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Abstract: In this work, we focus on key topics related to underwater Simultaneous Localization
and Mapping (SLAM) applications. Moreover, a detailed review of major studies in the literature
and our proposed solutions for addressing the problem are presented. The main goal of this paper
is the enhancement of the accuracy and robustness of the SLAM-based navigation problem for
underwater robotics with low computational costs. Therefore, we present a new method called
AEKF-SLAM that employs an Augmented Extended Kalman Filter (AEKF)-based SLAM algorithm.
The AEKF-based SLAM approach stores the robot poses and map landmarks in a single state vector,
while estimating the state parameters via a recursive and iterative estimation-update process. Hereby,
the prediction and update state (which exist as well in the conventional EKF) are complemented by a
newly proposed augmentation stage. Applied to underwater robot navigation, the AEKF-SLAM has
been compared with the classic and popular FastSLAM 2.0 algorithm. Concerning the dense loop
mapping and line mapping experiments, it shows much better performances in map management
with respect to landmark addition and removal, which avoid the long-term accumulation of errors
and clutters in the created map. Additionally, the underwater robot achieves more precise and
efficient self-localization and a mapping of the surrounding landmarks with much lower processing
times. Altogether, the presented AEKF-SLAM method achieves reliably map revisiting, and consistent
map upgrading on loop closure.

Keywords: underwater simultaneous localization and mapping (SLAM); augmented extended
Kalman filter (AEKF); FastSLAM 2.0; loop closure; computational complexity

1. Introduction

Water covers approximately 72% of the Earth’s surface, and oceans and seas are home to almost
90% of all the known species. Therefore, the subsea environment is very interesting for exploration,
but also one of the most challenging environments, as robotic navigation is highly difficult due
to marine currents, water pressure, low light with different spectrum than daylight, turbidity, etc.
Autonomous Underwater Vehicles (AUVs) have been widely used in oceanographic studies and for
military purposes for several years. To date, they are increasingly employed to explore rigid and
complicated environments like oceans, harbors or at dams, such as using the on-board side scan sonars
(SSSs) of the AUVs to image the seabed. Nowadays, the robotic research community has attached
great importance to the underwater robotic mapping problem. The most crucial and the most essential
requirement for an autonomous robot is having a precise and detailed map. The robot creates a
spatial representation of the working environment from a sequence of on-board navigation sensor
measurements as it surveys that area. This is generally regarded as one of the most important problems
in the pursuit of building truly autonomous robots.
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There exists a cyclic nature problem in the robotic mapping and localization: while operating in
an unknown environment, in order to build a map of the uncharted territory, the fully autonomous
robot needs to know its location, but therefore it requires a map. This chicken and egg problem is
often referred to as Simultaneous Localization and Mapping (SLAM) or Concurrent Mapping and
Localization (CML) [1,2], where the robot creates an environmental map, while localizing itself within
that map at the same time. The robot has to maintain two kinds of representations concurrently: one is
an environment observation model or map, the other is a localization model or position estimate. That
means to execute them iteratively, with the output of one being the input of the other [3]. The robot must
also be able to run two perceptual procedures, namely map-building and robotic self-localization [4,5].
This phenomenon is depicted in Figure 1.
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In the research area of computer vision, landmark extraction is the preliminary step of many vision
tasks such as object tracking, localization, recognition and mapping. Manufactured environments
are typically composed of easy to recognize geometric features (planes, lines, corners, etc.), but in
subsea environments usually no such particular distinguishable features can be found. Considering
the restrictions of underwater perception and localization sensors, which are affected by accumulated
uncertainty over long-term manipulations, the implementation of robotic underwater SLAM-based
navigation is still a tough research topic. Moreover, acoustic sensors for underwater mapping usually
provide noisy and distorted images or low-resolution ranging, while video sensors could return highly
detailed images but are always limited by water turbidity and poor illumination conditions [5,6].

There are several types of sensors that can be used to obtain distance measurements, such as laser
sensors, infrared sensors, digital cameras, and Sound Navigation And Ranging (SONAR) sensors.
In our previous works [7,8], we focused on determining underwater geometric features with sonar
sensing. Sonar sensors have been widely used in autonomous mobile vehicles, since sound propagates
larger distances than electromagnetic waves, sonar imaging outperforms optical imaging in underwater.
Especially the side-scan-sonars (SSSs) are increasingly applied in industry and academic research
activities to survey the sea floor [9]. High-resolution SSSs create a 2D photorealistic image of the
surveyed seafloor. As long as the sonar scans are incorporated through mosaicking, we could recognize
the detected underwater objects easily and these feature interpretation offers valuable insights into
the study of the seabed topography [10]. The SSSs create higher qualitative sonar images than the
forward-looking sonars (FLSs), since SSSs scan the seafloor at a small grazing angle. Generally, the SSS
and the FLS could generate large scale maps on the area of the seabed, which are typically processed
for obstacle detection and feature extraction [11]. The sonar images with high resolutions are of
crucial importance in decision-making to investigate a detected target or not. Several approaches
tackle the issues related to object detection and classification, image segmentation and registration,
and map fusion.

The following section of this paper introduces the related works about the challenges and the
current solutions for the robotic underwater SLAM-based navigation problem. In Section 3, several
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kinds of state of the art map representations in autonomous robot navigation systems are presented.
Once compared, the landmark map is the one that is most qualified to describe the underwater
environment. The mathematical model of our presented AEKF-based underwater SLAM algorithm
is illustrated in Section 4. It stores the robot pose and the map landmarks in a single system state
vector, and estimates the state parameters via a recursive, iterative, three-stage procedure comprising
a prediction, an update stage (as in conventional EKF) and a new augmentation stage. Section 5
demonstrates the dense loop mapping and line mapping experiments executed by AEFK-SLAM and
FastSLAM 2.0 approaches. The simulations are performed in the context of a mobile robot with a
range-bearing sensor in an underwater 2D area. What’s more, the further validation of our proposed
underwater AEKF-SLAM algorithm in the SWARMs project, especially the seabed mapping use case
is introduced. Section 6 concludes this paper and discusses future works like employing the AEKF
approach to manage practical, large-scale robotic underwater navigation problem.

2. Related Works

Since radio waves cannot penetrate water very far, an AUV loses its Global Positioning System
(GPS) signal as soon as it is diving. Therefore, a standard solution for AUVs to navigate below the
water superficies is through dead reckoning. However, navigation can be improved by employing an
acoustic underwater positioning system. For underwater robotics, the Inertial Measurement Unit (IMU)
and the Doppler Velocity Log (DVL) sensors are most commonly applied for measuring the navigation
data on AUVs. While acoustic sensors, such as side scan sonar (SSS) or imaging sonar are used to detect
the environmental information. Currently, the fusion of data measurements derived from various
perception and on-board navigation sensors plays an important role in robotic underwater mapping
researches. In general, we employ acoustic sensors to build large-scale maps of the exploring areas,
and optical sensors to return much higher quality images of the targets of interest. To a large extent, the
navigation time of the AUV greatly influences the expense of subsea mapping, thus any enhancement
in the characteristics of sonar images is of vital concern to the marine and offshore research community.

2.1. Solutions to the Underwater SLAM Problem

The research of estimation approaches for the robotic SLAM-based navigation problem has caught
utmost attention by the research community. Among the solutions presented in the literature to solve
the underwater SLAM problem, the Bayesian filters-based estimation methods have been the most
successful ones over time [12–14]. Initial works such as [15,16] built a statistical basis for illustrating
relationships between landmarks and manipulating geometric uncertainty. At the same time, [17,18]
considered employing the Kalman Filter (KF)-based algorithms for visual robotic navigation. After
that, [19] demonstrated that, when a mobile robot explores an unknown region observing relative
measurements of landmarks, the estimates of these landmark positions are all necessarily correlated
with each other, due to the common uncertainty in the estimated robot pose. The SLAM-based robotic
navigation problem can be categorized into various solutions, relying on the number of features, the
area of coverage, computational complexity, flexibility, reliability, etc. [20]. A general classification of
the state of the art, i.e., recursive Bayesian filters-based estimation strategies, including Kalman Filter
(KF), Extended Kalman Filter (EKF), Expectation Maximization (EM), Particle Filter (PF), Compressed
Extended Kalman Filter (CEKF) and Information Filter (IF) in underwater applications is given,
contrasting the advantages and disadvantages summarized in Table 1. The Stochastic SLAM is subject
to three dominating defects: high computational load and storage costs, fragile and even wrong data
association, and inconsistent update of non-linearity. Keeping relationships between the robot poses
and all correlated landmark positions in the whole system state covariance matrix, leads to high
computational requirements and space consumption problem. Although some approaches have been
proposed to deal with the underwater environment, the SLAM applications for it still remain unsolved.
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Table 1. List of pros and cons of filtering approaches applied to the SLAM framework.

KF/EKF CEKF IF EM PF

Pros

1. High
convergence;
2. Handle
uncertainty.

1. Reduced uncertainty;
2. Reduction of memory
usage;
3. Handle large areas;
4. Increase map
consistency.

1. Stable and simple;
2. Accurate;
3. Fast for high-D
maps.

1. Optimal for map
building;
2. Solve data association.

1. Handle
nonlinearities;
2. Handle
non-Gaussian noise.

Cons

1. Gaussian
assumption;
2. Slow in high-D
maps.

1. Need robust features;
2. Data acquisition;
3. Require multiple
maps merging.

1. Data association;
2. Recover a state
estimates;
3. Computationally
expensive in high-D.

1. Inefficient, growing cost;
2. Unstable for large
scenarios;
3. Only successful in map
building.

1. Growth in
complexity.

Table 2 resumes the current popular underwater SLAM methods. Many successful applications
exist in the literature employing an EKF to solve nonlinear estimation problems, such as robotic
localization, object tracking and it remains to be a popular choice for the solution to the robotic SLAM
problems [21].

Table 2. The summary of state of the art underwater SLAM approaches.

Method
[Reference]

Research
Group

Underwater
Vehicle Sensor Underwater

Map Filter

Daniel [22] SRV 1 EcoMapper Side Scan Sonar Point Features EKF
He [23] SISE 2 C-Ranger Forward Looking Sonar Point Features PF

Burguera [24] SRV 3 Ictineu Imaging Sonar Vehicle Poses EKF
Aulinas [25] ViCoRob SPARUS Imaging Sonar Point Features EKF
Mallios [26] ViCoRob Ictineu Imaging Sonar Vehicle Poses EKF
Barkby [27] CAS Sirus Multibeam Bathymetry PF
Ribas [28] ViCoRob 4 Ictineu Imaging Sonar Line Features EKF

Fairfield [29] WHOT MBAUV Sonar Beams Evidence Grid PF
Roman [30] WHOI 5 JASON Multibeam Bathymetry EKF

Fairfield [31] CMU 6 DEPTHX Sonar Beams Evidence Grid PF
Williams [32] CAS 7 Oberon Camera + Sonar Point Features EKF

Tena-Ruiz [33] OSL 8 REMUS Side Scan Sonar Point Features EKF
Williams [34] ACFR 9 Oberon Imaging Sonar Point Features EKF

1 SRV: Systems Robotics & Vision, Universitat de les Illes Balears, Spain; 2 SISE: School of Information Science and
Engineering, Ocean University of China, China; 3 SPV: Systems, Robotics and Vision Group, Islas Baleares, Spain;
4 ViCoRoB: Computer Vision and Robotics group, Girona, Spain; 5 WHOI: Woods Hole Oceangraphic Institution,
Woods Hole, MA, US; 6 CMU: Carnegie Mellon University, Pittsburgh, PA, US; 7 CAS: Centre of Excellence for
Autonomous Systems, Sydney, Australia; 8 OSL: Ocean Systems Laboratory, Edinburgh, UK; 9 ACFR: Australian
Center for Field Robotics, Sydney, Australia.

However, the quadratic computational complexity of the EKF makes it difficult to apply in
underwater scenarios. Unscented Kalman Filter (UKF) [35] is a more reliable estimator than EKF when
the system model is highly nonlinear, since it approximates the probability density function instead of
the nonlinear function itself, but it does not make any improvement in the high computational load
of the EKF. The Hector SLAM algorithm is based on a Gauss-Newton approach and replies on scan
matching alone to estimate the pose. It is only suitable for few limited unstructured environments, such
as the Urban Search and Rescue (USAR) scenarios [36]. Another state of the art solution is GMapping,
based on Rao-Blackwellized particle filter (RBPF), which uses odometry for pose estimation [37].
Hector SLAM and GMapping are two laser scanner based SLAM algorithms, and they create an
occupancy grid map from laser scans. However, laser range finders are imprecise working in subsea
due to light attenuation. Besides, occupancy grid SLAM can only work in indoor environments over a
limited period and it cannot deal with an appropriate uncertainty model, so it would diverge in the
long-term navigation required under water. Therefore, both Hector SLAM and GMapping are not
adequate in our considered case of underwater environments.
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In 2002, Montemerlo et al. proposed the classic FastSLAM algorithm [38], which utilizes the
particle filters and handles the computational complexity considerably well compared to EKF and UKF.
In FastSLAM version 1.0, only the control signal is adopted to sample the new robot pose for each
particle according to the robotic motion model, however FastSLAM version 2.0 not only utilizes the
robotic control signal but also the sensor measurements together to sample the new robot pose. Thus,
FastSLAM 2.0 requires fewer particles and is more robust and accurate than FastSLAM 1.0, besides
it will be particularly efficient if an accurate sensor is employed. Although the classical FastSLAM
2.0 algorithm is not a new approach, it has been widely used in many robotic applications, such as
robot path planning. In this paper, a new solution, the AEKF-based SLAM algorithm is presented,
and we will compare the performances in terms of accuracy of robotic localization and landmarks
mapping. Also the computational cost of the FastSLAM 2.0 is compared to that of our proposed
AEKF-SLAM algorithm.

2.2. Challenges in Underwater SLAM

Nowadays, large-scale dynamic environments still present various challenging problems for the
robotic underwater SLAM-based navigation applications due to the following reasons:

2.2.1. Sensors

Generally, the data observed by sonar sensors has limited accuracy, usually with a high angular
uncertainty of 22.5% to 30% [39], particularly in environments with low-light, strong ocean currents and
turbid waters. Also, the sensors usually only allow limited depth for operation, making applications
costly for deep immersions. The estimated noise ends up causing crucial impact on the tasks of
localization and mapping, often leading to a non-convergent system. As a consequence, a new
calibration is required to obtain a better estimation of the system.

2.2.2. Feature Extraction

In the underwater SLAM context, as many as possible distinguishable features must be observed
repeatedly, in order to decrease the uncertainty caused by significant vehicle drift. Here, distinct
landmarks can simplify the data association process of fusing new observations to corresponding
map features, already stored in the map. In man-made environments, typically composed of planes,
lines, corners and points, features can be defined easily; but there are no similar objects or particular
features and located easily distinguishable in complex subsea environments. The main problems are
the velocity of sound in the water, turbidity, occlusions, suspense material in the water column, seafloor
reflection, and surface sonar altitude corrections. Moreover, we need to manage reflections and poor
resolutions of the derived acoustic imageries for feature extraction. Also, the dynamic continuous
change of underwater natural resources is another factor that makes the recognition of previously
visited locations difficult or even impossible.

2.2.3. Absolute Location

Since the underwater environment does not allow using the Global Positioning System (GPS),
alternative solutions such as triangulation systems Long Base Line (LBL), Short Base Line (SBL), and
Ultra Short Base Line (USBL) have been provided. When operating within a net of sea floor deployed
baseline transponders, this is known as LBL navigation. When a surface reference such as a support
ship is available, SBL or USBL positioning will be used to calculate where the subsea vehicle is relative
to the known GPS position of the surface craft by means of acoustic range and bearing measurements.
However, these systems require great efforts for installation, a special demand of logistics, and high
costs. Besides, the above solutions limit the working area of robotic operations.
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2.2.4. Computational Complexity

The computational requirements of SLAM applications are closely related with the size of the
exploring environment and the methods used for feature extraction, tracking, data association, and
filtering. The uncertainties of the robot and landmark positions and their correlations will become
larger as the number of map elements increases.

3. Map Representations

Learning maps is one of the most fundamental and important problems in mobile robotics, since
successful robotic systems depend on geological maps that demonstrate the surrounding environment
of the robot. Maps are necessary for robotic path planning and self-positioning with respect to the
environment, in order to prevent collisions. The basic functionalities of the three most commonly used
and popular map representations are summarized in this part and a survey of their suitability to a
priori map localization problem is made, such as computational requirement and storage, convergence,
robustness, reliability, etc.

3.1. Navigational Maps and Their Applications to Underwater SLAM

The occupancy grid maps, the topological maps, and the landmark maps are three kinds of famous
and popular map representations in the robotic navigation problem. The suitability for a posterior
SLAM estimate problem follows, considering the crucial criteria to establish a tractable and consistent
SLAM algorithm. These criterions are illustrated as follows, note that the first two are only valid for
metric maps. Taking into account the sparse spatial distribution of underwater features, and the far
distances between distinct features, landmark maps are most suitable to represent subaquatic areas.

3.1.1. Representation of Uncertainty

Since mobile vehicle sensors cannot measure positions in the environment with total accuracy,
a degree of uncertainty should be used in map representations. Meanwhile, the vehicle position
is acquired from this map, so the pose estimate is also uncertain. This paper specifies that both,
environmental map and robot pose estimates, require an appropriate quantitative uncertainty, and
that uncertainty model is able to reflect the error between the estimated and the actual system state.

3.1.2. Monotonic Convergence

The main purpose of an uncertainty measurement is to ensure map convergence. A convergent
map is given if the estimated environmental geometry is equal to true physical geometry when
new observation data is incorporated. In other words, the map uncertainty decreases monotonically.
Without this uncertainty model, a stationary object with estimated position (x1, y1) may drift to some
arbitrarily distant place (x2, y2), with subsequent map updates. Therefore, explicit uncertainty is
needed to assess map accuracy and it constrains the influence of subsequent observation information.

3.1.3. Data Association

The map representations should permit reliable correspondence between the measurements
derived from the robot sensors and the information gained from the stored map. First of all, the
observation-to-map data association should be efficient enough for real-time operation. Secondly, the
data association needs to be robust enough for partial views and large-scale searching areas, since
an observation is composed of a combination of the currently mapped area, unexplored regions and
dynamic features. Due to the size of the exploring area is determined by the robot pose uncertainty,
a precise uncertainty model could enhance both robustness and efficiency, by stipulating a minimal
detecting region.
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3.1.4. Loop Closure

When a mobile robot explores a working environment by navigating in a large cycle that is much
bigger than its sensing range, then return and recognition of an already mapped area is called the
“Loop Closure Problem”. Other denominations are “Cycle Detection Problem” or “Map Revisitation
Problem”. Loop closure mainly considers two previous criterions: one is the data association, which is
different from local association as a result of the much larger robot pose uncertainty and the related
search space. Exploring efficiency is one important aspect, but it is more crucial to decide if an
association is correct or an artifact of environmental similarity should be robustly stable. The other
issue, after associating sensor measurements correctly, is the convergence problem, where a long-term
accumulated error in the map loop must be compensated properly during the map update stage by
propagating the error-offset back through the map cycle.

3.1.5. Computational and Storage

The map has to store substantial information for enabling data association and convergence.
The computation and the storage required to update the map with newly observed measurements,
must be scaled reasonably according to the detected environmental region.

3.2. The Occupancy Grid Maps

The 2D occupancy grid maps, which are also known as evidence grid maps were introduced by
Moravec [40]. In the occupancy grid maps, the environment is represented in a discrete grid composed
of rectangular cells with the same shape and size. Each cell is assigned a value representing the
probability of occupancy. A probability of 1 means that the cell is definitely occupied and the robot
cannot pass through it. If it is 0, the cell is definitely vacant, and the robot can traverse it. An occupancy
probability of 0.5 declares an unknown state. The larger the cell value is, the more the cell tends to
be occupied; the smaller its value is, the more the cell tends to be free. Usually in the occupancy grid
maps, black cells imply occupied areas, white cells stand for empty regions and the gray ones mean
unexplored spaces.

The occupancy grid SLAM interleaves the localization and map update stages by first registering
the short-term local map with the global map (localization), and then updating the perceived occupancy
of the global map grid cells (map building). In dynamic indoor areas, the occupancy grid map works
efficiently during a limited exploring time. The occupancy grid maps are adequate for local navigation
and obstacle avoidance purposes [41] and thereby it is popular to describe the environment of a mobile
robot, given known poses.

Nevertheless, the occupancy grids do not process an appropriate uncertainty model, and so they
will diverge in the long-term operations. The main drawback of the occupancy grid maps is that they
do not scale well to large environments, since they can only describe the uncertainty model from the
local robotic view. Also, memory size is a limiting factor, when the goal is to globally map a large
region. To adequately capture the details in more complex underwater environments, a high resolution
of cell distribution is required, which is wasted in less complex areas. Techniques like quad trees
or octrees [42] have been presented to deal with the space storage issue, but they also increase the
processing burden.

3.3. The Topological Maps

The topological maps do not need metric measurements, since they depict the exploring regions
by the paths leaded by the feature locations, as shown in Figure 2. A vertex represents a landmark,
such as a particular location in the environment, and an edge indicates the traversability between two
connected nodes. Thus, navigation between two non-adjacent places is determined by a sequence of
transitions between intermediate location nodes, and so standard graph shortest path algorithms can
be used (e.g., A to D requires travelling through the sequence A→B→C→D). The concept works on
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the assumptions that distinctive places are locally distinguishable from the surrounding area, and the
procedural information is sufficient to enable the robot to travel within the recognizing distance of a
specified place [38].
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The efficient topological maps have compact representation form, thus they are suitable for
robotic navigation and fast path planning tasks. The departure from metric representation makes pose
uncertainty estimation irrelevant, and qualitative measurements are used like “follow the path from A
to B” or “at B” instead. The ability to use standard graph algorithms for high-level planning operations,
such as the shortest path search between two non-adjacent nodes, is of particular advantage.

Nevertheless, without some form of metric position measurement, the significant drawback of
topological maps is that they cannot ensure reliable navigation between distinct places, and subsequent
feature recognition. Although the relationship between different places is maintained, distance
and direction are subject to change and variation. The employment of purely qualitative trajectory
information, such as wall following [43] to travel between distinguishable landmarks, is suitable for
static structured environments, but may guide the robot to an improper vicinity of the right place in
more complex and dynamic environments. Essentially, unless the exploring space possesses at least
one globally unique sequence of landmark positions, loop closure must always be ambiguous. This is
the crucial weakness in the topological map paradigm, since underwater landmark similarities may
eventually generate a consistently similar sequence of places and results in wrong data association.
The solution to this problem is to introduce some form of metric information, which would enable
the estimation of pose uncertainty between landmarks. By bounding the cycle exploring space, place
sequences only need to be locally unique.

In our underwater scenario, where position identification is quite complicated, the probability
of wrong localization is high [44]. Due to the lack of exact physical measurements in the seabed, the
topological maps are not adequate for robotic underwater SLAM-based navigations.

3.4. The Landmarks Maps

Landmark maps, also called as the feature maps, use geometric primitives such as corners, points,
and lines to describe the working space, as shown in Figure 3. The features can be artificial landmarks,
natural landmarks [45], and they can be of abstract form, detected by certain algorithms [46,47].
Localization is performed by extracting features from sensor measurements and associating them to
other features that are already stored in the map. Then, the differences between the predicted feature
locations and the detected positions are used to calculate the robot pose by the estimation filters. In this
way, localization is very like a multiple target tracking problem [48], but here the targets are static and
the observer is in motion.

Recursive EKF pose estimation has the advantages of efficient data fusion from multiple sensor
measurements and the ability to incorporate explicit sensor uncertainty models. Besides, the memory
size needed to store a landmark map is very small compared to an occupancy grid map or a 3D map,
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and it has high flexibility in map adjustment. In a 2D landmark-based map, feature positions are stored
in the Cartesian coordinate system. A covariance matrix associated with the map is used to describe
the uncertainties of both landmark positions and robot poses [34].
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Nevertheless, landmark maps have some limitations. First of all, the underwater landmarks have
to be extracted from noisy sensor measurements, so it is required to identify features in the noisy
observations. Secondly, a correct data association is essential to build consistent landmark-based
maps [49]. Incorrect data association will reduce the accuracy of a landmark map and even leads
the filter to diverge. A further problem concerning feature maps is that they are only suitable for
environments where the observed objects can be reasonably depicted by basic geometric feature
models, but the introduction of new geometric primitives would increase the map complexity.

Landmark map-based SLAM comprises the dual task of adding newly detected features to the
map using the robot pose as a reference, while applying existing map features to reckon the robot pose
iteratively. Therefore, the uncertainty of sensor measurements results in uncertain estimates of both
the robot pose and the map feature positions, and these uncertainties are dependent. Correlated
uncertainty is of importance to feature-based SLAM since it inevitably couples the individual
landmarks to each other and the robot to the map. Attempts to estimate the robot pose and map
features independently have been shown to produce inconsistent uncertainty estimates.

In summary, the landmark maps are the most suitable ones to demonstrate the robotic underwater
SLAM-based navigation, when observable and tractable landmarks are present. The stationary
points, which are the least complex features, are taken into account in this work to describe the
landmarks within a local subsea region. This simplification not only decreases the challenges with
feature recognition and interpretation, but also increases the focus on our presented AEKF-SLAM
algorithm itself. So as to achieve robust and convergent applications in larger marine environments
with continuously moving objects, we need to modify the conventional stochastic SLAM approaches.

4. The Posterior-Estimated AEKF-SLAM Algorithm

In this part, the mathematical model of our proposed “Robotic underwater AEKF-SLAM based
navigation” algorithm is established. Here we adopt the same notation which was employed in [7,19,49].

4.1. Vehicle Model

The setting for the SLAM problem is that of a robot with a known kinematic model, starting at an
unknown position, and moving through the exploring space containing multiple features. The robot
is equipped with sensors to measure the relative location between any detected landmark and the
robot itself. The absolute landmark positions are not available. Without previous knowledge, a linear
synchronous discrete-time model composed of the evolution of the robot poses and the landmark
observations is adopted. Although the robot motion model and the landmark measurements are
usually nonlinear and asynchronous in any real navigation application, the use of linear synchronous
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models does not affect the validity of the proofs in the SLAM problem other than to require the same
linearization assumptions as those normally employed in the development of an EKF [38]. Indeed, the
implementation of the SLAM algorithm uses a nonlinear robot model and a nonlinear asynchronous
observation model. The state of the system of interest consists of the position and orientation of the
robot together with the all landmark locations. The robot state at time k is indicated by xv(k), and the
robot motion is modeled by a conventional linear discrete-time state transition equation:

xv(k + 1) = Fv(k)xv(k) + uv(k + 1) + ωv(k + 1) (1)

where Fv(k): State transition matrix; uv(k): Vector of control inputs; ωv(k): Vector of temporally
uncorrelated procession noise errors; it complies with normal Gaussian distribution, and its covariance
matrix is denoted as Qv(k).

4.2. Feature Model

The AEKF-SLAM algorithm is based on a landmarks map. Repeatable observation of features is
a mandatory requirement for SLAM. This paper considers the least complicated features, which are
stationary point landmarks. More elaborate parametric feature models, such as lines, might also be
used, but are not implemented in this work.

The ith landmark position is defined as xmi . Without loss of generality, the number of all landmarks
is arbitrarily set to N. Since the point feature is assumed to be invariant, the state transition equation
for it is:

xmi (k + 1) = xmi (k) = xmi i = 1, 2, · · · , N (2)

where the matrix of all N landmarks is Xm = [xT
m1

, . . . , xT
mN

]
T with T transpose and used both inside

and outside the brackets in order to conserve the dimension of space. The augmented state matrix is
composed of both, the states of the robot and all landmark positions, and is expressed as:

xa(k) = [xT
v (k), xT

m1
, . . . , xT

mN
]
T

(3)

Consequently, the augmented state transition model for the complete system can be rewritten as:
xv(k + 1)

xm1
...

xmN

 =


Fv(k) 0 · · · 0

0 Ixm1
· · · 0

...
...

. . . 0
0 0 0 IxmN




xv(k)
xm1

...
xmN

 +


uv(k + 1)

0xm1
...

0xmN

 +


ωv(k + 1)

0xm1
...

0xmN

 (4)

or equivalently:
xa(k + 1) = Fa(k)xa(k) + ua(k + 1) + ωa(k + 1) (5)

where Ixmi
is the dim(xmi ) × dim(xmi ) identity matrix and 0xmi

is the dim(xmi ) null vector.
Actually, any landmark xmi which is in stochastic motion may be easily adapted to this framework.

However, doing so offers little insight into the problem and even the convergence properties may not
be held [50].

4.3. Observation Model

The robot is equipped with sensors to measure observations of the positions of landmarks relative
to the robot. We assume that observations are linear and synchronous. The observation model for the
ith landmark can be denoted in the following form:

zi(k) = Hixa(k) + υi(k)
= Hxmi

xm − Hvxv(k) + υi(k)
(6)
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where vi(k) is a vector of temporally uncorrelated observation errors and its covariance matrix is
denoted as Ri(k). The observation matrix Hi relates the sensor outputs zi(k) to the state vector xa(k)
when detecting the ith landmark. Note that the observation model for the ith landmark has the
following form:

Hi = [−Hv, 0, . . . , 0, Hxmi
, 0, . . . , 0] = [−Hv, Hmi ] (7)

This structure implies that the observations between the robot and the landmarks are often in the
form of a relative position, or relative range and bearing.

4.4. Simultaneous Localization and Mapping

Robotic SLAM-based navigation integrates the Received Signal Strength Indication (RSSI) samples
derived from the detected targets with the data recorded by the robotic odometers to build and refine
the exploring environmental map, while concurrently localize the robot itself in this map [51–53].
If the robot’s path were known with certainty, then mapping would be a straightforward problem.
The landmark locations in the robot’s surrounding could be estimated by using independent filters.
Nevertheless, in the SLAM problem, the robotic trajectory is unknown, thus the uncertainties of the
robot poses can be arbitrarily large due to the accumulated odometry errors, which also leads to errors
in the robot path correlating errors in the map. Therefore, the state of the robot and the map features
must be estimated at the same time. The structure of landmark-based SLAM is shown in Figure 4.
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Figure 4. A robot measuring relative observations to environmental landmarks.

4.4.1. The SLAM Process

The general SLAM process is illustrated in Figure 5. Each time, after sensor measurements, the
robotic local perception map needs to be integrated with the global view map in order to update the
robot pose and also refine the detected landmark coordinates. The challenge of the robotic SLAM-based
navigation problem is that accurate robot poses are needed to generate a qualified map. Nevertheless,
when the unlimited incremental odometry errors are lowered, sensor measurements need to be
incorporated into a precise map. SLAM implies a set of difficulties, such as the correct associate sensor
measurements, an efficient mapping of large-scale environments, and the robust prediction of the
robot path.
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The SLAM problem is depicted as Bayes network in Figure 6 to understand the dependencies
in the SLAM problem. The figure shows the changes of robot poses from xk−1 to xk by receiving the
control signal uk, the observation zk−1, the robot pose xk and the landmarks mM. The arrows show
direct dependencies, while there is no direct relationship between robot poses and landmarks [54].
Shaded nodes represent data directly observable by the robot, SLAM is that the robot recovers the
unobservable variables-landmarks.
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4.4.2. Loop Closing

Tracked landmarks could provide a basis for reducing the uncertainty of the robot poses. In closed
loops, if a robot can detect a position where it has been before and could correctly match landmarks,
then the accumulated errors will be bounded and the map precision will be increased [55–57]. The
correlation between the robot pose uncertainty and map uncertainty is shown graphically in Figure 7a.
The robot is moving along the path drawn as the dashed line, observing nearby eight distinguishable
landmarks, drawn as dots. The shaded ellipses imply the uncertainties of the robot about its own
poses, drawn over time. As a result of the control error, the robot pose becomes more uncertain when
the robot moves. The estimations of the landmark positions are specified by white ellipses. One can
see that as the robot pose becomes more uncertain, the uncertainty in the estimated locations of newly
observed landmarks also increases.
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In Figure 7b, the robot completes the loop and revisits a previously observed landmark. As the
coordinate of the first observed landmark has high precision, the uncertainty of the predicted
robot pose is significantly reduced. Therefore, also the position uncertainties of the previously
perceived landmarks decrease. The resulting effect is that the information spreads to previously
observed landmarks, such that gaining information on the robot pose is probably the most important
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characteristic of the posterior SLAM estimate [58]. In Figure 7b, it can be seen that the shaded ellipses
obtained before loop closure do not shrink after closure, because they depict a time series of robot pose
uncertainties and are not revised afterwards.

The ability of re-identifying previously detected features are of crucial importance to the cycle
detection problem, since robot revisitation enhances the accuracy of robotic localization and landmarks
mapping. As a consequence, we present the AEKF-SLAM based robotic navigation algorithm to
identify each sensor perception as a new landmark or a previously observed one.

4.5. Augmented Extended Kalman Filter

Practically an EKF rather than a simple linear KF is employed to generate state estimates. Although
the EKF suffers from high computational complexity, it has the highest convergence among the current
methodologies. It has been successfully and widely employed in large-scale environments, including
land, air and even underwater [59]. For the underwater nonlinear discrete SLAM estimation problem,
although the linearization errors of the conventional EKF decrease the localization accuracy, EKF
generally produces satisfying performances due to its straightforward conception and relatively low
computational complexity. The standard solution to manage the nonlinear SLAM system is to linearize
the robotic kinematic model and the landmark observation model by an EKF for generating the system
state predictions. It is supposed that the nonlinear discrete system has the following form:

State function
State function f (·) : Xk = f (Xk−1) + vk (8)

Observation function h(·) : Zk = h(Xk) + vk (9)

where vk is the procession noise and obeys the standard Gaussian distribution vk ∼ N(0, Qk), Qk is
its covariance matrix; vk is the observation errors and complies with the standard normal distribution
vk ∼ N(0, Rk), Rk is its covariance. As for the AEKF estimator, it mainly consists of three stages, which
include state prediction, observation, measurement prediction, matching and estimation [60]. In the
prediction stage, the command signal Uk and the robot motion model are utilized to estimate the robot
pose. Then, in the update stage, to update the landmark positions and to refine the estimation of the
robot pose, the new observation Zk from an exteroceptive sensor is used. When a landmark is detected
for the first time, however, it is added to the system state vector through an initialization process called
state augmentation.
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The simulation of the AEKF estimator is shown in Figure 8. Here we suppose that both, the robot
control noise and the sensor observation noise, are equal to 1. And we assign the robot’s start position
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at the coordinate (0, 7 m) with a velocity of 1 m/s. The true robot path is depicted as the red line,
the green line stands for the robot path estimated by the AEKF. The observations are drawn as black
line with black crosses ‘+’, which are the surrounding landmarks. The two blue lines mean the +3
sigma and −3 sigma around the true robot path. It proves that AEKF could estimate the robot pose
and the landmark positions accurately and robustly.

4.6. The Estimation Process of the AEKF-SLAM

As for the popular FastSLAM algorithm [38], which employs the Rao-Blackwellised method
for particle filtering (RBPF), is based on an extract factorization of the posterior into a product of
conditional landmark distributions and a distribution over robot paths. The FastSLAM behaves
much better than the EKF-SLAM at handling the data association issue for the nonlinear system map
revisitation. However, the biased noises resulting from the unequal wheels misalignment deviate
the robot path to one side, but the classical solutions for the SLAM problem, like FastSLAM or EKF,
cannot estimate precisely, since they suppose zero mean noise while compensating odometry errors.
As a result, here we present the AEKF-SLAM based algorithm to deal with the robotic underwater
SLAM problem. The experiments performed later in this paper show that the AEKF-SLAM approach
builds a more accurate landmark map and also estimates the robot trajectory more precisely than the
FastSLAM 2.0.
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In any SLAM algorithm, the position and number of environmental landmarks is not known
a priori, landmark coordinates must be initialized and inferred from the sensor observations alone.
The AEKF-based SLAM algorithm applies the AEKF to online SLAM by using the maximum likelihood
data association method for the correspondence test of features. Here, the recursive AEKF-SLAM based
robotic navigation algorithm, includes a prediction phase, an observation phase (like in traditional
EKF), and additionally a new augmentation. The prediction state estimates the current robot pose using
its odometers. Once the robot measures the surrounding targets in the update stage, the coordinates
of the detected features relative to the robot side are derived. In the following sensor data fusion
procedure, the features from the estimated and actual perceived maps are integrated and the deviations
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between them are applied to track the robot path and refine the detected landmark locations. The sensor
measurements consist of the following data: new features, already observed features and observations
without any direct relationship. After sensor data association, new features extend the system state,
associated features increase the precision of the system, and unrelated features are rejected. The overall
procedures of the AEKF-SLAM based robotic navigation algorithm are illustrated in Figure 9.

Table 3 summarizes the necessary procedures of the presented algorithm of the AEKF-SLAM
based robotic underwater navigation. As soon as the feature extraction and the data association
are in place, the AEKF-SLAM method can be considered as the following three steps. First and
foremost, predict the robot current state using the odometry data. Next, update the estimated state
from re-observed landmark positions. Eventually, add new detected landmarks in the map. If a feature
is perceived for the first time, then it is included to the system state by the proposed augmentation state.

Table 3. The AEKF operations for achieving underwater SLAM.

Event SLAM AEKF

Robot Navigation Robot Motion AEKF Prediction
Sensor Detects Known Feature Map Correction AEKF Update

Sensor Detects New Feature Landmark Initialization State Augmentation
Map Corrupted Feature Landmark Removal State Reduction

The architecture of our presented AEKF-SLAM based robotic navigation system is demonstrated
in Figure 10. X̂k and P̂k are the predicted system state and its covariance matrix. The filter iteratively
refines the state mean X̂+

k and state covariance P̂+
k through integrating the estimated state mean X̂−k

and state covariance P̂−k with the new perception zk. Qk and Rk are the covariances of procession
noises and observation errors, separately.
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Figure 10. The architecture of the AEKF-SLAM-based robotic navigation system, as in [7].

Algorithm 1. AEKF-SLAM-based robotic underwater navigation.

1. For k = 1 to N
2. [X−k , P−k ] = Predict(Xk−1, Pk−1);
3. zk = Get Observation();
4. [zo, zn] = Data Association(X−k , P−k , zk, Rk);
5. [X+

k , P+
k ] = Update Map(X−k , P−k , zo, Rk);

6. [X+
k , P+

k ] = Augment Map(X−k , P−k , zn, Rk);
7. End for
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The pseudo code of our presented AEKF-SLAM solution for robotic underwater localization
and mapping is summarized in Algorithm 1 above. Where zo stands for the previously observed
features, zn represent newly detected landmarks. Varying bathymetric height of the AUV makes it
tough to build the underwater map in the same scale and identical resolution. Therefore, we assume
the practical 3D spatial geometry to be perpendicular to the horizontal plane where the AUV navigates,
and we can describe the environment by a simplified 2D model in order to put more attention to our
presented AEKF-SLAM algorithm. The fundamental formulas for the AEKF-SLAM based robotic
underwater navigation approach are presented as follows.

4.6.1. Vehicle, Map and Augmented State Vectors

The robot state is described by its coordinate and heading angle as:

X̂v = [x̂v, ŷv, ϕ̂v]
T (10)

with its covariance Pv:

Pv =

 σ2
xvxv σ2

xvyv σ2
xv ϕv

σ2
xvyv σ2

yvyv σ2
yv ϕv

σ2
xv ϕv σ2

yv ϕv σ2
ϕv ϕv

 (11)

The 2D point landmarks observed by the robot to form a map are in the same base coordinate
system as the robot. The coordinate of the nth feature is denoted as xmn = (x̂n, ŷn)

T , and the
environmental landmarks can be described as:

X̂m = [x̂1, ŷ1, . . . , x̂n, ŷn]
T (12)

and its covariance matrix Pm is:

Pm =


σ2

x1x1 σ2
x1y1 · · · σ2

x1xn σ2
x1yn

σ2
x1y1 σ2

y1y1 · · · σ2
y1xn σ2

y1yn
...

...
. . .

...
...

σ2
x1xn σ2

y1xn · · · σ2
xnxn σ2

xnyn

σ2
x1yn σ2

y1yn · · · σ2
xnyn σ2

ynyn

 (13)

The off-diagonal terms of the covariance matrix Pm are the cross-correlation information between
different landmarks. They capture the dependence of each landmark position upon knowledge of the
other landmarks in the map. Since the landmarks are assumed to be stationary and their positions do
not change over time, these correlations will be enhanced with each re-observation, which makes the
map increasingly rigid.

The AEKF-SLAM landmark map is represented by an augmented state vector X̂a, which is made
up of all previously detected landmark locations X̂m and the present robot state X̂v [7,61]. The cross
covariance between the robot pose and environmental landmarks is denoted as Pvm:

X̂a =

[
X̂v

X̂m

]
, Pa =

[
Pv Pvm

PT
vm Pm

]
(14)

Usually, the original conditions of the state estimate are X̂a = X̂v = 0 and Pa = Pv = 0, meaning
that the robot has not perceived any features until now and the base coordinate system is build upon
the initial robot pose.
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4.6.2. Prediction Stage

The SLAM process model specifies that a robot moves relative to its previous pose according
to a dead reckoning motion estimate, and the surrounding landmarks remain still. The effect of this
model on the system state estimate is a change in the X̂v term of the state vector, and in the Pv and
Pvm portions of the state covariance matrix, however X̂m and Pm keep constant. An estimate of the
underwater robot pose change X̂δ = [x̂δ, ŷδ, ϕ̂δ]

T with covariance Pδ (see Figure 11) is commonly
obtained by the inertial navigation system (INS) and a robot kinematic model.
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and its prediction covariance matrix aP  is: 
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As a result, the estimated system state X̂−a is calculated as:

X̂−a = f (X̂a, X̂δ) =

[
g(X̂v, X̂δ)

X̂m

]
=


x̂v + x̂δ cos ϕ̂v − ŷδ sin ϕ̂v

ŷv + x̂δ sin ϕ̂v + ŷδ cos ϕ̂v

ϕ̂v + ϕ̂δ

X̂m

 (15)

and its prediction covariance matrix P−a is:

P−a = JPa JT + QPδQT (16)

where the Jacobian matrices J and Q are given by:

J =
∂ f

∂Xa

∣∣∣∣
(X̂a ,X̂δ)

=

[
Jv 0vm

0T
vm Im

]
(X̂a ,X̂δ)

, Q =
∂ f

∂Xδ

∣∣∣∣
(X̂a ,X̂δ)

=

[
Qv

0T
vm

]
(X̂a ,X̂δ)

(17)

Here, Jv and Qv are the Jacobian matrices of partial derivatives of the nonlinear motion function g
in terms of the current robot state Xv and the robot pose change Xδ:

Jv =
∂g

∂Xv

∣∣∣∣
(
∧
Xv ,
∧
Xδ)

=


∂g1
∂xv

∂g1
∂yv

∂g1
∂ϕv

∂g2
∂xv

∂g2
∂yv

∂g2
∂ϕv

∂g3
∂xv

∂g3
∂yv

∂g3
∂ϕv

 =

 1 0 −x̂δ sin ϕ̂v − ŷδ cos ϕ̂v

0 1 x̂δ cos ϕ̂v − ŷδ sin ϕ̂v

0 0 1

 (18)

Qv =
∂g

∂Xδ

∣∣∣∣
(
∧
Xv ,
∧
Xδ)

=


∂g1
∂xδ

∂g1
∂yδ

∂g1
∂ϕδ

∂g2
∂xδ

∂g2
∂yδ

∂g2
∂ϕδ

∂g3
∂xδ

∂g3
∂yδ

∂g3
∂ϕδ

 =

 cos ϕ̂v − sin ϕ̂v 0
sin ϕ̂v cos ϕ̂v 0

0 0 1

 (19)
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These Jacobians matrices only have influences on the robot portion of the covariance Pv and
its cross-correlated convariance Pvm, thus the estimated system covariance P−a is computed and
implemented more efficiently as:

∴ P−a =

[
JvPv JT

v + QvPδQT
v JvPvm

(JvPvm)
T Pm

]
(20)

4.6.3. Observation Stage

We assume that a landmark, which is already stored in the map as an estimate xmi = (
∧
xi,
∧
yi)

T
, is

perceived by a range-bearing sonar with the measurement z (see Figure 12):

z =

[
r
θ

]
, R =

[
σ2

r σ2
rθ

σ2
rθ σ2

θ

]
(21)

where (r,θ) defines the distance and the direction of the observed landmark to the robot coordinate,
and the observation covariance matrix is denoted as R.
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Figure 12. The robot observation model.

If we get i (i > 1) observations at a time, the measured vector Z and its covariance matrix R can be
described as:

Z =


z1

z2
...
zi

 , R =


R1 0 0 0
0 R2 0 0

0 0
. . . 0

0 0 0 Ri

 (22)

Next, the transformation of the derived locations from the global Cartesian coordinate to the local
robot side is as follows. Therefore, distinct map landmarks link with each other, and their relationships
increase monotonically until their relative locations are known.

ẑi = hi(X̂−a ) =

 √
(x̂i − x̂v)

2 + (ŷi − ŷv)
2

arctan( ŷi−ŷv
x̂i−x̂v

)− ϕ̂v

 (23)

If the measurement z associates with the predicted landmark position (x̂i, ŷi)
T correctly, then we

update the SLAM results.

X̂+
a = X̂−a + Wivi (24)

P+
a = P−a −WiSiWi

T (25)
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The measurements residual vi, also called as innovation, which is the difference between the real
perceived and estimated measurements, is defined as:

vi = z − hi(X̂−a ) (26)

with its covariance Si:
Si = HP−a HT + R (27)

and the Kalman gain Wi:
Wi = P−a HTS−1

i (28)

where H represents the Jacobian matrix which linearizes the nonlinear measurements function h
around the best estimation of the state X̂−a . As for H, first 4x, 4y, d, H1, H2 are defined in advance as
follows:

∆x = x̂i − x̂v, ∆y = ŷi − ŷv (29)

d =

√
(x̂i − x̂v)

2 + (ŷi − ŷv)
2 (30)

H1 =
∂h

∂Xv

∣∣∣∣
X̂−a

=

[
−∆x

d −∆y
d 0

∆y
d2 −∆x

d2 −1

]
, H2 =

∂h
∂Xm

∣∣∣∣
X̂−a

=

[
∆x
d

∆y
d

−∆y
d2

∆x
d2

]
(31)

∴ H = ∂h
∂Xa

∣∣∣
X̂−a

=
[

H1 01 H2 02

]
=

[
−∆x

d −∆y
d 0 0 · · · 0 ∆x

d
∆y
d 0 · · · 0

∆y
d2 −∆x

d2 −1 0 · · · 0 −∆y
d2

∆x
d2 0 · · · 0

]
(32)

4.6.4. Augmentation Stage

As the environment is explored, newly observed features need to be included in the generated
map. Thus, we come up with an adequate solution for initializing new features. First and foremost, the
system state and its covariance are extended by the new measurement znew and its covariance Rnew,
which are perceived relative to the robot coordinate:

X̂aug =

[
X̂a

znew

]
, Paug =

 Pv Pvm 0
PT

vm Pm 0
0 0 Rnew

 (33)

Here a transformation function gi is employed to change the polar perception znew into the global
Cartesian coordinate. It consists of the present robot state X̂v and the new sensor measurement znew:

gi(X̂v, Znew) =

[
xi
yi

]
=

[
xv + r cos(θ + ϕ̂v)

yv + r sin(θ + ϕ̂v)

]
(34)

With the help of a linearized transformation fi function, the system augmented state is initialized
to the correct values. The conversion formula fi is denoted as follows:

X̂+
a = fi(X̂aug) =

[
X̂a

gi(X̂v, znew)

]
(35)

P+
a = ∇ fxaug Paug∇ f T

xaug (36)

where the sparse Jacobian matrix ∇ fxaug is given by:
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∇ fxaug =
∂ fi

∂Xaug

∣∣∣∣
X̂aug

=

 Iv 0 0
0 Im 0

GXv 0 Gznew

 (37)

and the Jacobian matrices GXv and GZnew are:

GXv = ∂gi
∂Xv

∣∣∣
(X̂v ,znew)

=

[
1 0 −r sin(θ + ϕ̂v)

0 1 r cos(θ + ϕ̂v)

]
, GZnew = ∂gi

∂Znew

∣∣∣
(X̂v ,znew)

=

[
cos(θ + ϕ̂v) −r sin(θ + ϕ̂v)

sin(θ + ϕ̂v) r cos(θ + ϕ̂v)

]
(38)

The matrix multiplication of P+
a requires O(n3) computation complexity where n is the number

of landmarks on the map. Due to the sparseness of the Jacobian matrix, a much more efficient
transformation can be implemented; it also only affects the block diagonal matrix of the newly
observed landmark and off diagonal cross-correlations to the rest of the map.

∴ P+
a =

 Pv Pvm PvGT
Xv

PT
vm Pm PT

vmGT
Xv

GXv Pv GXv Pvm GXv PvGT
Xv

+ Gznew RnewGT
znew

 (39)

5. AEKF-SLAM and FastSLAM 2.0 Based Underwater Robotic Navigation Simulations

The following two MATLAB simulation experiments are carried out for both AEKF based SLAM
and FastSLAM 2.0 for dense loop mapping and line mapping, which are executed by a generic
autonomous robot measuring the environmental landmark points with a range-bearing sensor in
a 2D area. Here, we assume that an AUV is observing fixed objects in an inertial reference system
(INS) in order to enhance the localization performance, since the INS of an AUV suffers from drift.
We can change the value of various parameters depending on the practical velocity of the Autonomous
Underwater Vehicle (AUV), and the maximum perception range of the chosen sonars.

5.1. Dense Loop Map

The AEKF-SLAM and FastSLAM 2.0 simulation environment for the dense loop map is established
as a 200 m × 200 m wide area with coordinates ranging from −100 m to 100 m. Indeed, 17 robot
waypoints are arranged in form of a circle and 36 landmarks are randomly distributed near the robot
trajectory as illustrated in Figure 13. We set the robot speed to 3 m/s, its deviation is 0.3 m/s, and
its heading angle error is 3π/180 rad. The range and bearing of the robotic observation variance is
0.1 m/s and π/180 rad. The robot observes the surrounding features every 0.1 s with a sampling time
of 0.0125 s. This leads to one image each 0.3 m with a maximum perception range of 30 m. As for the
FastSLAM 2.0, there are 100 particles to estimate the 36 landmark positions and the robot pose, and we
set 75 particles as the minimum number of effective particles before resampling.

Figure 13 depicts the 2D dense loop feature map built by our presented AEKF-SLAM algorithm
and the conventional FastSLAM 2.0 approach, respectively, where the landmarks are arbitrarily
distributed. The sensor scans for the landmark point positions are clearly to be seen, and few
sightings are discarded by the statistical outlier rejection techniques [50], because they are out of
the robotic perception distance. The rest denote distinct landmarks and are included into the stored
map. The actual landmarks are depicted as blue stars (‘*’); green circles (‘◦’) are the robot waypoints,
which are used for computing the robot steering angle. The landmark locations estimated by our
AEKF-SLAM algorithm are drawn as the red crosses (‘+’) in Figure 13a, and the ellipse around every
red cross illustrates the uncertainty covariance for the estimated landmark positions. The predicted
robot trajectory is shown as the solid black line, leaded by a cyan triangle. Around this cyan triangle,
there is a red ellipse, which denotes the covariance of the posterior AEKF estimate projected into the
robot state. The larger it is, the more uncertain about the current robot pose is.



Sensors 2017, 17, 1174 21 of 30

Sensors 2017, 17, 1174  21 of 30 

 

Figure 13 depicts the 2D dense loop feature map built by our presented AEKF-SLAM algorithm 

and the conventional FastSLAM 2.0 approach, respectively, where the landmarks are arbitrarily 

distributed. The sensor scans for the landmark point positions are clearly to be seen, and few 

sightings are discarded by the statistical outlier rejection techniques [50], because they are out of the 

robotic perception distance. The rest denote distinct landmarks and are included into the stored 

map. The actual landmarks are depicted as blue stars (‘*’); green circles (‘ ’) are the robot waypoints, 

which are used for computing the robot steering angle. The landmark locations estimated by our 

AEKF-SLAM algorithm are drawn as the red crosses (‘+’) in Figure 13a, and the ellipse around every 

red cross illustrates the uncertainty covariance for the estimated landmark positions. The predicted 

robot trajectory is shown as the solid black line, leaded by a cyan triangle. Around this cyan triangle, 

there is a red ellipse, which denotes the covariance of the posterior AEKF estimate projected into the 

robot state. The larger it is, the more uncertain about the current robot pose is. 

 

  

(a) (b) 

Figure 13. (a) The robot is observing the landmarks A and B in the AEKF-SLAM dense loop map;  

(b) The robot is getting measurements A and B in the FastSLAM 2.0 dense loop map. 

In Figure 13b, to clearly display the particles in the FastSLAM 2.0 dense loop experiment, they 

are drawn as the red dots (‘  ’). The small cyan ellipses represent the covariances of max weight 

particle for estimating the robot pose and landmark positions. The true positions of the landmarks 

A and B, in Figure 13 dense loop maps, are at (−55.89 m, −55.92 m) and (−92.96 m, −77.73 m). 

As the coordinate of the first detected landmark point is known with high precision, the 

uncertainty in the predicted robot state will reduce dramatically when the robot achieves the loop 

navigation and revisits this landmark. This situation results in the uncertainties of previously 

observed landmarks are also decreased. It is visible that our proposed AEKF is much more precise 

and more efficient than the FastSLAM 2.0 for dense loop mapping, since the AEKF estimates both 

the landmark positions and the robot pose faster and more accurately than the classic FastSLAM 2.0. 

Table 4 illustrates the comparisons of the processing time and the estimated landmark A and B 

positions in the dense loop map generated by our proposed AEKF-SLAM and FastSLAM 2.0. 

Table 4. The comparisons of the computational time and estimated the landmark A, B positions in 

the dense loop map derived by the AEKF-SLAM and FastSLAM 2.0. 

 Computational Time [s] Estimated Landmark A [m] Estimated Landmark B [m] 

AEKF-SLAM 137.937051 (−56.61, −55.86) (−94.46, −76.53) 

FastSLAM 2.0 525.526820 (−51.38, −61.94) (−87.06, −85.83) 

Therefore, in the dense loop map, the standard deviations between the landmark positions A 

and B predicted by the AEKF-SLAM and the practical ones are: 

Figure 13. (a) The robot is observing the landmarks A and B in the AEKF-SLAM dense loop map; (b)
The robot is getting measurements A and B in the FastSLAM 2.0 dense loop map.

In Figure 13b, to clearly display the particles in the FastSLAM 2.0 dense loop experiment, they are
drawn as the red dots (‘·’). The small cyan ellipses represent the covariances of max weight particle
for estimating the robot pose and landmark positions. The true positions of the landmarks A and B,
in Figure 13 dense loop maps, are at (−55.89 m, −55.92 m) and (−92.96 m, −77.73 m).

As the coordinate of the first detected landmark point is known with high precision,
the uncertainty in the predicted robot state will reduce dramatically when the robot achieves the
loop navigation and revisits this landmark. This situation results in the uncertainties of previously
observed landmarks are also decreased. It is visible that our proposed AEKF is much more precise
and more efficient than the FastSLAM 2.0 for dense loop mapping, since the AEKF estimates both
the landmark positions and the robot pose faster and more accurately than the classic FastSLAM
2.0. Table 4 illustrates the comparisons of the processing time and the estimated landmark A and B
positions in the dense loop map generated by our proposed AEKF-SLAM and FastSLAM 2.0.

Table 4. The comparisons of the computational time and estimated the landmark A, B positions in the
dense loop map derived by the AEKF-SLAM and FastSLAM 2.0.

Computational Time [s] Estimated Landmark A [m] Estimated Landmark B [m]

AEKF-SLAM 137.937051 (−56.61, −55.86) (−94.46, −76.53)
FastSLAM 2.0 525.526820 (−51.38, −61.94) (−87.06, −85.83)

Therefore, in the dense loop map, the standard deviations between the landmark positions A and
B predicted by the AEKF-SLAM and the practical ones are:

σA = 0.723, σB = 1.921

The standard deviations between the landmark positions A and B approximated by the FastSLAM
2.0 and the real ones are:

σA = 7.522, σB = 10.021,

which are both 10 times larger than those of our proposed AEKF-SLAM. Besides, the AEKF-SLAM
consumes less than one third processing time used by the conventional FastSLAM 2.0 for dense loop
mapping. In conclusion, the AEKF-SLAM method has much better performances of localization and
mapping accuracy with relatively low computational load.
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5.2. Line Map

The AEKF-SLAM and FastSLAM 2.0 simulation environment for the line map is an area of
1000 m × 800 m (from 0 m to 1000 m and from −400 m to 400 m). There are 27 landmarks and 4 robot
waypoints. The velocity of the robot is 3 m/s, its variance is 0.3 m/s, the heading orientation error
is 3π/180 rad. The range and bearing of the robotic measurement noise is 0.1 m/s and π/180 rad.
As before, the sampling time is 0.0125 s, and the robot observes the surrounding features every 0.1 s,
obtaining one observation every 0.3 m. The maximum perception distance is again 30 m. In Figure 14,
the actual robot trajectory is along the x-axis (i.e., y = 0), and the true landmark positions are indicated
by blue stars (‘*’); four green circles (‘◦’) are the robot waypoints which are applied for measuring the
robot steering angle. In Figure 14a, the line map which is built by the AEKF-SLAM, the red crosses
(‘+’) are the estimated landmark locations, with red ellipses denoting their uncertainty covariance.
The line map also depicts the estimated robot trajectory as the solid black line, guided by the cyan
triangle. Around this cyan triangle, we can find a red ellipse, which represents the covariance of the
posterior AEKF estimate projected into the robot state. The larger it is, the more uncertain is the current
robot pose. As for the line map generated by the FastSLAM 2.0 in Figure 14b, we set 100 particles for
estimating the 27 landmark positions and the robot pose, and 75 particles as the minimum number of
effective particles before resampling. These particles are depicted as the red dots (‘·’) for a purpose
of clear visualization. The small cyan ellipses represent the covariances of max weight particle for
estimating the robot pose and landmark positions. In Figure 14, the true positions of the landmarks A,
B, C and D are at (886.8 m, −19.04 m), (905.7 m, 10.68 m), (965.1 m, 16.08 m) and (989.4 m, −19.04 m).
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FastSLAM 2.0 line map.

In Figure 14a, it can be found that with the appearance of strange discontinuities in the estimated
robot path, the inconsistency of the AEKF-SLAM algorithm becomes visibly evident. The jagged
robot trajectory results from the inconsistency of variations in Jacobian linearization, given a large
heading uncertainty. Over several successive observation updates, the estimated robotic pose shows
dramatic jumps, which tend to be disproportionately large compared to the real measurement deviation
(0.3 m/s). A related symptom also appears in the estimations of landmark positions. Again, the size of
the landmark updates tends to be much larger than the actual observation noise (0.1 m/s). However,
rather than exhibiting random motion in accord with the sensor noise, the average of landmark
updates seems to be constrained to the line (x-axis). These symptoms manifest once the robot heading
uncertainty becomes large, but they will not appear if the Jacobians are linearized about the true state.
Note that these symptoms are not caused by numerical errors, since different numerical forms of
the AEKF give identical results. These symptoms are simply due to a measurement trying to correct
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the robot heading, when the heading variance has been artificially reduced. Above all, it is evident
that the AEKF-SLAM algorithm is much more reliable and efficient than the FastSLAM 2.0 for line
mapping, since the AEKF-SLAM estimates both the landmark positions and the robot pose more
precisely and faster than the classic FastSLAM 2.0. The comparisons of the computational complexity
and the estimated landmark A, B, C and D positions in the simulated line map generated by the
AEKF-SLAM and FastSLAM 2.0 are shown in Table 5.

Table 5. The comparisons of the computational time and estimated the landmark A, B, C, D positions
in the line map derived by the AEKF-SLAM and FastSLAM 2.0.

Computational
Time [s]

Estimated
Landmark A [m]

Estimated
Landmark B [m]

Estimated
Landmark C [m]

Estimated
Landmark D [m]

AEKF-SLAM 99.837974 (885.5, −22.53) (904.9, 6.886) (964.4, 11.27) (988, −24.21)
FastSLAM 2.0 594.113594 (879.4, −72.63) (902.6, −46.26) (961.7, −48.6) (981.5, −86.27)

As a consequence, in the line map, the standard deviations between the landmark positions A, B,
C and D estimated by the AEKF-SLAM and the true ones are:

σA = 3.724, σB = 3.877, σC = 4.983, σD = 5.356

The standard deviations between the landmark positions A, B, C and D estimated by the
FastSLAM 2.0 and the true ones are:

σA = 54.099, σB = 35.715, σC = 32.697, σD = 67.693

which are all at least 6.5 times larger than those of the presented AEKF-SLAM. Even for the landmarks
A and D, the standard deviations estimated by the FastSLAM 2.0 are both more than 12.5 times higher
than for our method. Moreover, the computational time of the conventional FastSLAM 2.0 is nearly
6 times higher than that of the AEKF-SLAM for line mapping. As a conclusion, for both dense loop
mapping and line mapping experiments, the AEKF-SLAM approach has the best performances of
localization and mapping accuracy with relatively low computational cost.

5.3. SWARMs Seabed Mapping Use Case

Our presented AEKF-based underwater SLAM algorithm is going be tested and validated near
Mangalia (Romania) in the Black Sea, around summer 2017 as a part of the European Smart and
Networking Underwater Robots in Cooperation Meshes (SWARMs) project (http://www.swarms.
eu/index.html). The SWARMs project aims at facilitating the creation, planning and execution of
autonomous maritime and offshore operations by the use of surface and underwater vehicles, such
as the Unmanned Surface Vehicles (USVs), Autonomous Underwater Vehicles (AUVs) and Remote
Operating Vehicles (ROVs). The water temperature in Mangalia at a depth of 30 m would be 11.4 ◦C in
July, the water salinity 18.2 g/L, and the sound speed would be 1475 m/s, and the sea bottom material
is muddy gravel. All the underwater vehicles including the AUVs and ROVs that will be used in the
SWARMs project are shown in the Table 6.

Localization and mapping is one of the key components that enables the autonomy of AUVs.
Many sensor modalities can be used in this task, and the INS is one of the most common approaches.
For precise maneuvering, an INS on board of the AUV calculates through dead reckoning the AUV
position, acceleration, and velocity. Estimates can be made using data from an Inertial Measurement
Unit (IMU). However, the INS suffers form a drift problem, which should be mitigated for a long-term
operation of AUVs.

In Figure 15, the following vehicles employed in the SWARMs project can be individually selected
within the simulation environment and can be controlled by using a standard game controller: Alister
9 AUV provided by the ECA Group (Paris, France) [62], IXN AUV provided by the Ixion Industry

http://www.swarms.eu/index.html
http://www.swarms.eu/index.html
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& Aerospace SA company (Madrid, Spain) [63], Naiad AUV provided by Mälardalen University,
SAGA ROV provided by Desistek Robotik Elektronik Yazilim company (Ankara, Turkey) [64], and
an imaginary RexROV with a subsea manipulator, which is modeled similar to real existing ROVs.
We have proved that it is possible and computationally feasible to concurrently simulate all the vehicles
mentioned above in real time.

Table 6. The parameters of the underwater vehicles (AUVs and ROVs) employed in the SWARMs
environmental sensing mission.

Platform Circular Length (m) Circular Width (m) Circular Height (m) Weight on Air (kg)

Alister 9 AUV 2.0 0.22 0.22 70
IXN AUV 1.9 0.5 0.3 150

Naiad AUV 0.84 0.6 0.25 30
SAGA ROV 0.42 0.33 0.27 10
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There are several use cases in the SWARMs project, as e.g., use case No.5. (http://www.
swarms.eu/usecases.html#case5), seabed mapping, which is composed of five stages. First, the
USVs (Unmanned Surface Vehicles) pre-survey the area of interest. The USV survey path can be
coordinated with the mother-ship or another USV to maximize the operational efficiency and the
optimal multibeam overlap. Then, the AUVs are deployed over the seabed to be mapped. Next, the
AUVs monitor and map the underwater environments with the assistance of their on-board navigation
sensors to measure the distance from the AUVs to the seabed, they work cooperatively and follow the
preplanned trajectories in order to cover the exploring region. Afterwards, the derived sonar data is
transmitted from the AUVs to the ROV, which retransmits the perceived information via cable to the
surface support vessel. Finally, real-time data mapping and monitoring will be accomplished. This
procedure is illustrated in Figure 16. Here, the support vessel transports all the required equipments,
robotic vehicles and supervises all the operations. The USVs perform a quick bathymetric pre-survey,
and the bathymetry data collected from the USVs may thereafter be used to assist the planned track
for the more detailed and high resolution mapping performed later by the AUVs. As for the AUVs,
they are in charge of mapping the entire seabed as well as to characterize the subsea environment.
The ROV plays a role as a relay between the support vessel and the AUVs to ease all underwater to
surface communications. With a relatively short distance between the ROV and the AUVs, a faster real
time seabed mapping and inspection is enabled. Real time maps could be presented to the operator
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computer. Operator intervention, such as lowering the speed of the AUVs, increases the resolution for
detecting areas.
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6. Conclusions and Future Work

6.1. Conclusions

In this work we focus on key topics related to SLAM applications in underwater environments.
First of all, a detailed overview of currently used and popular solutions for the underwater SLAM
problem has been given and characteristics like accuracy, robustness, computational complexity,
etc. compared. Besides, different types of map representations have been compared regarding
their suitability for a priori map localization, which are computational requirements, reliability,
robustness, etc. In our case, the landmark map is chosen to represent the exploring underwater
region to be explored. The robotic localization and map building process consists of generating the
best estimation of the system states given the information available to the system. Thus, a new method,
the AEKF-SLAM algorithm is provided. The main contribution of this work is to demonstrate this
estimation theoretic solution to the underwater SLAM based navigation problem and to elucidate upon
its mathematical structure. It is performed by storing the robot pose and the map landmarks in a single
system state vector, and estimating the state parameters via a recursive, iterative, three-stage procedure
comprising a prediction, an observation process (as in conventional EKF) and an augmentation state.
The prediction phase deals with robot motion based on the incremental dead reckoning estimates,
and it also increases the uncertainty of the robot pose estimate. The update stage occurs with the
re-observation of already stored landmarks, improving the overall state estimate. When a landmark is
detected for the first time, however, it is added to the state vector through an initialization process called
state augmentation. The AEKF-SLAM based robotic underwater navigation algorithm emphasizes
the identification of each sensor perception as a new landmark or a re-visited observed one. It can
distinguish new landmarks from those already detected ones. With the assistance of the presented
AEKF approach, the underwater robot achieves a more accurate and robust self-localization and
mapping of the surrounding landmarks.

Compared with an efficient and classic approach, the FastSLAM 2.0, for both underwater dense
loop mapping and line mapping simulation experiments, the provided AEKF-SLAM algorithm shows
better performance in localization and mapping accuracy with relatively low computational cost.
Moreover, the MATLAB simulation experiments performed for AEKF-SLAM based robotic dense loop
mapping and line mapping behave much better in map management with respect to the landmark
addition and removal to refrain from the long-term accumulation of errors and clutter in the generated
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map. By making those contributions available to the research community, we aim to facilitate
the development, evaluation, comparison and consequently the improvement of the underwater
SLAM algorithms.

6.2. Future Work

As a next step, within the framework of the European SWARMs project, our presented underwater
AEKF-based SLAM algorithm will be tested and validated in underwater scenarios in the Black Sea
with high currents speed (<1 m/s), low visibility (<1 m), high pressures (<15 atm), in a working area
of about 1000–2000 m2. As for further enhancements of our present research, the future works include:

• Establishing a computationally tractable robotic underwater SLAM based navigation algorithm.
The use of the full map covariance matrix at each stage in the underwater map generating
process will lead to substantial computational problems. Hierarchical SLAM or sub-mapping
methods build local maps of limited size, which bound the covariances and thus the linearization
errors. Next, by incorporating the local maps into a global map or a hierarchy of global maps,
the AEKF-SLAM based robotic navigation will be possible in large scenarios.

• Studying other state of the art approaches to the underwater SLAM problem for suitability, such as
the graph-based SLAM and optimization-based SLAM. Afterwards, comparing their localization
and mapping performances in terms of accuracy, robustness, computational complexity, etc. with
those of the proposed AEKF-SLAM.

• Acquiring only one map of some part of the regions may not depict the global topology of the
whole surveying area correctly, on account of the imaging geometry of the mapping devices.
Integrating data measurements derived from the sonars and cameras to create a 3D subsea map,
such as seafloor, exploring environment and artifacts.

• Simplifying and fusing two different resolution sonar maps by transform based algorithms.
Employing the large scale medium resolution map to trigger detailed investigations of regions of
interest in the local high resolution maps.

• Comparing the keypoint matching performances of the Scale Invariant Feature Transform
(SIFT), the Affine Scale Invariant Feature Transform (ASIFT) and the Speed Up Robust Features
(SURF), etc.
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Abbreviations

The following abbreviations are used in this manuscript:

SLAM Simultaneous Localization and Mapping
AEKF Augmented Extended Kalman Filter
EKF Extended Kalman Filter
AUVs Autonomous Underwater Vehicles
CML Concurrent Mapping and Localization
SONAR SOund Navigation And Ranging
SSSs Side-Scan Sonars
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FLSs Forward-Looking Sonars
IMU Inertial Measurement Unit
DVL Doppler Velocity Log
KF Kalman Filter
PF Particle Filter
EM Expectation Maximization
CEKF Compressed Extended Kalman Filter
IF Information Filter
UKF Unscented Kalman Filter
USAR Urban Search and Rescue
GPS Global Positioning System
LBL Long Base Line
SBL Short Base Line
USBL Ultra Short Base Line
RSSI Received Signal Strength Indication
RBPF Rao-Blackwellised Particle Filtering
USVs Unmanned Surface Vehicles
ROVs Remote Operating Vehicles
SIFT Scale Invariant Feature Transform
ASIFT Affine Scale Invariant Feature Transform
SURF Speed Up Robust Features
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