

SNR(dB)

S
en

si
ng

 a
cc

ur
ac

y(
G

H
z)

 

 
(M,N)=(2,19)
(M,N)=(3,17)
(M,N)=(3,15)
(M,N)=(5,13)
(M,N)=(7,9)
(M,N)=(6,11)

Figure 9. Sensing accuracy comparison among different co-prime parameters with Q = 22.

7.4. Minimal System Sampling Rate Comparison

In the last experiment, we compare our proposed CA-based MWC with ULA-based MWC on
minimal system sampling rate. As analyzed above, the system sampling rate fsys is determined by the
number of sampling channels Q and the low sampling rate fs of each channel, namely fsys = Q× fs.
As shown in Section 3, our only requirement for fs is fs ≥ fp ≥ Bmax. Due to the existence of edge
effect for signals, we make fs ( fp) a little larger than Bmax, that’s fs = fp = 1.3Bmax = 65 MHz.
Obviously, fs is the same in both ULA-based MWC system and CA-based MWC system. The
difference between these two systems is the required number of sampling channels Q for a fixed
number of targets K. In the ULA-based MWC system, referring to [10], the minimal number of
sampling channels required for K uncorrelated targets is K + 1. So the corresponding minimal system
sampling rate is fsys = (K + 1) fs. In our CA-based MWC system, based on Theorem 1, we can obtain
the minimal number of sampling channels by solving the following optimization for a fixed K,

min
M,N

2M + N − 1

s.t. MN + M > K, gcd(M, N) = 1,

N > M > 0 (63)
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Denote the optimal solution as (M∗, N∗), then the minimal system sampling rate is fsys = Q×
fs = (2M∗ + N∗ − 1) fs. Here, we make the number of targets from 10 to 100 with step size 10. It
can be seen from Figure 10 that the system sampling rate of our proposed system is reduced largely
compared to the ULA-based MWC system, especially when K is large.
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Figure 10. Comparison of system minimal sampling rate for different target numbers.

8. Conclusions

In this paper, we used a co-prime array system for spectrum sensing of multiband signals. Each
channel of our proposed CA-based MWC system is equivalent to one channel of traditional MWC
system. The performance of our system outperforms traditional MWC system because the noise
among all channels in our method is uncorrelated with each other, the noise can be averaged to
increase the SNR. In addition, due to the incorporation of co-prime arrays, a virtual ULA which has
a much larger aperture can be produced. Such virtual ULA can be used to detect more targets than
traditional ULA-based MWC. Simulation results demonstrate the performance of our methods. In
this paper, we mainly focus on the demonstration of feasibility of our proposed method which is
based on computer experiment. Our next work is to design the whole hardware device of CA-based
MWC system.

Acknowledgments: This work is supported by National Natural Science Foundation of China (No. 61271354).

Author Contributions: Wanghan Lv proposed a co-prime array based MWC system and analyzed it. Huali
Wang and Shanxiang Mu supported and supervised the research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Haykin, S. Cognitive radio: Brain empowered wireless communications. IEEE Trans. Commun. 2005, 23,
201–220.

2. Mitola, J.; Maguire, C.Q. Cognitive radio: Making software radios more personal. IEEE Personal Commun.
1999, 6, 25–36.

3. Larsson, E.G.; Skoglund, M. Cognitive radio in a frequency-planned environment: Some basic limits. IEEE
Trans. Wirel. Commun. 2008, 7, 4800–4806.

4. Ariananda, D.D.; Lakshmanan M.K.; Nikoo H. A survey on spectrum sensing techniques for cognitive
radio. In Proceedings of Second International Workshop on Cognitive Radio and Advanced Spectrum
Management (CogART 2009), Aalborg, Denmark, 18–20 May 2009; pp. 74–79.



Sensors 2017, 17, 1052 19 of 19

5. Mishali, M.; Eldar, Y.C. Blind multiband signal reconstruction: Compressed sensing for analog signals.
IEEE Trans. Signal Process. 2009, 57, 993–1009.

6. Fleyer, M.; Linden, A.; Horowitz M.; Rosenthal, A. Multirate synchronous sampling of sparse multiband
signals. IEEE Trans. Signal Process. 2010, 58, 1144–1156.

7. Mishali, M.; Eldar, Y.C. From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals.
IEEE J. Sel. Top. Signal Procsess. 2010, 4, 375–391.

8. Ning, D.; Wang, J. Channel gain mismatch and time delay calibration for modulated wideband
converter-based compressive sensing. IET Signal Process. 2014, 8, 211–219.

9. Yen, C.P.; Tsai, Y.; Wang, X. Wideband spectrum sensing based on sub-Nyquist sampling. IEEE Trans. Signal
Process. 2013, 61, 3028–3040.

10. Stein, S.; Yair, O.; Cohen, D.; Eldar, Y.C. CaSCADE: Compressed carrier and DOA estimation. IEEE Trans.
Signal Process. 2017, 65, 2645–2658.

11. BouDaher, E.; Jia, Y.; Ahmad, F.; Amin, M.G. Multi-Frequency Co-Prime Arrays for High-Resolution
Direction-of-Arrival Estimation. IEEE Trans. Signal Process. 2015, 63, 3797–3808.

12. Pal, P.; Vaidyanathan, P.P. Nested Arrays: A Novel Approach to Array Processing With Enhanced Degrees
of Freedom. IEEE Trans. Signal Process. 2010, 58, 4167–4181.

13. Aldaz, J.M.; Barza, S.; Fujii, M. Advances in Operator Cauchy-Schwarz inequalities and their reverses. Ann.
Funct. Anal. 2015, 6, 275–295.

14. Mishali, M.; Eldar, Y.C. The Modulated Wideband Converter: Sub-Nyquist Sampling of Sparse Wideband
Analog Signals. Available online: http://webee.technion.ac.il/Sites/People/YoninaEldar/software_det2.
php (accessed on 20 February 2017).

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://webee.technion.ac.il/Sites/People/YoninaEldar/software_det2.php
http://webee.technion.ac.il/Sites/People/YoninaEldar/software_det2.php
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Array Signal Model
	MWC Based on Co-Prime Array
	Reconstruction Method
	Carrier Frequency Recovery
	Signal Power Spectrum Recovery
	Comparison with Previous MWC Systems

	Robustness Analysis for Imperfect p(t) Among Different Channels
	Choice of Co-Prime Parameters
	Numerical Results
	Detection Performance
	Sensing Accuracy
	Parameter Choice Demonstration
	Minimal System Sampling Rate Comparison

	Conclusions

