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Abstract: Co-prime arrays can estimate the directions of arrival (DOAs) of O(MN) sources with
O(M+ N) sensors, and are convenient to analyze due to their closed-form expression for the locations
of virtual lags. However, the number of degrees of freedom is limited due to the existence of holes
in difference coarrays if subspace-based algorithms such as the spatial smoothing multiple signal
classification (MUSIC) algorithm are utilized. To address this issue, techniques such as positive
definite Toeplitz completion and array interpolation have been proposed in the literature. Another
factor that compromises the accuracy of DOA estimation is the limitation of the number of snapshots.
Coarray-based processing is particularly sensitive to the discrepancy between the sample covariance
matrix and the ideal covariance matrix due to the finite number of snapshots. In this paper, coarray
interpolation based on matrix completion (MC) followed by a denoising operation is proposed to
detect more sources with a higher accuracy. The effectiveness of the proposed method is based on the
capability of MC to fill in holes in the virtual sensors and that of MC denoising operation to reduce
the perturbation in the sample covariance matrix. The results of numerical simulations verify the
superiority of the proposed approach.

Keywords: array interpolation; direction-of-arrival estimation; matrix denoising; MUSIC; nuclear
norm minimization

1. Introduction

Array signal processing contains a wide area of research, such as array signal parameter
estimation [1] and beamforming [2,3]. Direction-of-arrival (DOA) estimation is a vital problem in
array signal parameter estimation [4-9], and is widely used in practical systems, such as telemedicine
systems [10] and industrial high-voltage insulation systems [11]. One area in DOA estimation that
has gained considerable interest is the estimation of the DOAs of as many signals as possible under
a given number of sensors. Toward this purpose, many sparse linear array structures have been
proposed to achieve a higher number of degrees of freedom (DOFs) than a uniform linear array (ULA)
by exploiting the corresponding difference coarray. For instance, the minimum redundancy array
(MRA) [12] can maximize the number of consecutive virtual sensors with a given number of physical
sensors. However, there are no general expressions about how to determine the locations of physical
sensors in an MRA, thus making it difficult for systematic design and optimizations.

Compared with the MRA, the nested array [13] and the co-prime array [14] are more attractive
because of the systematic design of the physical sensors and the closed-form expressions of the
corresponding virtual lags. A nested array can detect O(N?) sources with O(N) physical sensors by
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simply combining two uniform linear subarrays. Different from an MRA, a nested array has a fixed
structure which is convenient to analyze. Another advantage of this structure is that the corresponding
difference virtual lags are all contiguous. This is very friendly for the implementation of the spatial
smoothing-based multiple signal classification (SS-MUSIC) method [1,15]. However, the nested array
requires one subarray with half waveform interelement spacing, which will cause the mutual coupling
effect [16,17]. Comparatively, co-prime arrays consist of two subarrays with a co-prime number of
physical sensors, and can achieve a higher number of DOFs with negligible mutual coupling effects.
The performance of a co-prime array is analyzed explicitly in [14].

MUSIC is a commonly-used high-resolution DOA estimation technique that exploits the
orthogonality between the signal subspace and the noise subspace. Because the covariance matrix
obtained from coarray lags is rank one, and thus spatial smoothing (SS) has to be applied to restore the
full matrix rank, only contiguous virtual lags can be used if spatial smoothing MUSIC (S5-MUSIC) is
applied to estimate DOAs under a co-prime array configuration. If the holes can be filled by the data
of other lags, then the lags beyond contiguous range can also be utilized to recognize more sources.
Matrix completion is a recently developed technique which is essentially an extension of compressive
sensing [18,19] aiming to recover low rank matrices with missing samples. Theoretically, if a matrix
with dimension 17 x ny has a low rank, then it can be reconstructed from O(nrpolylog(n)) entries,
where n = max{ny,n;} and r is the rank of the corresponding matrix [19]. For DOA estimation, the
rank of the covariance matrix of a coarray equals to the number of sources, and it is smaller than the
number of unique virtual lags, which guarantees that the covariance matrix is low rank. Thus, the
holes in coarray can be filled with matrix completion [20]. Various algorithms have been proposed to
solve the matrix completion problem, such as singular value thresholding (SVT) [21] and fixed point
continuation (FPC) [22].

In practice, the covariance matrix of a received signal is estimated using finite snapshots; i.e.,
Rg = f‘, Xs[k]xE [k]. In this case, an estimation error will occur—particularly when the number of
snapskllcotls is small. To solve this problem, an approach has been proposed in [23] for nested arrays by
exploiting the nuclear norm minimization problem. Since the nested array forms a hole-free coarray,
the same method cannot be readily applied for the co-prime array that has holes in the corresponding
coarray. In addition, the optimal result of the nuclear norm minimization problem in [23] is not
necessarily Hermitian, so the MUSIC method has to be modified for spatial spectrum estimation based
on singular value decompositions.

In this paper, a novel approach is proposed to achieve accurate DOA estimation with a high
number of DOFs. Coarray interpolation is first performed in the proposed approach to fill the holes and
thus achieve a high number of consecutive coarray elements. Then, an improved denoising operation
which reconstructs the covariance matrix by exploiting the Hermitian Toeplitz structure is employed
to suppress the errors in the data sample covariance matrix due to the finite number of snapshots.
Finally, the MUSIC technique is used to estimate the DOAs without spatial smoothing operation. The
main contribution of this paper is the improved denoising operation, in which the Hermit and Toeplitz
property of the covariance matrix are exploited. As such, the complexity of the denoising operation
is significantly reduced. Furthermore, a subspace-based algorithm such as MUSIC can be directly
used to estimate the DOAs. Numerical experiments are conducted to verify the effectiveness of the
proposed approach.

The rest of this paper is organized as follows. In Section 2, we set up the system model used
through this paper. Then, the methods of the MUSIC algorithm and coarray interpolation are elaborated
in Section 3. The theory of the new DOA estimate approach and the corresponding process are given
in Section 4. The results of numerical experiments are shown in Section 5. In Section 6, a summary of
this paper is provided.

Notations: Scalars, vectors, matrices, and sets are denoted by lower-case letters (a), lower-case
bold letters (a), upper-case bold letters (A), and upper-case letters in blackboard boldface (A),
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respectively. Integer set, real number set, and complex number set are respectively denoted by Z, R,
and C. Especially, I}y denotes the identity matrix with dimension M x M. A*, AT, and AH denote
the conjugate, the transpose, and the complex conjugate transpose of A. ® denotes the Kronecker
product. vec(-) denotes the vectorization operator that turns a matrix into a vector by stacking all
columns on top of the another, and diag(a) denotes a diagonal matrix that uses the elements of a as
its diagonal elements. |A| is the cardinality of A. tr(A) represents the trace of matrix A. ||A||, and
I|A ||, respectively, denote the nuclear norm and the Frobenius norm of matrix A. E[-] denotes the
expectation operator. [A];; indicates the (i, j)th entry of A. The square bracket notation of a vector
[xs]; represents the ith component of xs. The triangular bracket notation (xs), denotes the signal
value on the support n € S, and is very useful for nonuniform arrays. For instance, if S = {1,3,5,7}
and xs = [1,2,3,4]7, then the square brackets [xs]; = 1, [xs]» = 2,[xs]3s = 3 and [xs]4 = 4, and the
triangular brackets (xg)1 = 1, (xs)3 = 2, (xs)5 = 3 and (xg)7 = 4.

2. System Model

An extended co-prime array which is generated by the co-prime integers pair (M, N) was
proposed in [24]. Without loss of generality, assume that M < N. Then, the extended co-prime
array consists of two subarrays: one having 2M sensors with an inter-element spacing of N units, and
the other having N sensors with an inter-element spacing of M units. To be precise, the L physical
sensors have locations L = {p1, p2,- -+, pr} = S X dy, where S is an integer set given by

S={Mnl0<n<N-1}U{Nm|0 <m <2M —1}, 1)

and dy = A/2is the unit inter-element spacing, with A denoting the wavelength. Then, the locations of
the corresponding difference coarray are denoted as D x dy, where D is given by

D = {c1 — c2]c1,c2 € S} 2)

An example of the extended co-prime array is given in Example 1.

Example 1. Let M = 3 and N = 5. The corresponding integer set of the physical
sensor positions is S = {0,3,5,6,9,10,12,15,20,25}. The corresponding difference coarray is
D={0,41,---,£17,4+19,£20,+22,4+25}. The array configuration of this example is shown
in Figure 1.

OXXOXOOX00000000O0O0OOO0O0O00OOOO0OO0OOOOOOOOOOOOOXOOXOX X0

| | | | | | | | | | |
-25 -20 -15 -10 -5 0 5 10 15 20 25

Figure 1. An example extended co-prime array configuration with M = 3 and N = 5. The black
diamonds are physical sensors. The blue circle represents the difference coarray, while the red cross
represents the holes.

Denote s(t) = [s1(t),- -+ ,s50(t)]T as the source signal vector which follows the unconditional
model (stochastic model) [25]. Under the unconditional model, the source signal vector s(t) is assumed
to be a Gaussian random vector with mean zero and covariance P = E [s(t)sf (#)]. n(t) is the additive
white Gaussian noise vector, which is uncorrelated to the source signals. Q is the number of sources,
and is assumed to be known throughout this paper. In addition, we assume that the sources are
uncorrelated. Then, the baseband received signal vector at time index t can be expressed as

xs(t) = Ags(t) +n(t), ®)
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where Ag = [ag (1), - - ,as(0p)] is the manifold matrix and ag(6,) is the steering vector corresponding
to the gth source, expressed by

j2rpydg sin(fq) j2rpy dg sin(6q) T

ag(eq)Z[Ef,"',e A ] 7 qzlrzi"'/Q' (4)

Let Rg = E[xs(t)xH (t)] denote the covariance matrix of xs(#). According to (3), Rg can be written

as
Q

Rs = ) ozas(0g)af (6;) + 031, = AsRsA{ + 071, (5)
q=1
where Rg = diag((flz, s, (Té) is the covariance matrix of source signals. U’qz denotes the power of the
qth source, while 02 is the variance of the noise. In practice, only a finite number of snapshots of the
received signal are available to estimate the covariance matrix. Let xg[k] withk =1,2,--- ,K be the K
snapshots of the received signal. Then, the maximum likelihood (ML) estimation of Rgs—denoted by
f(g—is

K
Rg = ) xs[k|xZ [K]. (6)
k=1

Throughout this paper, we use ~ to represent the estimation of the corresponding vector or
matrix, unless it is otherwise specified.

The autocorrelations of sensor output signal evaluated at lag set D—denoted by xp, € CPI*1—can
be derived by reshaping Rg as follows

xp = Fvec(Rg) = Apb + o2e, (7)

where Ay is the manifold matrix of the coarray, b = [07, -, aé]T is the power of sources, and ey is

a column vector satisfying (eg)m = y 0. F is the transform matrix of dimension |D| x |S|?, which is
defined by the following definitions:

Definition 1. The array weight function [13] w(l) : Z ~ 7Z is defined by w(1) = |{(c1,c2) € S*|c1 — o = I}].

Definition 2. The transform matrix [26] F is a real matrix of size |D| x |S|? such that the row of F associated
with the difference my € D is defined by

(F)mg,: = vec(I(mo))",

where the |S| x [S| matrix I(my) satisfies

L ife; —cp = my,
<I(m0)>ﬁ1,ﬁz = { wimo) f ! 2 0 1,0 € S. (8)

0, otherwise.

Vectorizing Rg yields

Q
vec(Rg) = ) (fqzvec (aS(Gq)ag(Gq)) + o2vec (I)
q=1

)
Q
= Y o7ad(6y) ® ag(6;) + oyvec (I).
q=1
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3. Coarray Interpolation
3.1. MUSIC Algorithm Based on Coarray

We can find that (7) has a similar form with (3). As such, xp can be regarded as a deterministic
data vector on the difference coarray D. However, only one snapshot is available. As such, this
problem is similar to handling fully coherent sources. The subspace-based DOA estimation techniques
(e.g., MUSIC) failed to yield reliable DOA estimates when multiple signals impinge on the array.
To overcome this problem, a spatial smoothing technique [27] and a more direct approach [15] have
been proposed. However, these two approaches require overlapping subarrays with the same structure.
As such, only the contiguous lags can be used, which will reduce the number of DOFs. For simplicity,
we only give the principle of SS-MUSIC next. The explicit elaboration of the direct augmentation-based
MUSIC (DA-MUSIC) can be found in [15].

Denote U = {—lg, —lg +1,--- ,lg} as the maximum central contiguous ULA segment and
xy as the data vector on U. Then, we divide the virtual ULA into Iz + 1 overlapping subarrays
{xu1, ,XU(Z€+1)}, where xy; contains sensors located at —i +1 + k withi = 1,2,---,lz +1 and

k=0,1,---,lz. Define R; = XUiXHI}Ii' and take the average of R; over all i. Then, we obtain

1 I &+ 1
Res = —— Y R (10)
Zé +1 =
As such, the rank of Rg; is recovered, and the MUSIC technique can be performed to estimate the
DOAs. To obtain the signal and noise subspaces, the eigendecomposition of the covariance matrix Rgs
is expressed as

uH
R = [vson ]2 | o, a
N

where X is a diagonal matrix with elements of eigenvalues in descending order. Ug € Cclet)xQ jg
the signal subspace consisting of Q eigenvectors corresponding to the Q largest eigenvalues, while
Uy € CUetD>(e=Q+Y) s the noise subspace consisting of Iz — Q + 1 eigenvectors corresponding to
the [z — Q + 1 smallest eigenvalues.

Based on the MUSIC technique, the signal subspace is orthogonal to the noise subspace. Note
that the signal subspace is spanned by the steering vectors, which means that the steering vectors of
sources are also orthogonal to the noise subspace; i.e.,

a(6,)Uy = 0. (12)

As such, the DOAs can be estimated by finding the peaks of the following spatial pseudo-
spectrum function

6 = argmax ! (13)

oo al(0)UnULa(9)’

where ¢ is the searching grid.

3.2. Co-Prime Coarray Interpolation

For co-prime array, the number of DOFs is limited if the MUSIC technique is applied to estimate
the DOAs due to the existence of holes in coarray. However, if the holes can be interpolated, the
remaining virtual lags beyond the contiguous range can be utilized to construct a ULA with a larger
aperture. Define V as the shortest ULA containing D (namely, V = {m|min(D) < m < max(D)}),
and the corresponding covariance matrix of V can also be expressed using xp with missing entries.
In detail, since the covariance matrix of a ULA is a Toeplitz matrix, we can set the data at non-positive
support of xp as the first column of Ry with missing samples on holes. Similarly, set the data at
non-negative support of xp as the first row of Ry with missing samples on holes. Then, we can get
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a Toeplitz matrix with missing entries, which is a basic form of MC [28]. The missing entries can be
estimated by solving the nuclear norm minimization problem. The coarray interpolation method can
be used to fill the holes based on MC [20] as follows:

Ry = argmin [Ryl.
RyeCIVHIxIv+]

st.  Ry=RY, (14

<ﬁv>n1,n2 = <§D>Yl1—"2'

where Vt = {n|n € V,n > 0} is the non-negative part of V. The range of ny and ny is {ny, na|ny,n, €
V*,n1 — ny € D}. By solving (14), all the known correlation information of Xy is contained in Ry.
The optimal solution of (14), ﬁ@, can be directly utilized to compute the coarray MUSIC spectrum.
However, the DOFs are still limited by the cardinality of D, which is smaller than that of V.

4. Hybrid Approach

As mentioned in Section 2, the covariance matrix f{g is calculated for DOA estimation with a
finite number of snapshots. As such, there exists an error Ej due to the finite snapshots, which is the
common case. Then, the Rg can be rewritten as

Rs = AsRsAY + E. (15)

E contains two components—i.e., the power matrix of noise ¢2I and error caused by finite
snapshots Eg. After a series of operations (e.g., reshaping and coarray interpolation), E still exists in
another form, denoted as E;. Then, we can rewrite Ry as

Ry = Ry + E;. (16)

A denoising method has been proposed to eliminate this kind of error in spatial smoothing
covariance matrix [23]. However, in [23], the structure of the covariance matrix is not exploited, so the
optimal solution may not be Hermitian. As such, only a MUSIC-like spectrum defined by singular
value decomposition can be used to estimate DOAs. Inspired by this denoising method and coarray
interpolation, we propose an improved DOA estimation approach to achieve a better estimation
accuracy and simultaneously guarantee high DOFs.

In this approach, a coarray interpolation method is used to get Ry from (14), which acquires
higher DOFs than the spatial smoothing technique at first. Then, a denoising operation follows to
suppress the error E;. It is well known that the covariance matrix of ULA is a Toeplitz and Hermitian
matrix. To be precise, Ry has the following form:

uq 125 ce uwﬂ
Mé-l ui s M|V+‘,1
RV = T(u) = . . . . ’ (17)
M‘V+| Llw+|,1 uq

where u = [ul, cee, ”W*I} is the first row of Ry. As such, a denoising measure is designed to eliminate
error by optimizing the following nuclear norm minimization problem

min || T(u)]]
iy (18)
st. Ry —-T(u)llr <e,
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where the € is related to the noise level. Equivalently, (18) can be reformulated in the regularization form
. 1,
min || T(w)[}x + 5 [[Ry = T(w)]|F, (19)

where y is the regularization parameter.

In (14), the DOF of Ry is O(|V*|2). However, by exploiting the Toeplitz and Hermitian property
of Ry, vector u contains all of the unique elements of Ry, and the corresponding DOF is reduced to
O(|V*]) in (18). Thus, the computational complexity decreases significantly by optimizing u instead
of the entire Ry. The advantages of the proposed approach are summarized below:

1. The co-prime coarray interpolation step is used to fill the holes. As a result, the lags out of the
contiguous range are utilized, leading to a higher number of DOFs than the SS-MUSIC, which only
uses the contiguous lags.

2. The full rank covariance matrix can be readily established by optimizing (14) from xp without a
spatial smoothing step. This operation can reduce the complexity and is easy to perform.

3. In(18), the structure of the covariance matrix of ULA is fully exploited. Thus, the optimal covariance
matrix acquired by u is Toeplitz and Hermitian, thus enabling effective DOA estimation using
a subspace-based algorithm such as the MUSIC. In addition, the complexity is reduced by fully
exploiting the structure of Ry. Furthermore, the error matrix E; is also suppressed effectively,
which is the main purpose of the denoising step.

Due to the above advantages of the proposed approach, a more accurate estimation of the
covariance matrix is achieved, while a higher number of resolvable sources is guaranteed.

Next, we can estimate DOAs using the MUSIC defined in (13), where the noise subspace Uy
is replaced by Uy, obtained from Ry;. In addition, we use the sensor array located at V x dj as the

virtual array and
j2mdg sin(6) j2remax(V)dg sin(6)

ay(0)=[l,e * ,---,e P ] (20)

as the corresponding steering vector. Substituting ay () and Uy, into (13), the DOAs can be estimated
by finding the Q largest peaks of the MUSIC pseudo-spectrum function. The entire approach is
tabulated in Table 1.

Table 1. A novelty direction of arrival (DOA) estimation approach. MUSIC: multiple signal
classification.

Input  The received signal vector Xg[k] = Ags[k] +n[k],k =1,2,--- K.
Output DOA Estimation.

- K
Step1 Compute the covariance matrix Rg = ¥ Xg[k]XE [K].

Step2  Reshape Rg to get the signal vector of coarray xp = Fvec(Rg).

Step3  Optimize (14) to get the covariance matrix Ry.

Step4  Optimize (18) or (19) to get the denoised covariance matrix Ry.

Step5 Perform eigenvalue decomposition of Ry and construct Uy, = [ug,---, uW*I—Q} where
{u;,i = 1,---,|[VT| — Q} is the eigenvector corresponding to the |[V*| — Q smallest
eigenvalues.

Step6  Compute Pyjysic = !

a@ (Q)UNV U%V ay (9)
the estimation of DOAs.

and find the Q largest peaks which correspond to

5. Simulation Results

In this section, a series of simulations are conducted to examine the performance of the proposed
approach. We first compare the spatial spectrum between the interpolated coarray and the proposed
approach. Then, Monte Carlo experiments are conducted to examine the performance versus the
input signal-to-noise ratio (SNR) and the number of snapshots. Angular resolution is examined in the
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third subsection. Note that MUSIC is used to estimate the DOAs by searching from —90° to 90° with
step 0.1°.
In the following simulations, the signal power of sources is assumed to be the same. In addition,

SNR is defined as )

SNR = 1010g% = 2010g05,
n n

where ¢? is the signal power of sources, while 07 is the variance of noise.
To evaluate the performance of the proposed method, the average root mean square error (RMSE)
of the estimated DOAs is defined as

RMSE = % ZI; ﬁ (2 () - Gq)z,

i=14g=1

where éq (i) is the estimate of §; for the ith Monte Carlo experiment, i = 1,2,---,I. We conduct
I = 500 independent experiments in the peformance analysis subsection.

5.1. MUSIC Spectrum Analysis

In this subsection, we compare the MUSIC spectrum obtained from the coarray interpolation
approach and the proposed approach. A co-prime array consisting of 10 sensors with location
S={0,3,5,6,9,10,12,15,20,25} is considered throughout this subsection. The corresponding
difference setis D = {0, %1, --- ,4+17,£19, £20, 22, +25}, and the maximum contiguous set obtained
after interpolation is V. = {0,+£1,---,425}. In addition, Q = 16 far-field narrowband sources
distributed uniformly from —50° to 50° are assumed to impinge on the array. SVT is used to obtain the
optimal solution of (14). The regularization parameter in (19) is empirically selected as y = 0.1. In this
scenario, the SNR is 0 dB, and the number of snapshots is K = 100. The MUSIC spectra are compared
in Figure 2. For the coarray interpolation case depicted in Figure 2a, the amplitudes of spurious peaks
are higher than the true peaks due to the low number of snapshots and SNR. This will lead to false
DOA estimation. For the hybrid approach shown in Figure 2b, the spurious peaks are successfully
suppressed due to the denoising operation. As such, precise DOA estimation is obtained.

100 —_— 100 T
E E
g0 ERTR
o |53
(3] [
Q Q
w n
o o
& &
‘s 102 ‘S 102
g g 10
o o
z z
10° 10
-50 -50 50
0 (deg) 0 (deg)
(a) Coarray interpolation (b) Proposed approach

Figure 2. Spectrum comparison between two approaches. The number of snapshots is K = 100 and
signal-to-noise ratio (SNR) is 0 dB. (a) Coarray interpolation in [20]; (b) Proposed approach.

5.2. Estimation Performance Analysis

In this subsection, the RMSE performance versus SNR and the number of snapshots is examined
by conducting 500 Monte Carlo experiments. The simulation parameters are set the same as in
Section 5.1. Figure 3 shows the RMSE versus SNR where the number of snapshots is set as K = 500.
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Figure 4 shows the RMSE versus the number of snapshots, where the SNR is 0 dB. It is obvious that
the proposed approach outperforms coarray interpolation. As analyzed in [26], when the number of
sources is higher than that of physical array sensors, the average efficiency, which is defined as

= tr(CRBg)
 Q xMSE,,’

cannot reach 1. MSE,, is the analytical mean square error (MSE) of coarray-based MUSIC. It indicates
that the RMSE of MUSIC cannot reach the corresponding Cramér-Rao Bound (CRB), which is consistent
with the simulation results. The CRB curves presented in Figures 3 and 4 are drawn with the equations

elaborated in [29].

0.6

—©— coarray interpolation
—¥— proposed approach
CRB 1

05

RMSE(in degree)

SNR(dB)

Figure 3. Root mean square error (RMSE) vs. SNR for 500 Monte Carlo experiments with Q = 16 sources
uniformly distributed in [-50°,50°]. The number of snapshots is K = 500. CRB: Cramér—Rao Bound.

0.35 T T
—&— coarray interpolation
—#— proposed approach

0.3 CRB

o
hS)
o

RMSE(in degree)
o
n

o
o

0.1 [

005 1 1 1 1
200 300 400 500 600 700 800 900 1000

the number of snapshots
Figure 4. RMSE vs. the number of snapshots for 500 Monte Carlo experiments with Q = 16 sources
uniformly distributed in [-50°,50°]. The SNR is 0 dB.

5.3. Angular Resolution Analysis

In this subsection, the performance of angular resolution is examined. We assume that two sources
from directions {—0.4°,0.6° } impinge on the sensors. The number of snapshots is K = 200, and the
SNR is 0 dB. The regularization parameter is selected as y = 0.15.
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In DOA estimation, the eigenvalue is a critical factor which affects the angular resolution. For this
case or underlying two close sources, one of the signal eigenvalues is large while the other one is
small. When the small signal eigenvalue is close to the largest noise eigenvalue, it will be difficult
to distinguish the two sources. As such, to examine the angular resolution, we first examine the
eigenvalues acquired from the coarray interpolation method and the proposed approach. The sorted
eigenvalues are plotted in Figure 5 by averaging 100 Monte Carlo trials. It is clear that in the coarray
interpolation method, the largest noise eigenvalue is comparable to the small signal eigenvalue.
This will make the two close sources unrecognizable. For the proposed approach, the largest
noise eigenvalue is nearly zero, and is much smaller than the small signal eigenvalue. In this case,
the two close sources can be clearly distinguished.

60 T

¢ coarray interpolation
% proposed approach

509 1

Eigenvalue
w B
o o
T T
1 1

n
o
T
1

0 5 10 15 20 25 30
Number

Figure 5. Sorted eigenvalues in the presence of two close sources. There are Q = 2 sources located on
—0.4° and 0.6°. The number of snapshots is K = 200 and SNR is 0 dB. The regularization parameter is
setas u = 0.15.

Normalized spectrum
Normalized spectrum

. . . .
-0.4 0.6 -0.4 0.6
6 (deg) 6 (deg)

(a) Coarray interpolation (b) Coarray interpolation with denoising (proposed)

Figure 6. Spectrum for two close sources. There are Q = 2 sources located on —0.4° and 0.6°.
The number of snapshots is K = 200, and SNR is 0 dB. The regularization parameter is set as
u = 0.15. (a) Use of only coarray interpolation [20]; (b) Use coarray interpolation followed by
denoising (proposed).

In order to compare the angular resolution directly, Figure 6 gives the simulation results of five
independent trials. In each trial, the same data vector is used to perform the two approaches. As shown
in Figure 6a, we can see that the coarray interpolation cannot resolve the two close sources. As for the
proposed approach, the two close sources are clearly resolved, as shown in Figure 6b. The errors are
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0.3570°, 0.3002°, 0.4490°, 0.2364°, and 0.3669°, respectively. It is obvious that the angular resolution of
the proposed approach is much better than the coarray interpolation.

6. Conclusions

An improved DOA estimation approach based on coarray interpolation and matrix denoising
was proposed in this paper. The main contribution of this approach is the exploitation of both coarray
interpolation and matrix denoising, where the former effectively increases the number of DOFs for
coarray-based MUSIC algorithm, whereas the latter significantly reduces the estimation, please confirm
that your intended meaning is retained error of the covariance matrix. In addition, the structure
of the covariance matrix of ULA is fully exploited in the denoising operation, thus reducing the
computational complexity. As a result, the DOA estimation accuracy and the angular resolution are
significantly improved compared to the approach when only the coarray interpolation is applied.
Simulation results verified the effectiveness of the proposed approach.
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