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Abstract: We present a non-destructive approach to sense inclusion objects embedded in a solid
medium remotely from force sensors applied to the medium and boundary displacements that
could be measured via a digital image correlation system using a set of cameras. We provide
a rationale and strategy to uniquely identify the heterogeneous sample composition based on stiffness
(here, shear modulus) maps. The feasibility of this inversion scheme is tested with simulated
experiments that could have clinical relevance in diagnostic imaging (e.g., tumor detection) or could
be applied to engineering materials. No assumptions are made on the shape or stiffness quantity of
the inclusions. We observe that the novel inversion method using solely boundary displacements and
force measurements performs well in recovering the heterogeneous material/tissue composition that
consists of one and two stiff inclusions embedded in a softer background material. Furthermore, the
target shear modulus value for the stiffer inclusion region is underestimated and the inclusion size is
overestimated when incomplete boundary displacements on some part of the boundary are utilized.
For displacements measured on the entire boundary, the shear modulus reconstruction improves
significantly. Additionally, we observe that with increasing number of displacement data sets utilized
in solving the inverse problem, the quality of the mapped shear moduli improves. We also analyze
the sensitivity of the shear modulus maps on the noise level varied between 0.1% and 5% white
Gaussian noise in the boundary displacements, force and corresponding displacement indentation.
Finally, a sensitivity analysis of the recovered shear moduli to the depth, stiffness and the shape of
the stiff inclusion is performed. We conclude that this approach has potential as a novel imaging
modality and refer to it as Mechanics Based Tomography (MBT).

Keywords: digital image correlation systems; DIC; force sensors; boundary displacement tracking;
non-destructive material characterization; inverse problems; parameter identification; incomplete data

1. Introduction

Medical imaging modalities map the tissue’s interior to visualize tissue composition and detect
diseased tissues based on image contrasts. Computed tomography and X-rays rely on changes in
tissue density or chemical composition. Magnetic resonance imaging provides image contrasts based
on the tissue’s water concentration that may vary between tissue types and within diseased tissue
regions [1]. In ultrasound imaging, acoustic waves are transmitted and reflected at tissue interfaces
and microstructural constituents. Time of flight of reflected signals are computed and B-mode images
constructed from acoustic pressure wave intensities.

A more recent medical imaging modality is based on tissue stiffness by mapping the Young’s
modulus, Poisson’s ratio, or other mechanical properties spatially from known displacement
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fields [2–12], widely termed as elastography. These maps may provide additional and complementary
information to classify tissue types or detect diseased tissues based on changes in their material
property distribution. The displacement field can be computed from imaging modalities such as
ultrasound, optical coherence tomography, or magnetic resonance imaging [13–18]. The displacement
field can be determined in the entire imaging domain, and data can be acquired in two-dimensional
space or three-dimensional space if the imaging device is three-dimensional, or from a stack of
two-dimensional data. One stream of elastography focuses on strain imaging, where the gradient of
the displacement field is computed and correlated directly to the reciprocal of the stiffness distribution
qualitatively without rigorously considering the laws of physics describing the solid. The other stream
of elastography focuses on solving inverse problems using physics-based equations, e.g., equations of
equilibrium or motion [3,4,9,11,19–21].

The authors of this paper have recently developed a novel approach to “sense” the stiffness
distribution of tissues using measured force indentations, boundary displacements from digital camera
systems, and mechanics-based mathematical algorithms [22,23]. Three-dimensional displacements on
the specimen’s boundary (i.e., surface) can be determined with two or more digital cameras with images
taken before and after applying a force to deform the tissue region, implying that three dimensional
stiffness distribution can be mapped without the need of stacking two dimensional image slices.
Displacement acquisition with digital cameras is widely known as digital image correlation (DIC)
systems and provides highly precise boundary displacements or strains [24,25] since images from
currently available regular cameras have high resolutions. DIC based research often focuses on strains
on the specimen’s boundary and is utilized to detect changes in material properties. This approach has
strong limitations, since strains do not represent the actual material properties of the solid and depend
on the geometry and boundary conditions. Furthermore, the strain in the interior of the specimen is not
known, thus further limits the capability of using the strain as a qualitative measure of stiffness.

In our novel approach, the stiffness values and, in particular, the shear modulus values, were
assumed to be unknown at the nodes and interpolated with finite element shape functions throughout
the entire problem domain. Thus, the total number of unknown shear modulus values was equal to
the total number of finite element mesh nodes, resulting in a very large number of unknowns in total.
While from a purely mechanical point of view, it would be expected that such an approach would
yield non-unique solutions, a successful reconstruction was possible by utilizing multiple boundary
displacement data sets from multiple indentations, sequentially applied at distinct locations around
the specimen. Thus, we term this approach as Mechanics Based Tomography (MBT). The boundary
displacements were assumed to be known everywhere on the specimen’s boundary, and it was feasible
to recover an inclusion embedded in a homogeneous background. A thorough literature review for
related work was provided in our previous publication for the interested reader [22], and, to the best
of our knowledge, no progress has been reported in the literature related to this work.

We recognize that it is not convenient to determine displacements everywhere on the boundary
since it requires several cameras to image the entire boundary of the specimen. Furthermore, the
deformations were induced by applying a displacement indentation, and no force or traction was
assumed to be known, resulting in a shear modulus reconstruction being off by a multiplicative
factor [26]. Furthermore, only one inclusion in a homogeneous background was simulated. Even
though we did not assume any particular form of inhomogeneity, the question may still arise if this
approach has the capability to recover more than one inclusion.

In this paper, we will test the feasibility to recover the shear modulus distribution (1) of one or
two inclusions; (2) absolutely (i.e., quantitatively) by including known (measured) force indentations;
(3) utilizing boundary displacements from partial boundaries of the specimen for convenient data
collection; and (4) utilizing a curved boundary domain. The paper is organized as follows: in Section 2,
we introduce the mathematical foundation along with the computational procedure for the inverse
algorithms; in Section 3, we test the inverse algorithms with simulated experiments for various
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geometric domains and shear modulus distributions; in Section 4, we discuss the numerical results
and end with conclusions in Section 5.

2. Inverse Algorithms Using Limited Boundary Displacements

In this paper, the material is assumed to be isotropic, heterogeneous, linear elastic, and in the
state of incompressible plane strain. Thus, the forward problem is posed to find the displacements
and hydrostatic pressure such that the equilibrium equations are satisfied. For a discretized problem
domain, we use finite element methods to solve the forward problem in elasticity, resulting in the
following linear algebraic equations:

KU = f (1)

where K and f are the global stiffness matrix and the force vector, respectively. U is the nodal unknown
vector including the displacement components in both directions together with the pressure. To address
volumetric locking induced by incompressibility, the global stiffness matrix will be augmented with
terms arising from a residual term referred to as stabilization according to [27]. This allows us to use
the same order interpolation functions to approximate the displacement and pressure variables.

The inverse problem is posed as a constrained optimization problem where the equilibrium
equations represent the constraints of the problem. This requires measurements of displacements,
acquired here merely on the boundary. Furthermore, applied forces to induce boundary displacements
are assumed to be known as well. The objective function to be minimized is given in discretized form
using finite element based approximation techniques as follows:
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where n, N, Ne and Nn are the total number of data sets (corresponding to the total number of
experiments) , the total number of nodes on the measured boundary, the number of element nodes
in the domain, and the total number of elements throughout the problem domain, respectively.
∆ui

e = ui
e − (ui

e)meas is the misfit between the computed displacement ui
e and the measured boundary

displacement (ui
e)meas for the i-th simulated experiment. Furthermore, wi

e denotes a weight that arises
from the finite element interpolation as well as the local element coordinates discussed in detail in [22].
To ensure uniqueness of the final solution of the inverse problem, it is recommended to have a large
value of n in Equation (2). We note that each experiment may result in displacement measurements at
different boundaries, and thus N may change for each i.

The second term on the right-hand side represents the total variation diminishing regularization
term and is a function of the nodal shear modulus µe

j , and c = 0.01 is a small constant to ensure
that the regularization term is differentiable. Note that the shear moduli are nodal unknowns and
interpolated with the same shape functions Ne

j (x) used for the displacement and pressure variables.
The reason for the selection of total variation diminishing regularization is that this regularization type
is capable of preserving sharp stiffness contrasts and worked well for us in past studies. This term
penalizes the final solution and controls the smoothness of the reconstruction results by choosing
a proper regularization factor α. If the regularization factor is chosen to be too large, the final solution
will be over-smoothed and the approximated material properties will significantly underestimate the
target distribution. On the contrary, if the regularization factor is too small, the final solution will
strongly oscillate, since computed displacements are then correlating with noisy measurements in the
first term of Equation (2). Approaches such as the L-curve method [28,29], Morozov’s discrepancy
principle [30,31] or a smoothness criteria [4,11] provide guidelines to select an optimal regularization
factor. In this paper, the regularization factor is chosen based on the smoothness criteria, and the
appropriate regularization factor is estimated such that a small sub-region neither oscillates nor
overpenalizes the shear modulus distribution. More specifically, at the beginning, we will adopt
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a large regularization factor and this factor will lead to over smooth results. We will then incrementally
decrease the factor. The final regularization factor is selected in a neighborhood of regularization
factors, with values below the selected one leading to visible oscillations, while values above this
selection lead to no significant changes in smoothness.

To solve the optimization problem, the limited BFGS (Broyden–Fletcher–Goldfarb–Shanno) method
is utilized [32,33], which requires the evaluation of the objective function and the nodal gradient of
the objective function with respect to the shear modulus. For a discretized problem domain, the
straightforward calculation of the gradient is computationally intensive and requires solving the forward
problem for each nodal shear modulus at every minimization call. Thus, the adjoint method is utilized,
which dramatically reduces the computational cost [4,34,35]. The adjoint method has been thoroughly
discussed and universally applied to solve linear and nonlinear inverse problems, and thus will not be
further discussed in this paper. The limited BFGS method will update the elastic property distribution
and the process is repeated until the functional drops or the gradient is smaller than a defined tolerance.

In the present work, we will mainly focus on testing the feasibility of these inverse algorithms to
recover the shear modulus distribution of problem domains having one or two inclusions. To this end,
indentation experiments will be simulated by solving the forward problem in elasticity and boundary
displacements will be extracted and used as measured displacements. The forward problem is solved
using standard finite element methods, with the assumption that the material is incompressible and
in a state of plain strain. Comparing this work to our previous publications [10,23], we also assume
that the applied force is known together with the induced displacement at that point. As such, the
resulting shear modulus distribution will be recovered quantitatively. Finally, we add the same noise
level to the simulated boundary displacements (random noise), force and corresponding displacement
indentation to study the sensitivity of the mapped shear moduli to noisy data.

The inverse problem is solved using in-house written FORTRAN programs with integrated open
source limited BFGS algorithms on shared memory using OpenMP. The total time to solve the inverse
problem depends on the total number of boundary displacement datasets and the total number of
cores used. For one boundary displacement dataset, it approximately takes an hour to converge fully
to the final solution.

3. Numerical Results with Simulated Experiments

3.1. Case 1: A Square Model with a Small Inclusion

First, we consider a 1 cm × 1 cm square with a small inclusion with a radius of 0.1 cm surrounded
by a softer homogeneous background material as shown in Figure 1. The coordinate of the center of
the inclusion is (0.4 cm, 0.5 cm), the target shear modulus value of the background is 10 kPa and the
stiffness in the inclusion is 50 kPa. With regards to boundary conditions, we fix the bottom edge in
both directions for all simulations. In Figure 1a, forces are applied pairwise on the left and right side
simultaneously and are aligned horizontally but in the opposite direction (net force is zero). Each pairwise
applied force induces a displacement on the top boundary (see the green line in Figure 1a). Varying the
location of the pairwise applied forces vertically and sequentially provides a rich number of boundary
displacement data sets on the top face (green line). In Figure 1b, single force indentations are applied
on the top boundary edge sequentially, in order to induce boundary displacements (for each single
force indentation) on the left boundary edge (see green vertical line in Figure 1b). In Figure 1c, single
force indentations are applied on the top boundary edge sequentially, in order to induce boundary
displacements (for each single force indentation) on the right boundary edge (see green vertical line
in Figure 1c. Varying the location of applied force indentation as shown in Figure 1b,c, we obtain
a rich boundary displacement data set. Simulated displacement measurements are highlighted on the
boundary edge with a green line as shown in Figure 1a–c. Furthermore, each indentation induces a force
of 0.05 N on the corresponding node in the problem domain. This force will induce small deformations
that are suitable for displacement measurements using a digital image correlation system. The problem
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domain is discretized with 7200 linear triangular elements (61 nodes are uniformly distributed in each
direction). The boundary displacement is assumed to be measured on the edge with no applied force
indentation. In standard indentation tests, the displacement at the indentation can be measured with
high accuracy; therefore, this information will also be included in the inverse solution process.
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Figure 1. The problem domain with a stiff inclusion surrounded by a soft background. The arrows
indicate the indentation locations, and the green line represents the side of known or measured
displacements. (a) the indentations are sequentially applied pairwise at both lateral sides (net force is
zero), and we utilize boundary displacements on the top edge as measured data; (b) the indentation is
applied on the top edge, and we utilize boundary displacements on the left edge as measured data;
(c) the indentation is applied on the top edge, and we utilize boundary displacements on the right edge
as measured data (unit in the scale bar: 10 kPa). Note: “SM” stands for shear modulus.

Figures 2 and 3 show the reconstructed shear modulus distribution with respect to the noise levels
of 0.1%, and 1%, respectively. In both figures, b, c represent the results for seven and 13 boundary
displacement data sets, respectively. Seven displacement boundary data sets are obtained according
to Figure 1a, three boundary displacement data sets are obtained according to Figure 1b, and three
boundary displacement data sets are obtained according to Figure 1c.
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Figure 2. Shear modulus reconstructions for 0.1% noise. (a) target shear modulus distribution for
comparison; (b,c) reconstructed shear modulus distribution using 7 and 13 boundary displacement data
sets, respectively; (d) shear modulus plot over the horizontal line through the center of the inclusion
for the target and reconstructed shear modulus distribution (unit in the scale bar: 10 kPa). Note: “SM”
stands for shear modulus.
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The shear modulus values are plotted over the horizontal line passing through the center of the small
inclusion in Figures 2d and 3d. The regularization factors for Figures 2 and 3 were chosen to be 10−11 and
10−10, respectively. In Figure 2, the reconstructions reveal that the location of the inclusion can be detected
and the shape of the inclusion is well preserved. However, the inclusion seems to be larger than the
target and the reconstructed shear modulus value of the inclusion is underestimated. Furthermore, with
increasing number of displacement data sets, both the shape and the shear modulus value of the inclusion
slightly improve, as shown in Figure 2b,c. More precisely, the reconstructed shear modulus value in
the inclusion increases slightly from 2.07 to 2.17 and the recovered inclusion becomes more circular as
shown in Figure 2c. We have also performed the reconstruction without noise and observed that the shear
modulus distribution is very similar to the reconstructions in Figure 2 (not shown here).
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Figure 3. Shear modulus reconstructions for 1.0% noise. (a) target shear modulus distribution for
comparison; (b,c) reconstructed shear modulus distribution using 7 and 13 boundary displacement data
sets, respectively; (d) shear modulus plot over the horizontal line through the center of the inclusion
for the target and reconstructed shear modulus distribution (unit in the scale bar: 10 kPa). Note: “SM”
stands for shear modulus.

In Figure 3b, we observe that with 1% noise level the recovered inclusion is larger than in the
previous example with 0.1% noise level. Furthermore, the background has stronger oscillations due
to the higher noise level. The reconstructions with 1% noise do not improve much with increasing
number of displacement data sets used in Figure 3c. Nevertheless, we are able to detect the location of
the inclusion center.

To better analyze the accuracy of the reconstructions in Figures 2 and 3, we define a relative error
to quantitatively evaluate the error between the recovered and target shear modulus distributions

that is, e =

√
Nn
∑

i=1

(
µi − µ◦i

)2/
Nn
∑

i=1

(
µ◦i
)2 × 100%, where Nn, µi and µ◦i are the total number of nodes

throughout the problem domain, nodal recovered shear modulus and nodal target shear modulus,
receptively. The relative error for each case presented in Figures 2 and 3 are shown in Table 1. Table 1
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illustrates that increasing the number of boundary displacement datasets and decreasing the noise
level improves the mapped shear modulus only slightly for case 1.

Table 1. Relative L2 error for each case presented in Figures 2 and 3.

Noise Level
Relative L2 Error

7 Displacement Datasets 13 Displacement Datasets

0.1% 41.51% 40.39%
1% 43.89% 43.48%

3.2. Case 2: A Semi-Circle Model with One or Two Inclusions

The second example in Figure 4 is a semi-circle with an inclusion that can be thought of as an
idealized breast with an idealized tumor mimicking inclusion. The radii of the semi-circle and the
inclusion are 7.5 cm and 1 cm, respectively. This problem domain is discretized with 7632 linear
triangular elements. The exact shear moduli of the background and inclusion are 5 kPa and 25 kPa,
respectively. To solve the forward problem in elasticity, we fix the bottom edge and apply indentations
with a nodal force of 0.27 N on the top curved edge sequentially (the location and direction of
each indentation are indicated by a yellow arrow in Figure 4a–c). Similar to the first case, the force
will induce a small deformation of the simulated phantom. In this case, we assume that boundary
displacements can be measured on the entire top curved edge. Figure 5b–d represent the recovered
shear modulus distributions with 5, 10, and 15 boundary displacement data sets, respectively. In this
case, no noise is introduced and the regularization factor is chosen to be 10−11. In general, we
observe that the inclusion shape can be visualized well, while its shear modulus value is significantly
underestimated by about 20%. Additionally, increasing the total number of displacement fields slightly
improves both the reconstructed shear modulus value and the shape of the inclusions. The mapped
shear modulus value in the inclusion increases from about 16.5 kPa to 19.1 kPa using 15 as shown
in Figure 5d. It is also notable that the reconstructed shear modulus value in the inclusion reaches
approximately 80% of the target value.

Sensors 2017, 17, 1075 7 of 20 

 

Table 1 illustrates that increasing the number of boundary displacement datasets and decreasing the 
noise level improves the mapped shear modulus only slightly for case 1. 

Table 1. Relative L2 error for each case presented in Figures 2 and 3. 

Noise Level 
Relative L2 Error

7 Displacement Datasets 13 Displacement Datasets 
0.1% 41.51% 40.39% 
1% 43.89% 43.48% 

3.2. Case 2: A Semi-Circle Model with One or Two Inclusions 

The second example in Figure 4 is a semi-circle with an inclusion that can be thought of as an 
idealized breast with an idealized tumor mimicking inclusion. The radii of the semi-circle and the 
inclusion are 7.5 cm and 1 cm, respectively. This problem domain is discretized with 7632 linear 
triangular elements. The exact shear moduli of the background and inclusion are 5 kPa and 25 kPa, 
respectively. To solve the forward problem in elasticity, we fix the bottom edge and apply 
indentations with a nodal force of 0.27 N on the top curved edge sequentially (the location and 
direction of each indentation are indicated by a yellow arrow in Figure 4a–c). Similar to the first case, 
the force will induce a small deformation of the simulated phantom. In this case, we assume that 
boundary displacements can be measured on the entire top curved edge. Figure 5b–d represent  
the recovered shear modulus distributions with 5, 10, and 15 boundary displacement data sets, 
respectively. In this case, no noise is introduced and the regularization factor is chosen to be 10−11.  
In general, we observe that the inclusion shape can be visualized well, while its shear modulus value 
is significantly underestimated by about 20%. Additionally, increasing the total number of 
displacement fields slightly improves both the reconstructed shear modulus value and the shape of 
the inclusions. The mapped shear modulus value in the inclusion increases from about 16.5 kPa to 
19.1 kPa using 15 as shown in Figure 5d. It is also notable that the reconstructed shear modulus value 
in the inclusion reaches approximately 80% of the target value. 

 
Figure 4. The problem domain for a semi-circle with a stiff inclusion surrounded by a soft background. 
The yellow arrows indicate the indentation locations, and measured boundary displacements are 
simulated on the top curve. (a) 5 arrows representing 5 sequentially applied forces to obtain boundary 
displacement data sets; (b) 10 arrows representing 10 sequentially applied forces to obtain boundary 
displacement data sets; and (c) 15 arrows representing 15 sequentially applied forces to obtain boundary 
displacement data sets (unit in the scale bar: kPa). Note: “SM” stands for shear modulus. 

Figure 4. The problem domain for a semi-circle with a stiff inclusion surrounded by a soft background.
The yellow arrows indicate the indentation locations, and measured boundary displacements are
simulated on the top curve. (a) 5 arrows representing 5 sequentially applied forces to obtain boundary
displacement data sets; (b) 10 arrows representing 10 sequentially applied forces to obtain boundary
displacement data sets; and (c) 15 arrows representing 15 sequentially applied forces to obtain boundary
displacement data sets (unit in the scale bar: kPa). Note: “SM” stands for shear modulus.
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Figure 6b–d represent the recovered shear modulus distributions for a noise level of 1% with 5, 10,
and 15 displacement data sets, respectively, for a regularization factor of 10−10. Compared to the case
without noise, the recovered shear modulus distribution degrades significantly. The shear modulus
value in the inclusion is roughly 15 kPa and does not change much with varying number of boundary
displacement data sets. We also observe strong oscillations occurring throughout the problem domain,
in particular close to the curved edge.
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Figure 7b–d represent shear modulus reconstructions for a very high noise level of 5% with 5, 10
and 15 boundary displacement datasets, respectively. A regularization factor of 10−9 was selected in



Sensors 2017, 17, 1075 9 of 19

this case. In comparison with the reconstruction with 1% noise level in Figure 6, we observe that the
noise artifacts are significantly amplified, with peaks closer to the boundary. We also computed the
relative error for all cases presented in Figures 5–7 as shown in Table 2. As expected, the accuracy in
reconstruction results improves with a lower noise level as well as more displacement datasets.Sensors 2017, 17, 1075 9 of 20 
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Table 2. Relative L2 error for the cases presented in Figures 5–7.

Noise Level
Relative L2 Error

5 Displacement Datasets 10 Displacement Datasets 15 Displacement Datasets

0% 28.68% 23.91% 22.52%
1% 45.40% 40.66% 38.30%
5% 69.26% 56.25% 50.78%

In Figure 8a, we test a slightly different target problem domain from the previous one in Figure 4a,b,
where the location of the stiff inclusion is positioned further away from the boundary. The boundary
conditions, i.e., the applied force boundaries are the same as in the previous examples as well. The
reconstructed shear modulus distribution is given in Figure 8b,c for 5 and 10 boundary displacement
data sets, respectively, with a noise level of 0.1%. The regularization factor was chosen to be 10−10.
We observe that the inclusion can be recovered despite its deeper location and being further away from
the top boundary. In Figure 9, we increase the noise level to 1% using the same number of boundary
displacement data sets, but increase the regularization factor to 5 × 10−10. The reconstructed shear
modulus values deteriorate together with the shape of the inclusion compared to the previously lower
noise level. Nevertheless, the inclusion shape and location are detectable.

To test the sensitivity to detect smaller inclusions, we have reduced the size of the inclusion to a
radius of 0.5 cm in Figure 10a. The applied forces were the same as in Figure 4a,b. The reconstructed
shear modulus distributions are shown in Figure 10b,c for 5 and 10 boundary displacement data sets,
respectively, with a noise level of 0.1% and a regularization factor of 3 × 10−10. In Figure 11, we
increase the noise level to 1% for the same displacement boundary data sets using a regularization
factor of 7 × 10−10. Overall, we observe that the location and shape of the inclusion is preserved, while
the size is overestimated and the shear modulus value in the inclusion is underestimated.
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(b,c) reconstructed shear modulus distribution using 5 and 10 boundary displacement data sets,
respectively (unit in the scale bar: kPa). Note: “SM” stands for shear modulus.
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To test shape detectability of this approach, we define the target problem domain given in  
Figure 12a with an elliptic shaped inclusion. We apply the same boundary conditions as in Figure 4a,b 
and add 0.1% noise to boundary displacements. The reconstructed shear modulus distributions are 
shown in Figure 12b,c for 5 and 10 boundary displacement data sets, respectively, for a regularization 
factor of 5 × 10−11. We observe that the reconstructed inclusion shape follows the trend of an ellipse. 
In Figure 13, the noise level is increased to 1% and the regularization factor is chosen to be 5 × 10−10 
and the shape deteriorates as anticipated, but an elliptic shape-like trend appears to be present. 

Figure 10. Shear modulus reconstruction with 0.1% noise. (a) target shear modulus distribution
with a smaller inclusion radius of 0.5 cm is defined to study detectability of the inclusion to its
size; (b,c) reconstructed shear modulus distribution using 5 and 10 boundary displacement data sets,
respectively (unit in the scale bar: kPa). Note: “SM” stands for shear modulus.
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Figure 11. Shear modulus reconstruction with 1% noise. (a) target shear modulus distribution with
a smaller inclusion radius of 0.5 cm is defined to study detectability of the inclusion to its size;
(b,c) reconstructed shear modulus distribution using 5 and 10 boundary displacement data sets,
respectively (unit in the scale bar: kPa). Note: “SM” stands for shear modulus.

To test shape detectability of this approach, we define the target problem domain given in
Figure 12a with an elliptic shaped inclusion. We apply the same boundary conditions as in Figure 4a,b
and add 0.1% noise to boundary displacements. The reconstructed shear modulus distributions are
shown in Figure 12b,c for 5 and 10 boundary displacement data sets, respectively, for a regularization
factor of 5 × 10−11. We observe that the reconstructed inclusion shape follows the trend of an ellipse.
In Figure 13, the noise level is increased to 1% and the regularization factor is chosen to be 5 × 10−10

and the shape deteriorates as anticipated, but an elliptic shape-like trend appears to be present.

Figure 12. Shear modulus reconstructions with 0.1% noise. (a) Target shear modulus distribution
with an elliptically shaped inclusion is defined to study detectability of the inclusion shape; (b,c)
Reconstructed shear modulus distribution using 5 and 10 boundary displacement data sets, respectively
(unit in the scale bar: kPa). Note: “SM” stands for shear modulus.
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displacement data sets from solving the forward problem using force indentations according to 
Figure 4a, b and adding 0.1% noise. The reconstructions with 5 and 10 boundary displacement data 
sets are shown in columns 2 and 3, respectively. It appears that the stiffness contrast ratio of 2 
according to row 2 in Figure 14 yields the best reconstructions. Decreasing or increasing the stiffness 
contrast ratio will compromise the accuracy of the shear modulus reconstructions. For the target shear 
modulus inclusion values of 50 and 100 (see last two rows in Figure 14), the reconstructed shear 
modulus values are very similar. The regularization factors were selected to be the same for each row 

Figure 13. Shear modulus reconstructions with 1% noise. (a) target shear modulus distribution with an
elliptic shaped inclusion is defined to study detectability of the inclusion shape; (b,c) reconstructed
shear modulus distribution using 5 and 10 boundary displacement data sets, respectively (unit in the
scale bar: kPa). Note: “SM” stands for shear modulus.

Next, we investigate the detectability of inclusions to varying stiffness contrasts. To this end, we
specify target problem domains on the left column in Figure 14 with varying shear modulus values in
the inclusion from 7.5 kPa to 100 kPa from the top to bottom row, respectively, while the background
shear modulus value remains the same with 5 kPa. We utilize 5 and 10 boundary displacement data
sets from solving the forward problem using force indentations according to Figure 4a,b and adding
0.1% noise. The reconstructions with 5 and 10 boundary displacement data sets are shown in columns
2 and 3, respectively. It appears that the stiffness contrast ratio of 2 according to row 2 in Figure 14
yields the best reconstructions. Decreasing or increasing the stiffness contrast ratio will compromise
the accuracy of the shear modulus reconstructions. For the target shear modulus inclusion values of 50
and 100 (see last two rows in Figure 14), the reconstructed shear modulus values are very similar. The
regularization factors were selected to be the same for each row in Figure 14 with 10−10, 10−10, 5× 10−11,
5 × 10−11 and 5 × 10−11 starting from the top row down to the bottom row. Similarly, in Figure 15, the
sensitivity of the reconstructions to the stiffness inclusion to the background ratio was analyzed for a
noise level of 1%. The regularization factors from the top row to the bottom row were 5× 10−9, 2× 10−9,
1 × 10−10, 3 × 10−10 and 3 × 10−10, respectively. Increasing the noise level to 1% appears to yield the
best reconstructions for a stiffness contrast of 1.5, shown in the first row of Figure 15.

In Figure 16a, we have two stiff inclusions with shear modulus values of 25 kPa. In this case,
we also apply radial indentations of 0.27 N and simulate displacement measurements on the top
boundary edge. We utilize 5 and 10 displacement data sets in the presence of 0.1% noise to solve the
inverse problem and the mapped shear modulus distributions are shown in Figure 16b,c, respectively.
The regularization factor was chosen to be 10−10. The reconstructions reveal that both inclusions
can be visualized and detected, while the shear modulus values are significantly underestimated.
Furthermore, we note that the stiffness contrast of the left inclusion is more underestimated than
that of the right inclusion. This is likely due to boundary sensitivity thoroughly discussed by the
authors in [9–11]. In Figures 17 and 18, we increase the noise level to 1% and 5%, respectively. The
regularization factor for 1% noise level is chosen to be 3 × 10−10 and for 5% is chosen to be 5 × 10−10.
While the shear modulus reconstruction with the high noise level of 5% is dominated by noise artifacts,
the inclusions can be visualized to some extent. In Table 3, we compute the relative error for every
case with two inclusions presented in Figures 16–18 and we observe a similar trend that the accuracy
in reconstruction results improves with a lower noise level as well as more displacement datasets
observed in Table 2.
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Figure 14. Problem domain with target shear modulus distribution is defined in the first column with
varying shear modulus values in the inclusion from 7.5 (top row) to 100 kPa (bottom row) to test the
feasibility range of stiffness detection. Columns 2 and 3 represent the shear modulus reconstructions
with 5 and 10 boundary displacement data sets, respectively, using 0.1% noise.
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Figure 15. Problem domain with target shear modulus distribution is defined in the first column with
varying shear modulus values in the inclusion from 7.5 kPa (top row) to 100 kPa (bottom row) to
test the feasibility range of stiffness detection. Column 2 and column 3 represent the shear modulus
reconstructions with 5 and 10 boundary displacement data sets, respectively, using 1% noise.
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comparison; (b,c) reconstructed shear modulus distribution using 5 and 10 boundary displacement
data sets, respectively (unit in the scale bar: kPa). Note: “SM” stands for shear modulus.

Sensors 2017, 17, 1075 15 of 20 

 

 

Figure 17. Shear modulus reconstructions with 1% noise. (a) target shear modulus distribution for 
comparison; (b,c) reconstructed shear modulus distribution using 5 and 10 boundary displacement 
data sets, respectively (unit in the scale bar: kPa). Note: “SM” stands for shear modulus. 

 
Figure 18. Shear modulus reconstructions with 5% noise. (a) Target shear modulus distribution for 
comparison; (b,c) reconstructed shear modulus distribution using 5 and 10 boundary displacement 
data sets, respectively (unit in the scale bar: kPa). Note: “SM” stands for shear modulus. 

Table 3. Relative L2 error for the cases presented in Figures 16–18. 

Noise Level 
L2 Relative Error

5 Displacement Datasets 10 Displacement Datasets 
0.1% 42.12% 39.83% 
1% 48.24% 45.92% 
5% 68.01% 61.29% 

4. Discussion 

In this work, a quantitative Mechanics Based Tomography (MBT) approach was introduced to 
characterize the shear modulus distribution using solely boundary displacements together with force 
information, and its feasibility has been tested using various simulated experiments. The inverse 
problem is posed as a minimization problem subject to the constraint of the equilibrium equations in 
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comparison; (b,c) reconstructed shear modulus distribution using 5 and 10 boundary displacement
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Table 3. Relative L2 error for the cases presented in Figures 16–18.

Noise Level
L2 Relative Error

5 Displacement Datasets 10 Displacement Datasets

0.1% 42.12% 39.83%
1% 48.24% 45.92%
5% 68.01% 61.29%

4. Discussion

In this work, a quantitative Mechanics Based Tomography (MBT) approach was introduced to
characterize the shear modulus distribution using solely boundary displacements together with force
information, and its feasibility has been tested using various simulated experiments. The inverse
problem is posed as a minimization problem subject to the constraint of the equilibrium equations in
elasticity. Unlike most inverse algorithms requiring measured displacements throughout the entire
domain, i.e., full field displacements, the method presented in this paper merely requires measurements
on the boundaries. This facilitates data collection for engineering materials by using digital cameras and
a digital image correlation system, yielding a low cost imaging modality. In addition, displacements
on the boundary can be conveniently measured with high resolution [25].

In our previous publications [22,23], we utilized displacement indentations as boundary
conditions. Thus, the resulting shear modulus distribution was only recovered up to a multiplicative
factor. In this paper, we assumed that the applied force is known, leading to quantitatively/absolutely
reconstructed shear modulus values. One of the challenges we faced here was the sensitivity of the
optimization method to the initial guess, while, for the relative shear modulus reconstructions, the
optimization method converged for a wide range of initial guesses.

The first case could represent a tissue engineered material, where growth and remodeling of
tissue scaffold by cells has progressed spatially. Thus, the inclusion could represent a hypothetical
overproduction of collagen fibers, while the background could represent lower density of collagen
fiber accumulation. This simulated case represents a challenging problem domain, since the inclusion
is small and significantly away from the boundary edges (see Figures 1–3). We note that we do not
make any assumptions about any presence of inclusions for all examples in this paper, but assume
that the shear modulus is unknown on the finite element mesh nodes. Furthermore, for case 1, we
only measure one side for each indentation, which carries very little information pertaining to its
interior shear modulus distribution. Nevertheless, the inverse scheme presented in this paper is
capable of characterizing the non-homogenous shear modulus distribution well in the presence of
noise levels (0.1%) that are inherent in actual measurements using digital image correlation systems.
The reconstruction results reveal that the inverse algorithms are sufficiently robust to detect the
location as well as the shape of the inclusion, while they fail to accurately reconstruct the target shear
modulus value. For the case with 1% noise (see Figure 3b,c), the reconstructed inclusion becomes
much larger and the shear modulus value in the inclusion is further underestimated. It is notable that
the target inclusion area times the target inclusion value is preserved in that it is equal to the area of the
reconstructed inclusion times the area of the reconstructed shear modulus value in the inclusion. This
may be due to a lack of known boundary displacements (only used on partial boundaries) leading to
uniqueness issues. Adding additional boundary displacement data sets does not significantly improve
the reconstructions. Thus, to ensure an accurate and unique solution, displacements from the entire
boundary should be used as discussed in the next case or deformations induced that could lead to
a unique reconstruction.

For the second case, we have modeled a semi-circle with a shear modulus of 5 kPa according to
measured fatty tissues and representing an idealized breast. The semi-circle consists of a stiff inclusion
with a shear modulus value of 25 kPa, representing an idealized cancerous tumor (see Figures 4–6).
Here, the deformation of the curved top boundary edge is assumed to be measured and used to solve
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the inverse problem. Since the bottom edge is fixed in both directions, we actually have used the entire
displacement information on the boundary to solve the inverse problem. We conclude that this leads
to a much better reconstructed inclusion compared to the previous case.

To show that this novel approach is not confined to one inclusion only, we have also tested the
inverse algorithms for simulated experiments with two inclusions as shown in Figures 16–18. Clearly,
the inverse algorithms are still capable of mapping the inclusion shapes, but underestimate the shear
modulus values as in the one inclusion case. We observe that the left inclusion in Figure 16 is more
underestimated than the right inclusion. The reason for this is that the solution of the inverse problem
is sensitive to boundary conditions when regularizing the problem as discussed in [9–11].

In addition, we have added various noise levels into the boundary displacements to test the
robustness of the novel inverse scheme herein. For experimentally relevant noise levels of about
0.1%, we observe that (1) the shape and size of the inclusion can be well recovered if the inclusion is
medium sized; (2) the shear modulus value in the inclusion is underestimated; (3) the shape of the
inclusion is preserved; (4) the size of the reconstructed inclusion is significantly overestimated for
very small inclusions; (5) the stiffness contrast improves for a target stiffness contrast of about 1.5 to 2
and dramatically deteriorates for stiffness contrasts beyond 10. The shear modulus reconstructions
deteriorate significantly for higher noise levels, tested in this paper at up to about 5%.

We also performed a simple experiment to estimate the noise level in boundary displacement
measurements utilizing a digital image correlation system using digital cameras. In the experimental
setup shown in Figure 19, the ramp is subject to rigid body rotation along the left end of the ramp.
The height on the right end of the ramp was altered using the columns shown in Figure 19b. This will
result in linear deflection of the top surface along the axial direction, used to validate the accuracy
of the measurements obtained with the digital image correlation system. We defined a relative error√

T
∑

i=1

(
zi − z◦i

)2/
T
∑

i=1

(
z◦i
)2 × 100% along the major axis of the ramp, where T, zi and z◦i are the total

number of data points along the line, the measured deflection at those points and the curve fitting
data from a linear function, respectively. We observe that the relative error is about 0.06% which is
significantly lower than the noise levels significantly used in the simulations presented in this paper.
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The inclusion to background stiffness contrast plays an important role in recovering the shear 
modulus distribution. We observe in Figures 14 and 15 that the quality of the shear modulus 
reconstructions depends on the target stiffness ratio of inclusion to background. It is important to 
note that small stiffness contrasts of 7.5/5 (inclusion/background) can be well recovered. With 
increasing stiffness contrast ratio, the shear modulus reconstructions perform poorly; however, the 
shape of the inclusions is well-preserved in all cases for a noise level of 0.1%. Beyond a stiffness 
contrast ratio of 50 to 5, the shear modulus reconstructions do not differ much. This can be explained 
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Figure 19. The experimental setup to perform noise analysis of the boundary displacement
measurements utilizing a digital image correlation system. (a) top view of the experimental setup with
digital cameras focusing on the ramp’s top face; (b) side view of the ramp with three columns having
different height.

The inclusion to background stiffness contrast plays an important role in recovering the shear
modulus distribution. We observe in Figures 14 and 15 that the quality of the shear modulus
reconstructions depends on the target stiffness ratio of inclusion to background. It is important to note
that small stiffness contrasts of 7.5/5 (inclusion/background) can be well recovered. With increasing
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stiffness contrast ratio, the shear modulus reconstructions perform poorly; however, the shape of the
inclusions is well-preserved in all cases for a noise level of 0.1%. Beyond a stiffness contrast ratio of 50
to 5, the shear modulus reconstructions do not differ much. This can be explained by the fact that the
boundary displacements will not differ much either since the stiff inclusion behaves like a “rigid” object,
i.e., the inclusion does not change its deformation field significantly beyond this stiffness ratio.

In all of the reconstructions presented in this paper, we added the same noise level for the
displacement boundary, force and corresponding displacement indentation (i.e., displacement at force
location), though they are not necessarily the same. However, from our experience, the reconstructions
will not be sensitive to deviations in the noise level in force and corresponding displacement
indentation. Furthermore, uncertainties in the location of force indentation are acknowledged and
not investigated in this paper. Conducting the experiments carefully by marking the locations of
force indentation, these uncertainties can be well controlled. To further elaborate on this, we pursue
the following thought process: applying a force indentation at some predefined location will induce
boundary displacements. Now, applying that same force indentation by some small incremental offset
from the original location will result in a second set of boundary displacements. These two sets of
boundary displacements will be very close, thus the resulting reconstructions would be anticipated
to be close as well. As the offset of force location increases, the discrepancy between the boundary
displacement sets will increase. This discrepancy can be understood as some kind of noise level in
the boundary displacements as analyzed in this paper, and the reconstructions will depend on this
discrepancy. We note, however, that this “noise” level from the discrepancy of boundary displacements
is not random as utilized in this paper. A future analysis of this uncertainty will provide insight for
experimental design.

In this work, we assumed that the simulated solids are in two-dimensional space and in the
state of plane strain. Real world applications are in three-dimensional space and their reduction to
plane strain may not always be feasible. Thus, future efforts will focus on extending this approach
to three dimensions. Since many boundary displacements are needed, this is computationally
intensive and may require further optimization of the in-house written program. However, collecting
boundary displacement data in three-dimensional space using digital cameras is relatively convenient.
Furthermore, recording digital camera images on boundary displacements of shapes that are more
complex than a block or a hemisphere may be conveniently conducted.

5. Conclusions

In this paper, we have presented a novel and quantitative Mechanics Based Tomography (MBT)
approach to determine the shear modulus distribution using boundary displacements together with
applied force information. The feasibility of this approach has been tested with various simulated
experiments. We observe that we can detect the location of the inclusion with various noise levels
and preserve the shape of the inclusion well in the presence of 0.1% white Gaussian noise level in the
boundary displacements. The results also illustrate that the shear modulus value is underestimated,
and its inclusion size is larger than the target inclusion when incomplete displacement boundary
information is utilized in the inverse problem. When complete boundary data is utilized as displayed
in case 2, the overall solution to the inverse problem becomes more unique. In fact, we observe
that for the first case with a square domain, knowing displacements on a small boundary region
does not yield a unique solution, despite the low noise level and a large number of boundary
displacement data sets. More studies are required to enforce uniqueness with limited boundary
region measurements. We have also observed that, with an increasing number of displacement
datasets utilized, the reconstruction results will improve at lower noise levels when boundary
displacements are known everywhere, while no significant improvements are observed for higher
noise levels and displacement measurements at partial boundaries. In summary, this novel approach
has the potential to nondestructively and quantitatively map the heterogeneous elastic property
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distribution by utilizing displacements measured only on the specimen’s boundary together with the
force indentation measurements.
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