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Abstract: Received-signal-strength-based (RSS-based) device-free localization (DFL) is a promising
technique since it is able to localize the person without attaching any electronic device. This technology
requires measuring the RSS of all links in the network constituted by several radio frequency (RF)
sensors. It is an energy-intensive task, especially when the RF sensors work in traditional work
mode, in which the sensors directly send raw RSS measurements of all links to a base station (BS).
The traditional work mode is unfavorable for the power constrained RF sensors because the amount
of data delivery increases dramatically as the number of sensors grows. In this paper, we propose
a binary work mode in which RF sensors send the link states instead of raw RSS measurements to the
BS, which remarkably reduces the amount of data delivery. Moreover, we develop two localization
methods for the binary work mode which corresponds to stationary and moving target, respectively.
The first localization method is formulated based on grid-based maximum likelihood (GML), which is
able to achieve global optimum with low online computational complexity. The second localization
method, however, uses particle filter (PF) to track the target when constant snapshots of link stats
are available. Real experiments in two different kinds of environments were conducted to evaluate
the proposed methods. Experimental results show that the localization and tracking performance
under the binary work mode is comparable to the those in traditional work mode while the energy
efficiency improves considerably.

Keywords: device-free localization (DFL); RSS; energy efficiency; maximum likelihood; particle filter

1. Introduction

When a target (person) enters a monitored region surrounded by a network of radio frequency
(RF) sensors, the target will influence the of radio signals emitted by sensors, e.g., shadow and reflect
the radio signals [1]. Device-free Localization (DFL) methods exploit this characteristic to localize the
target. Compared to device-based localization methods, DFL does not require the target to wear any
electronic devices, which is very promising in some emergency scenarios, for instance, search and
rescue. Moreover, since the radio signals can penetrate walls and other non-metallic structures, DFL is
able to find the targets behind walls [2–4]. Radar technology has been employed as a DFL approach
for a long time. However, radar relies on the detection of the weak echoes reflected by the target
and thus high bandwidth and large power consumption are essential [1]. In the past few years,
received-signal-strength-based (RSS-based) DFL methods have gained a lot of attention because RSS
measurements are available in most commercial off-the-shelf (COTS) wireless products, which can
greatly reduce the cost of DFL systems. So far, RSS-based DFL methods have been successfully applied
to environment monitoring [1,2,5–7], personnel tracking [2,8,9] and health-care [10,11].
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In DFL a number of RF sensors are usually placed in the monitored region and the role of the
RF sensors is to measure the RSS of the links comprised of the sensors. In outdoors the RF sensors
are usually powered by batteries with limited battery power and in most literature the RF sensors
operate in the traditional work mode [1], in which the RF sensors directly transmit the raw RSS
measurements of all links to the base station (BS). As a consequence, the energy problem of DFL in
traditional work mode arises especially when a large number of sensors are deployed to cover a large
area. Specifically, we know that the total number of links in the network comprised of K sensors
is approximately proportional to K2. Thus, the energy consumed by sending measurements grows
rapidly as the increase of the number of sensors, which is disadvantageous for batteries powered
sensors. In this paper, we propose a new work mode in which the RF sensors only output two states
of a link: obstructed and unobstructed. In fact, a target only occupies a little space compared to the
entire monitored region, meaning that most links are not affected. Therefore, it can be proved that
the amount of data transmission approximately increases linearly rather than quadratically with the
number of sensors, which is beneficial to the batteries powered RF sensors. The new work mode can be
easily implemented by adding a little local processing to the RF sensors in the traditional work mode.

Moreover, to localize the device-free target when the sensors work in the binary mode, it is
necessary to develop new localization methods since previous localization methods [1,8,12–14] can
only work in the traditional work mode. To address this issue, we reformulate the localization problem
under the Bayesian framework for the binary work mode. We consider two scenarios, according to the
motion of the target. In the first scenario, the target is stationary and Bayesian estimation degrades
to maximum likelihood (ML) estimation [15] if we have no prior knowledge of the position of the
target. Since the ML estimation involves optimizing a highly nonlinear objective function, we propose
a grid-based ML (GML) method which overcomes local convergence frequently encountered in the
iterative optimization methods. We also prove that the computational complexity of GML could be
remarkably reduced since the most computation task can be finished offline.

In the second scenario, however, the target is moving within the monitored region and link states
are constantly updated, making it possible to track the target. The classical Kalman filter, which is
a type of Bayesian filter for the linear/Gaussian case, is not suitable anymore due to the nonlinearity of
the link state model. Fortunately, in recent years particle filter (PF) has been widely employed to deal
with nonlinear filtering [8,9,12,16–21]. In this paper, we perform target tracking in the binary work
mode by employing PF which proves to be able to accurately estimate the position of the target.

Finally, we conducted real experiments to verify the effectiveness of the proposed method.
We used 20 RF sensors which surrounded a monitored region of 9.5 m × 9.5 m. The aforementioned
two scenarios were both taken into consideration in the experiments. The experimental results show
that the proposed method can achieve noticeable power reduction as well as comparable localization
performance with the localization method in the traditional mode.

The rest of the paper is organized as follows. Section 2 reviews the work related to DFL. Section 3
describes the system model of DFL and introduces the new work mode of sensors. Section 4 compares
the energy consumption of the binary work mode with that of the traditional mode. Section 5 presents
the GML estimation method for the stationary target scenario. Section 6 provides target tracking
framework of DFL using the particle filter. Section 7 presents the experimental results and Section 8
concludes the paper.

2. Related Work

Since DFL technology is promising in a great number of scenarios, in the past few years lots of
work have been conducted to improve the performance of DFL. In this section, we will give a brief
literature review of previous work on DFL technology.

The existing DFL methods can be roughly categorized into two groups: radio tomographic
imaging (RTI) and Bayesian methods. RTI, originally proposed by Wilson et al. [1], constructs a linear
model between the wireless measurements and the imaging vector. The imaging vector is used to
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imaging the monitored region and the brightest spot in the generated image reveals the position of the
target. The wireless measurements employed in RTI can be RSS variation [1], RSS variance [2,22],
multi-dimensional RSS [23,24] or time-of-flight (TOF) [25,26] measurements. Since the linear
model of RTI is ill-conditioned, regularization [1,27] can be utilized to solve the inverse problem.
Moreover, owing to the sparse nature of the unknown vector, some work [4,13,28] employed
compressive sensing (CS) method to enhance the imaging performance of RTI and reduce the number
of wireless measurements at the same time.

RTI is usually combined with a Kalman filter [2,22] to track the moving targets. Bayesian DFL
methods, however, directly track the target, which is accomplished by first modeling RSS measurements
as the function of the target’s state and subsequently using Bayesian filter to estimate the state of the
target. The current measurement models in Bayesian methods include elliptical model [14], exponential
model [8,12,18], diffraction model [19,20] and three-state model [21], with complexity sorted from
lowest to highest. Since the models are all nonlinear with respect to the position of the target, nonlinear
filtering such as particle filtering (PF) can be applied to track the target.

Energy efficiency is a critical issue of DFL since it is closely related to the lifetime of RF sensors [29,30].
The work [31] has studied this issue, in which the author proposed to measure the RSS of the links around
the target instead of all links. However, the underlying communication protocol is highly complicated
since the interaction between RF sensors and BS is indispensable. Wang [26] also proposed to reduce the
time and energy consumption for TOF-based DFL by only measuring the shadowed links predicted by
a particle filter. In this paper, we propose a binary work mode for RF sensors, in which the RF sensors
only output the link state rather than the raw wireless measurements. The binary work mode not
only can remarkably reduce the overall energy consumption and also can be implemented by a quite
simple protocol compared to the protocol used in [31]. In addition, we also propose the Bayesian target
localization and tracking methods for the binary mode, which show satisfactory localization accuracy.

3. System Model

As shown in Figure 1, K RF sensors are deployed at the perimeter of the monitored region and
mounted on the tripods with the same height. Suppose that the position of the sensors are known in
advance and the ith sensor’s position is denoted as αi, i = 1, 2, ..., K. For simplicity, we assume that
the sensors are equally spaced and the distance between two adjacent sensors on the same side is
equal to D. RF sensors are fully connected, implying that K sensors can constitute L = K (K− 1) links.
For ease of description, the links are labeled as following. Suppose that link l is comprised of sensor i
and sensor j, where i 6= j. As a result, l can be computed as

l =

{
(K− 1) (i− 1) + j− 1, j > i

(K− 1) (i− 1) + j, otherwise.
(1)

TargetLinkSensor

Link states:001000 10

Base station

Figure 1. An illustration of a monitored region constituted by RF sensors.
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Each sensor receives the radio signals emitted by other sensor and measures the corresponding
RSS. For clarity, the RSS measured before the target enters the monitored region is called static RSS
and the static RSS of link l is denoted as r̄l . According to path loss model [32], r̄l can be expressed as

r̄l = P0 (dRef)− 10nplog10

(
dl

dRef

)
, (2)

where P0 (dRef) is the measured received power at a reference distance dRef, np is the path loss exponent
and dl =

∥∥αi − αj
∥∥ is the path length of link l, as shown in Figure 2.

iα

jαlink l

tx

i t-α x

j t-α x

i j-α α

Figure 2. An illustration that a target shadows link l.

When the target enters into the monitored region, the target will absorb part of radio signals,
causing shadow fading of the link. Thus, the RSS of link l becomes

rl,t = P0 (dRef)− 10nplog10

(
dl

dRef

)
− Sl (xt)− vl,t, (3)

where xt is the position of the target at time instant t, Sl (xt) is the shadowing loss due to the obstruction
by the target and vl,t is the additive noise. The noise originates from the reflection of the target or other
perturbations in the monitored region. Generally, the noise can be modeled as Gaussian distributed
with zero-mean and variance σ2, i.e., vl,t ∼ N

(
0, σ2), where the parameter σ2 can be determined

depending on the actual environment.
Subtracting the static RSS in (2), we obtain the variation of RSS due to the presence of target,

which can be written as
∆rl,t = r̄l − rl,t = Sl (xt) + vl,t. (4)

Note that the irrelevant terms in (2) have been removed, which means that it is unnecessary to
calculate these terms.

Some prior works have attempted to model the shadowing loss as a function of the target’s position,
for example, elliptical model [1,13,14], exponential model [8,12] and diffraction model [7,19,33,34].
The exponential model is established through fitting extensive measurements collected from real
experiments, which can be written as

Sl (xt) = φe−κ∆dl(xt), (5)

where ∆dl (xt) = ‖xt − αi‖ +
∥∥xt − αj

∥∥ − ∥∥αi − αj
∥∥ is the excess path length, φ is the maximum

loss evaluated when ∆dl (xt) = 0 and κ is the decaying factor. The parameters φ and κ are usually
determined in the experiment. We can see that the shadowing loss is exponentially decreasing as the
growth of the excess path length. Considering that the exponential model holds both satisfactory
accuracy and analytical property, the exponential model will be adopted in this paper.
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In the traditional work mode of RF sensors [1], the sensors directly send raw measurements rl,t
of all links to the BS. The traditional mode is simple but lacks energy efficiency, as will be explained
in Section 3. In the binary mode, when a sensor obtains the variation of RSS ∆rl,t, it first compares
∆rl,t with the predefined threshold γ. If ∆rl,t exceeds the threshold, the link will be detected to be
obstructed by the target and the sensor will send the corresponding link number to the BS, otherwise
the transmitter of sensor will keep inactive. Therefore, the state of link l can be written as

zl,t =

{
1, if ∆rl,t ≥ γ

0, otherwise.
(6)

We can see that the sensor only provides the link state which indicates whether the link is
obstructed or not. Therefore, the sensor can be regarded as binary in this sense. The detection threshold
γ can be chosen in terms of the probability of false alarm PFA. Recall that the noise vl,t can be modeled
as zero-mean Gaussian distributed noise with variance σ2

n , which can be estimated by measuring the
variance of RSS fluctuation when the target is moving away from a link. Given the probability of false
alarm PFA, the threshold can be computed as

γ = σnQ−1 (PFA) (7)

where Q (·) denotes the Q function [35]. Alternatively, the threshold can be empirically chosen
according to the environment where the experiment is conducted.

Obviously, due to the influence of the noise, the state of a link is not deterministic but random and
can be characterized by probability theory. According to detection theory, conditioned on the target’s
position xt, p (zl,t = 1|xt) and p (zl,t = 0|xt) can be given by

p (zl,t = 1|xt) = p (∆rl,t ≥ γ)

=
∫ ∞

γ

1√
2πσ

e−
(∆rl,t−Sl (xt))

2

2σ2 d∆rl,t

= Q
(

γ− Sl (xt)

σ

)
,

(8)

and

p (zl,t = 0|xt) = p (∆rl,t < γ) = 1−Q
(

γ− Sl (xt)

σ

)
. (9)

4. Efficiency Analysis

In most outdoor applications, RF sensors have to be powered by batteries. Therefore, the reduction
of power consumption is the key to prolonging the lifetime of RF sensors. In this section, the frame
structures of the two work modes of RF sensors are described and the comparison of energy consumption
between the two modes is also presented.

Figure 1 shows a typical structure of a DFL system, which mainly consists of two components:
distributed RF sensors and BS. The job of distributed RF sensors is to measure the RSS of the links and
broadcast the measurements. The BS station receives the measurements and forwards the measurement
to a central computer via USB or serial port for post-processing. In the RF sensor network, each sensor
is assigned a unique ID which controls the transmitting order of the sensors. To measure the RSS of
the all links, the sensors should broadcast the packet in turns. For each sensor, it constitutes (K− 1)
links with the remaining sensors. Therefore, each sensor needs to maintain the RSS of (K− 1) links.
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In the traditional mode [1], the BS receives the packet at the same time when the sensor broadcasts.
The traditional frame structure of transmitted packet thus can be designed as Figure 3a, which consists
of three fields: header, sensor ID and RSS measurements. The header generally includes the ID of the
transmitting sensor and some other necessary overhead. We can see that the frame length of the packet
in the traditional mode is fixed.

However, in the binary mode, as shown in Figure 3b, the frame of transmitted packet only contains
two fields: header and IDs of the sensors which provide “1” state of links. Therefore, the packet in the
binary mode has variable length. The BS can distinguish the obstructed links according to the IDs of
transmitting sensor in the header and the IDs in the packet.

Header ID 1 RSS ID 2 RSS ID K RSS

Sensor 1 Sensor 2 Sensor K

FIDFh FD

(a)

Header ID i ...

li

FIDFh

(b)

Figure 3. The frame structure of transmitted packet in the (a) traditional mode; and (b) binary mode.

Suppose the length of the header, ID and RSS measurement are Fh Bytes, FID Bytes and FD Bytes,
respectively. Accordingly, the frame length in the traditional mode is η1 = Fh + (K− 1) (FID + FD).
Considering that the frame length of all sensors are equal, the total amount of transmitted data for
completing one round of measurement in the traditional mode is

ηTotal
1 = Kη1 = K

[
Fh + (K− 1) (FID + FD)

]
. (10)

We can see that the total amount is approximately proportional to K2. Returning to the binary
mode, the frame length of the ith sensor is η2 (i) = Fh + liFID, where li is the number of obstructed
links detected by sensor i from its (K− 1) links. Therefore, the total amount of transmitted data in the
binary mode is

ηTotal
2 =

K

∑
i=1

η2 (i) =
K

∑
i=1

(Fh + liFID) = KFh + M (xt) FID, (11)

where M (xt) = ∑K
i=1 li is the total number of the obstructed links in the network. As we have

mentioned, the link state is random due to noise. Hence, M (xt) can be seen as a random variable with
mean of

M (xt) =
L

∑
l=1

p (∆rl,t ≥ γ) =
L

∑
l=1

Q
(

γ− Sl (xt)

σ

)
. (12)
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From (12), we can see that M (xt) depends on the position of the target. Figure 4 shows the value
of M (xt) when the target stands at different positions within the monitored region. The parameters
in this simulation are chosen as K = 20, φ = 6 dB, κ = 20, D = 2 m, σ = 2 dB, and γ = 4 dB.
From Figure 4 we can see that the maximum of M (xt) is about 34.8 when the target is at the position
of the sensors, whereas M (xt) ranges from 15 to 30 when the target is at other positions. Although
M (xt) obtains the maximum value at the position of sensors, it still seems to be insignificant compared
to the total number of links L = 380.
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Figure 4. Distribution of M (xt) in the monitored region.

Denote Mmean = Ext

[
M (xt)

]
as the average number of the obstructed links and Mmax = max

xt
M (xt)

as the maximum, which can be regarded as the worst case. Figure 5 shows the total amount of data delivery
in the two modes, respectively, where Fh = 10 Bytes, FID = FD = 1 Byte.
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Figure 5. Tha amount of transmitted data for the two modes versus number of sensors.

We can see that ηTotal
1 is approximately proportional to K2 whereas ηTotal

2 linearly increases with
K. As the number of sensors grows, the gap between ηTotal

1 and ηTotal
2 becomes wider. For example,

when K = 40, ηTotal
1 = 3520 Bytes whereas ηTotal

2 = 470 Bytes when M (xt) = Mmean and ηTotal
2 = 501 Bytes

when M (xt) = Mmax, meaning that the amount of transmitted data has been reduced remarkably
even for the worst case of ηTotal

2 . In RF sensor network, less amount of transmitted data implies lower
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energy consumption if emitted power of all sensors is fixed. Therefore, the binary mode is much more
energy efficient and thus more suitable for power constrained sensors.

5. Target Localization

The ultimate goal of deploying RF sensors is to localize the target. Unfortunately, the existing
localization methods such as RTI [1] are mainly formulated based on the traditional mode and thus
these methods cannot be directly applied to the binary mode. Hence, it is necessary to develop the
localization method suitable for the binary work mode of sensors.

In the context of localization, two scenarios are commonly encountered. One is that the target
is stationary in the monitored region and the other scenario is that the target keeps moving.
The localization in the second scenario is also known as target tracking. This section will discuss
the localization problem under the first scenario and the second scenario will be considered in the
next section.

Grid-Based Maximum Likelihood (GML) Localization

We stack the link states into a column vector as zt = [z1,t, z2,t, ..., zl,t]
T. As we know that the optimal

estimation of xt is given by Maximum a Posterior (MAP) estimator. Since we have no prior knowledge
of xt, MAP estimation is equivalent to ML estimation, which can be written as

x̂ML
t = arg max

xt
p (zt|xt) . (13)

If L links are assumed to be mutually independent, the likelihood function can also be expressed as

p (zt|xt) = p (z1,t, z2,t, ..., zl,t|xt) =
L

∏
l=1

p (zl,t|xt). (14)

From the link state model in (6), we know that p (zl,t|xt) is a highly nonlinear function with respect
to xt. Thus, maximizing p (zt|xt) involves nonlinear optimization. Iterative methods such as gradient
descent approaches [15] have large computation complexity and also lack of global convergence.
An alternative approach is to use the grid search method which divides the target state space into discrete
grids and finds the grid maximizing the likelihood function. The grid based method can effectively
overcome the difficulty of local convergence. However, the amount of computation exponentially
increases as the growth of resolution. Fortunately, we will later prove that the most of the computation
can be performed offline and thus the online computation burden is low.

In grid search method, the monitored region is uniformly divided into N grids and the size length
of each grid is denoted as ∆υ, as illustrated in Figure 6. The coordinate of the center of the nth grid is
denoted as qn. Thus, the GML estimation can be rewritten as

x̂GML
t = arg max

qn
p (zt|qn) . (15)

We partition the links into two sets, namely, `0
t and `1

t , where `0
t =

{
l : zl,t = 0

}
is the set of

unobstructed links and `1
t =

{
l : zl,t = 1

}
is the set of obstructed links. It is easy to verify that

`0
t
⋃
`1

t = {1, 2, ..., L}. From (8) and (9), we can obtain the conditional probabilities p (zl,t = 0|qn) =

1−Q
(

γ−Sl(qn)
σ

)
and p (zl,t = 1|qn) = Q

(
γ−Sl(qn)

σ

)
. Thus, the likelihood for the target locating at the

nth grid can be calculated as

p (zt|qn) = ∏
l∈`1

t

Q
(

γ− Sl (qn)

σ

)
·∏

l∈`0
t

[
1−Q

(
γ− Sl (qn)

σ

)]
. (16)
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Figure 6. An illustration of GML.

To simplify computation, log-likelihood is frequently used, which can be expressed as

x̂GML
t = arg max

qn
log p (zt|qn)

= arg max
qn

∑
l∈`1

t

log Q
(

γ− Sl (qn)

σ

)

+ ∑
l∈`0

t

log
[

1−Q
(

γ− Sl (qn)

σ

)]
.

(17)

The majority of the computation consists of computing log Q
(

γ−Sl(qn)
σ

)
and

log
[
1−Q

(
γ−Sl(qn)

σ

)]
for all grids of each link. Fortunately, the two terms are independent of

the link state zt, meaning that they can be computed in advance and stored in the memory. After the
arrival of the link state, log Q

(
γ−Sl(qn)

σ

)
and log

[
1−Q

(
γ−Sl(qn)

σ

)]
are loaded for calculating the

log-likelihood. Hence, the online computational complexity of GML is low.
The procedure of GML localization can be summarized as follows:

• Offline phase: Calculate log Q
(

γ−Sl(qn)
σ

)
, log

[
1−Q

(
γ−Sl(qn)

σ

)]
for l = 1, 2, ..., L and

n = 1, 2, ..., N, and store them into memory.
• Online phase:

1. Partition the links into sets `0
t and `1

t in terms of their states.
2. Compute the log-likelihood function according to (17) by loading the offline calculations.
3. Select the grid maximizing the log-likelihood function as the ML estimation x̂ML

t .

6. Target Tracking

In this section, we will discuss another scenario, i.e., target tracking in RF sensor network. First the
motion model of the target will be presented and next the particle filter is adopted to track the target.
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6.1. Motion Model

Denote Xt = (xt, yt, ẋt, ẏt)
T ∈ <4×1 is the state of the target at time instant t, where ẋt and ẏt are

the velocities in x direction and y direction, respectively. ∆t =
ηTotal

2
R is the updating time between

two consecutive rounds of measurement, where R is the data rate. For simplicity, we assume that the
dynamic of the target can be described by constant velocity (CV) motion model [36]. Thus, the state
transition equation can be written as

Xt = FXt−1 +But, (18)

where the matrix F and matrix B are given by

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , B =


∆t2/2 0

0 ∆t2/2
∆t 0
0 ∆t

 , (19)

and ut ∈ <2×1 is the acceleration noise, which is assumed to be Gaussian distributed with zero-mean
and covariance matrix R = diag

(
σ2

x , σ2
y

)
, where σ2

x and σ2
y are the variance of acceleration noise in x

direction and y direction, respectively. For more complicated motion models, the reader can refer to [36]
for more details. As the measurement zt is independent of the velocity of the target, the likelihood
p (zt|Xt) is equal to p (zt|xt).

6.2. Particle Filter Tracking

In stationary target scenario, one snapshot of link states zt is sufficient to localize the target.
However, in target tracking scenario, current snapshot as well as previous snapshots should be jointly
employed to estimate the state of the target. It is well known that the optimal state estimation of the
target is given by Bayesian filter which maximizes the posterior probability, i.e.,

X̂MAP
t = arg max

Xt
p (Xt|z1:t) , (20)

where z1:t = {z1, z2, ..., zt} are the link states up to time instant t. According to Bayes’ rule, p (Xt|z1:t)

can be recursively calculated as

p (Xt|z1:t−1) =
∫

p (Xt|Xt−1) p (Xt−1|z1:t−1)dXt−1

p (Xt|z1:t) =
p (zt|Xt) p (Xt|z1:t−1)

p (zt|z1:t−1)
,

(21)

where p (zt|z1:t−1) =
∫

p (zt|Xt) p (Xt|z1:t−1) dXt. The above recursion is difficult to implement because
the analytical solution is intractable. In recent years, sequential Monte Carlo (SMC) or also called PF
has proven to be a powerful tool to overcome the difficulty of nonlinear filtering [16,17]. PF attempts
to approximate the distribution p (Xt|z1:t) with weighted particles. Specifically, suppose that NPF is the
number of particles, Xi

t and wi
t are the ith particle and its associated weight, respectively, the posterior

distribution p (Xt|z1:t) can be approximated as

p (Xt|z1:t) ≈
NPF

∑
i=1

wi
tδ
(

Xt −Xi
t

)
, (22)

where δ (·) is Dirac Delta function.
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The weight of particle is updated by

wi
t ∝ wi

t−1
p
(
zt|Xi

t
)

p
(
Xi

t|Xi
t−1
)

π
(
Xi

t|Xi
t−1, zt

) , (23)

where π (Xt) is the proposal distribution. If we choose the proposal to be π
(
Xi

t|Xi
t−1, zt

)
= p

(
Xi

t|Xi
t−1
)
,

weight updating can be greatly simplified as

wi
t ∝ wi

t−1p
(

zt|Xi
t

)
= wi

t−1

L

∏
l=1

p
(

zl,t|Xi
t

)
= wi

t−1

L

∏
l=1

p
(

zl,t|xi
t

)
= wi

t−1 ∏
l∈`1

t

Q

(
γ− Sl

(
xi

t
)

σ

)
·∏

l∈`0
t

[
1−Q

(
γ− Sl

(
xi

t
)

σ

)]
.

(24)

The weight should be normalized to unity, i.e.,

wi
t ←

wi
t

NPF
∑

i=1
wi

t

. (25)

The drawback of PF is degeneracy which only some particles have large weights and the weight
of other particles are negligible, which makes the particles lack of diversity. Degeneracy will greatly
degrade the performance of PF and must be avoided. A general metric to evaluate the level of
degeneracy is the effective sample size Ne f f ≈ 1

∑
NPF
i=1 (wi

t)
2 [16]. If Ne f f is less than a threshold Nth,

degeneracy is thought to take place. The approach to deal with the particle degeneracy is resampling
which replaces large weight particle with some equal weight particles and drops little weight particles.

After performing those steps, the target state estimation and its covariance are given by

X̂MAP
t ≈

NPF

∑
i=1

wi
tX

i
t

cov (Xt) ≈
NPF

∑
i=1

wi
t

(
Xi

t − X̂t

)(
Xi

t − X̂t

)T
.

(26)

7. Experimental Results

We conduct real experiments to verify the effectiveness of the proposed method. The RF sensor
network is comprised of CC2530 nodes, which are fully compatible with IEEE 802.15.4 standard
and work at 2.4 GHz frequency band. CC2530 node is able to provide RSS measurement via its
internal module. The transmitting power of CC2530 sensor is set to 4.5 dBm. The RF sensors were
equipped with directional antennas [37] which have 110 degrees of horizontal beamwidth to mitigate
the interference outside the monitored region.

The experiments are carried out in two different environments. The first environment is an outdoor
environment, as shown in Figure 7. 20 RF sensors were uniformly placed at the perimeter of the
monitored region. The distance between two adjacent sensors was D = 1.9 m. Hence, the area of the
square monitored region was 9.5 m × 9.5 m = 90.25 m2. The target moved in the area surrounded
by wood boards with a thickness of 3 cm and a height of 1.8 m. The second environment is a typical
indoor environment, as shown in Figure 8. We can see that there were tables, chairs and walls in the
environment and hence it is a multipath rich environment. 16 RF sensors constitute a monitored region
of 6 m × 6 m.
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RF sensor

(b)

Figure 8. The indoor experimental environment: (a) a sketch of the experimental layout and
(b) photography of the experimental environment.

7.1. Results of Outdoor Experiment

In the following, we will evaluate the energy efficiency and localization performance of the
proposed method in the first environment.

7.1.1. Efficiency Comparison

First, to compare the energy efficiency between the traditional mode and the binary mode,
the sensors were allowed to work in the two modes successively. Considering that the energy consumed
by all sensors during one round of measurement is proportional to the updating time because the
emitted power of all sensors are equal, less updating time means lower energy consumption. Thus,
updating time of a link in the traditional work mode and in the binary mode are compared. The fields
length of the two types of frames are chosen as Fh = 17 Bytes, FID = 1 Byte and FD = 1 Byte. Actually,
the minimum length of header is limited by IEEE 802.15.4 protocol. If users able to develop protocols
regardless of IEEE 802.14.5 protocol, the header length can be remarkably reduced. Moreover, note that
the link state updating time of the proposed mode is time-varying depending on the position of target.
Thus, we let the target randomly move within the monitored area and the sensors measures the RSS or
the states of the links simultaneously.

Figure 9 shows the updating time in the traditional work mode and the proposed work mode
during 1000 rounds of measurements, respectively. The threshold γ is set to 4 dB. We can see that the
updating time in the traditional mode almost keeps unchanged to be 30.4 ms. In contrast, the updating
time in the proposed work mode is only about 14.7 ms, which is reduced by 52% compared to that in
the traditional work mode. Moreover, if we zoom the figure, we can see that the updating time in the
proposed work mode varies when the target is moving within the monitored area because the number
of obstructed links is different when the target is located at different positions.

If we increase the threshold γ, the energy efficiency can be further enhanced. Figure 10 shows
the updating time of a link in the proposed work mode when the threshold ranges from 0 dB to 8 dB.
We can see that the updating time can be reduced to 14 ms when the threshold is 8 dB. However,
larger threshold means less links detected to be obstructed by the RF sensors, which will degrade
the localization performance. Therefore, we should make a trade-off between energy efficiency and
localization performance. Considering that the attenuation of RSS due to obstruction usually ranges
from 5 dB to 10 dB [1], we choose the threshold as 4 dB to keep most obstructed links.
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Figure 9. Updating time in the traditional mode and the binary mode.
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Figure 10. Updating time versus threshold in the binary mode.

7.1.2. Localization Results

First we verify the localization performance of GML estimation in single snapshot scenario.
The binary work mode is applied to all the RF sensors to enhance energy efficiency. In this experiment,
the updating time ∆t is about 14.7 ms as shown in Figure 9. We select NT = 9 test positions in the
monitored region, which are marked by red crosses, as shown in Figure 7. A person stands still at each
position for a while which allows the RF sensors to measure the link states.

Localization error is a commonly employed metric to quantify the localization performance.
Let xt denote the true position of the target at time instant t and x̂t denote the estimation given
by GML or PF. Thus, Localization error et can be calculated as et = ‖xt − x̂t‖. If there are NT time
instants of measurements, the root mean square estimation (RMSE) of position, which is written as

RMSE=
√

1
NT

∑NT
t=1 ‖xt − x̂t‖2 can be used to evaluate the localization performance.

The parameters are set to φ = 6 dB, κ = 20, σ = 2 dB and γ = 4 dB. The parameters of GML
are chosen as ∆υ = 0.1 m. Thus, the monitored region can be divided into 95 × 95 grids. Figure 11
shows the likelihood value p (zt|qn) at each grid for the 9 test position, respectively. For visualization,
likelihood value has been quantized into the range [0,1]. The pixel with brighter color implies larger
likelihood value and the brightest pixel reveals the position of the target. In Figure 11, the true position
of target is marked by cross. We can see that the brightest pixel is very close to the true position
at each test position, meaning that GML achieves good localization performance. For comparison,
the localization results of RTI in [1] using raw measurements are also presented. The localization
results of RTI and the proposed GML method are listed in Tables 1 and 2, respectively. We can see that
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the RMSE of the proposed method is 0.317 m, which merely increases 0.035 m compared to the RMSE
of RTI. It means that the binary work mode does not sacrifice large localization performance.
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Figure 11. The heatmap of likelihood value for GML at the 9 test positions.

Table 1. Localization Results of RTI.

Position Index True Estimated Localization Error (m)

1 (2.14,2.31) (2.40,2.05) 0.3677
2 (4.22,2.31) (4.28,2.08) 0.2353
3 (6.30,2.31) (6.35,1.85) 0.4627
4 (2.14,4.31) (2.45,4.05) 0.4046
5 (4.22,4.31) (4.25,4.15) 0.1628
6 (6.30,4.31) (6.25,4.25) 0.0781
7 (2.14,6.31) (2.45,6.25) 0.3158
8 (4.22,6.31) (4.15,6.25) 0.0922
9 (6.30,6.31) (6.35,6.25) 0.0781

RMSE 0.2819

Table 2. Localization Results of GML.

Position Index True Estimated Localization Error (m)

1 (2.14,2.31) (2.3500,2.0500) 0.3342
2 (4.22,2.31) (4.35,1.95) 0.3828
3 (6.30,2.31) (6.35,1.85) 0.4627
4 (2.14,4.31) (2.45,4.15) 0.3489
5 (4.22,4.31) (4.35,4.05) 0.2907
6 (6.30,4.31) (6.25,4.25) 0.0781
7 (2.14,6.31) (2.45,6.25) 0.3158
8 (4.22,6.31) (4.45,6.45) 0.2693
9 (6.30,6.31) (6.45,6.15) 0.2193

RMSE 0.3171

7.1.3. Tracking Results

To explore the performance of the tracking method in the binary work mode, a person moves
along the rectangular trajectory, as shown in Figure 12 at a speed of 0.5 m/s. Meanwhile RF sensors
measure the states of the links and send the measurements to the local PC which runs the MATLAB
routines of PF tracking algorithm.
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The noise variance σ and threshold γ are still chosen as σ = 2 dB and γ = 4 dB. The motion
parameters of the target are chosen as σx = σy = 0.5 m/s2. The parameters of PF are NPF = 1000 and
Nth = 2/3.
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Figure 12. Tracking result of (a) traditional mode using raw measurements; and (b) binary mode using
link states in the outdoor environment.

We compare the the tracking performance using PF in the binary mode and the traditional mode [8]
respectively. Figure 13 shows the cumulative distribution function (CDF) of localization error given
in the two modes. The RMSE of tracking results of the binary mode and traditional mode are 0.17 m
and 0.16 m, respectively. The tracking performance between the two modes seems to be insignificant,
which again verifies that the binary states are sufficient to track the target without performance loss.
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Figure 13. CDF of localization error.

7.2. Results of Indoor Experiment

In the following, we will evaluate the energy efficiency and localization performance of the
proposed method in the indoor environment.
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7.2.1. Efficiency Comparison

Figure 14 displays the updating time in the proposed work mode and traditional work mode in
the indoor environment. The threshold parameter is set to 4 dB and the other parameters are the same
with those in the outdoor environment. It is shown that the updating time in the proposed work mode
significantly reduces compared to that in the traditional work mode. To be more specific, the updating
time in the traditional work mode is 21.65 ms and the mean updating time in our proposed work mode
is 11.74 ms, decreased by 45.8%. The percentage of time reduction shrinks compared to the outdoor
environment. It is because multipath fading is severe in the indoor environment, which results in more
false alarms.

Figure 15 shows the change of updating time when the threshold varies from 0 dB and 8 dB.
We can see that, as threshold increases, the energy efficiency reduces, which is consistent with the
result of outdoor environment.
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Figure 14. Updating time in the traditional mode and the binary mode.
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Figure 15. Updating time versus threshold in the binary mode.

7.2.2. Localization and Tracking Results

In the second environment, the target walks along the predefined trajectory at a speed of 0.3 m/s,
as shown in Figure 8. To investigate the performance of GML in the second environment, we utilize
GML method to localize the target independently at each moment. Figure 16 shows the corresponding
localization results of GML. For sake of comparison, we also present the localization results of RTI
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method which works in the traditional work mode. We can see that at most time moments, the position
estimation provided by GML well agrees with the true positions of the target. At serval positions,
the localization error is larger than 1 m. It occurs because multipath interference is dramatic at these
positions. The RMSE of GML in the indoor environment is about 0.414 m, degraded by 23% compared
to the outdoor environment.
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Figure 16. The localization result of (a) RTI; and (b) GML method.

We also present the tracking results using PF in the indoor environment, as shown in Figure 17,
which gives the estimated trajectories using PF in the traditional work mode and proposed binary
work mode, respectively. Moreover, the CDFs of tracking for the two methods are drawn in Figure 18.
We can see that there is no significant difference between the two estimated trajectories, which implies
that the tracking performance using binary work mode results in little performance degradation.
The RMSE of the two methods are given by 0.21 m and 0.22 m. Therefore, it proves that the proposed
binary work mode and target localization methods are also effective in the indoor environments.
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Figure 17. Tracking result of (a) traditional mode using raw measurements; and (b) binary mode using
link states in the outdoor environment.
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Figure 18. CDF of localization error.

8. Conclusions

In this paper, we first propose a binary mode of RF sensors to deal with the data transmission
disaster encountered when many RF sensors are deployed in the monitored region. In the proposed
binary work mode, the RF sensor only provides the link state, i.e., whether the link is obstructed
or not instead of directly sending raw RSS measurements. The amount of transmitted data linearly
increases with the growth of number of RF sensors, which is favorable for the batteries powered
sensors. Moreover, we cope with two scenarios of target localization in the new binary mode. The first
scenario is that the target is assumed to be stationary. We propose GML localization method which
has low online computation burden. The aim of localization in the second scenario is to track the
target. Due to the high nonlinear feature of measurement model, particle filter is employed to give the
Bayesian estimation of the target’s position. Real experiments in both outdoor and indoor environment
are conducted to verify the effectiveness of the proposed work mode and localization methods.
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