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Abstract: Image interleaving has proven to be an effective solution to provide the robustness of image
communication systems when resource limitations make reliable protocols unsuitable (e.g., in wireless
camera sensor networks); however, the search for optimal interleaving patterns is scarcely tackled in
the literature. In 2008, Rombaut et al. presented an interesting approach introducing a packetization
mask generator based in Simulated Annealing (SA), including a cost function, which allows assessing
the suitability of a packetization pattern, avoiding extensive simulations. In this work, we present a
complementary study about the non-trivial problem of generating optimal packetization patterns.
We propose a genetic algorithm, as an alternative to the cited work, adopting the mentioned cost
function, then comparing it to the SA approach and a torus automorphism interleaver. In addition,
we engage the validation of the cost function and provide results attempting to conclude about its
implication in the quality of reconstructed images. Several scenarios based on visual sensor networks
applications were tested in a computer application. Results in terms of the selected cost function and
image quality metric PSNR show that our algorithm presents similar results to the other approaches.
Finally, we discuss the obtained results and comment about open research challenges.

Keywords: robust image communication; packetization method; block interleaving; genetic
algorithms; camera sensor networks

1. Introduction

It is known that, when sending multimedia data through communication networks, the inherent
presence of packet loss can lead to discernible quality degradations at the receiver side [1]. Moreover,
when the Packet Loss Rate (PLR) is significant, loss control becomes a relevant issue for reliable
(or semi-reliable) communication protocols, being commonly addressed with active concealment
techniques [2], such as those based in Forward Error Correction (FEC) or Automatic Repeat-reQuest
(ARQ) [3,4]. Nevertheless, the use of such techniques is unsuitable in many applications for which
energy, time and/or bandwidth (among others) are considered as very scarce resources. For those
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cases, even if unable to perform error correction, interleaving methods have proven to be effective on
the reduction of the impact of network errors [5].

Interleaving methods take advantage of the usual spacial redundancy of multimedia data. Indeed,
neighboring blocks of data are usually similar or highly correlated in multimedia, e.g., in digital
images, we expect to find similar intensities in the pixels of a given region representing a single object
or area (similar examples be found in sound). Interleaving methods can be used to enhance error
robustness by simply spreading neighboring blocks of data in different and distant data packets, so
that, if packets are lost, it may be still possible to find the neighboring blocks of those that were lost in
other (well received) packets, so the missing information can be better estimated by using a passive
error concealment method (e.g., works in [6,7]). This kind of technique has been proposed for being
part of energy-aware wireless sensor systems, in real-time video transmission and radio broadcasting,
among others [8–13].

This paper focuses on the particular case of two-dimensional still image interleaving, but
modifications to the presented proposals can be performed in order to apply them to other kinds of
multimedia data (such as sound or video). Let us denote P as the number of packets necessary to
transmit an image f (H ×W). For the rest of this paper, we consider that the packetization scheme
searches for sending an integer quantity of the entire data blocks in a packet, so that each of the P− 1
first packets is as full as possible, and a data block is either entirely received or entirely lost. Figure 1
shows an example of image interleaving for the said error resilience principle.

f(0,0)

f(H-1,W-1)

f(0,1) f(0,2) ... f(0,W-1)

...

...

... ...

...

f(H-1,0) f(H-1,1) f(H-1,2) ...

...

f(0,0)

f(0,1)

f(0,2)Image ( ) to be transmittedf(HxW)

Packet 1

Packet 2

Packet 3

Figure 1. Basic packetization scheme using block interleaving.

Following the example, if Packet 2 is lost, we could find useful information to give an acceptable
estimation of f (0, 1) original values by using information in Packets 1 and 3 (in the case that these
packets are correctly received), assuming that the values of blocks f (0, 0) and f (0, 2) are fairly similar
to those in f (0, 1). Now, considering the huge amount of possible solutions, the determination of
an optimal packetization scheme through exhaustive search becomes extremely unsuitable. This
amount of possible solutions depends on various factors, including the amount and size of the blocks
of pixels (codified or not) to be packetized and the size of the packets payload.

In the literature, it is possible to find different approaches for performing interleaving-based
packetization, where most of them are based in deterministic mathematical or procedural functions
that map an input coordinate (x, y) into another one (x′, y′). One example is the work in [8], were a
Torus Automorphism (TA) was applied as a part of a communication system for resource-constrained
wireless camera sensor networks devices. Of course, in the matter of this paper, the effectiveness of
the interleaving scheme is assessed by its capability to enhance robustness, hence by its capability to
allow a perceptual enhancement of the decoded images at the receiver side. As the number of possible
scenarios is impossible to handle by state-of-the-art computational equipment, the finding of a good
interleaving function, and the search for its optimal parameters, is a non-trivial task. In the absence of
a fitness function able to assess an interleaving scheme, simulations are required. In [11], we performed



Sensors 2017, 17, 981 3 of 22

an experimental comparison of various block interleaving techniques found in the literature, showing
results of exhaustive simulations with every possible parameter for each evaluated method, for a
large amount of loss patterns over a single input image. Results in terms of Peak Signal-to-Noise
Ratio (PSNR) show a slight advantage of TA in front of other interleaving schemes, for the considered
scenarios. To the best of our knowledge, this work is the only work in the literature in trying to
exhaustively evaluate image interleaving schemes as error-robust techniques; most of the published
works provide experimental results with very few cases. Nevertheless, as the required amount of
computing time is significant, this experience highlights the need for higher performance computing
techniques and, moreover, new evaluation methods.

Avoiding exhaustive simulations for assessing said processing techniques calls for evaluation
functions, whose design is not trivial because various considerations must be made. Moreover,
the validation of such an evaluation functions is also non-trivial. In [14], the authors present what
seems to be the only evaluation function for an interleaving scheme. Such an evaluation function
is used as the cost function of a Simulated Annealing (SA) implementation able to find optimal
packetization masks.

In this paper, we propose a Genetic Algorithm (GA) for the generation of pseudo-optimal
packetization masks, as an alternative to the method proposed by Rombaut et al. in [14], for enhancing
error resilience in image transmission schemes. In particular, the contributions of this work are twofold:
Firstly, we design the GA capable of calculating packetization masks adopting Rombaut’s evaluation
function, and we compare it with Rombaut’s SA and TA, which was reported as a good mathematical
interleaving technique [11]. Secondly, we provide exhaustive simulation results for analyzing the
relationship between the adopted cost function and the quality of reconstructed images after applying
the calculated packetization masks as a part of a virtual communication system subject to packet loss.

The rest of this paper is organized as follows: In Section 2, we present the theoretical background
and related works on image interleaving for enhancing error resilience in image communication
systems. Section 3 describes the genetic algorithm we designed and implemented in order to generate
packetization masks for image communication. Results in terms of the cost function proposed by
Rombaut et al. and image quality metric PSNR are discussed in Section 4. Finally, Section 5 concludes
and gives future directions of this work.

2. Background on Image Interleaving for Error Robust Communication

Due to its simplicity and effectiveness, various works have adopted image interleaving for
enhancing image communication robustness. In [15], the coordinate of the following blocks to be
packetized is calculated by considering a separation of step blocks in a line-by-line lecture of the
captured image. In [16], the authors propose the calculation of the new coordinate for a block to be
packetized by applying a Backermap. A similar approach is adopted in [8,17], where a chaotic torus
automorphism is applied to enhance the robustness of a real-world wireless camera sensor network.

Given selectable parameters, all of the mentioned approaches represent mathematical functions
that map a given initial coordinate to a new one as an injection, i.e, for every input coordinate (x, y),
there is only one calculated output coordinate (x′, y′), and for each input (x′, y′), we can find the exact
original coordinate (x, y) by applying the inverse method (of course, we need to find the original
order at the decoder side). As said, calculated coordinate (x′, y′) is performed to select the next block
to be packetized. Even if such techniques are efficient and effective for enhancing robustness in
a communication system, the search for optimal packetization patterns is still poorly studied. Indeed,
most approaches behave always the same way, but there are no evaluation methods that give us a clue
about, given a certain scenario, which interleaving pattern is the most suited.
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In [11], we performed exhaustive simulation (i.e., brute-force search, simulating every possible
combination of parameter in a certain range) of interleaving methods in [8,16,18], representing
hundreds of computing simulation hours. The results of this work throw slight favor to the TA
approach based on [8], but the complexity of the evaluation process calls for evaluation functions that
allow one to anticipate the suitability of a given approach avoiding such a computing effort. In that
matter, an interesting approach is proposed in [14], where an optimization function is proposed in
order to assess packetization masks (a particular representation of a packetization pattern) in terms of
the robustness that they can provide to an image communication system. This evaluation function is
included in an SA algorithm providing pseudo-optimal packetization masks. The evaluation function
could also be useful to evaluate block-sampling techniques, such as the work in [19]. In this work, we
adopt such a technique and propose a GA as an alternative of the implemented SA. The proposal is
compared with a sequential communication and algorithms based on TA [8] and SA [14], which are
briefly described in the reminder of this section.

2.1. Interleaving Method Based on Torus Automorphisms

Torus Automorphisms (TA) are strongly chaotic systems that can be adapted as a two-dimensional
permutation transform [20]. A classical implementation is the one that uses Arnold’s cat map and
has been adopted as interleaving function for image communication systems in various published
works [8,17,21]. As said, a main quality of such a method is its chaotic results, ensuring pseudorandom
interleaving (still being possible to get the original configuration), apart from not incurring excessive
energetic waste due to the simplicity of its execution. Equation (1) illustrates the permutation function
that calculates a new coordinate (x′, y′) as function of a previous one (x, y), considering a N × N
blocks squared matrix. (

x′
y′

)
=

(
1 1
k k + 1

)n (
x
y

)
mod N (1)

2.2. Rombaut Interleaving

In [14], Rombaut et al. present a packetization method introducing a cost function for
packetization mask assessing. A packetization mask is a packetization scheme representation consisting
of a matrix of integer values f (H ×W), where each element fs,t stores the sequence number of the
packet transporting the block in coordinates (s, t) from the original image (the data can be codified or
not). Rombaut et al.’s proposal is the optimal packetization mask search based on Simulated Annealing
(SA) (see Algorithm 1) along with a Metropolis algorithm (see Algorithm 2).

Algorithm 1 Rombaut et al.’s Simulated Annealing [14].
1: Initialize Tk with the initial temperature T0 {this is a user selectable parameter}.
2: Generate an initial packetization mask mask {randomly}.
3: while the equilibrium is not reached do

4: [mask, best_mask]←Metropolis(mask, best_mask, Tk)
5: Decrease temperature Tk. {This can be done by doing Tk ← T0 ∗ αk, where k increases at each

iteration.}
6: end while
7: return best_mask
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Algorithm 2 Rombaut et al.’s Metropolis algorithm [14].
Require: Input mask {The current packetization mask (from a previous iteration) which is used as

basis for generating a new one.}, input best_mask {Current best packetization mask.}, input Tk

{Current temperature.}
1: Initialize mask.
2: while the equilibrium is not reached do

3: Generate a new mask, new_mask, using as basis previous mask mask.
4: Calculate delta_penalty as delta_penalty ← penalty(new_mask) − penalty(mask) {penalty()

corresponds to to SA’s cost function which must be minimized, and is described in Section 3.3.}
5: Calculate threshold as: threshold← e

(
delta_penalty

Tk

)
6: if rand(1) < threshold {rand(1) calculates a random real number in range [0, 1].} then

7: mask← new_mask
8: if threshold > 1 then

9: best_mask← new_mask
10: end if
11: end if
12: end while
13: return [mask, best_mask]

3. Proposal

Genetic algorithms are well-known metaheuristics inspired by Darwin’s theory of evolution. They
apply direct analogies of the principle of survival of better adapted individuals to certain environments
over time [22]. A GA consists of making a population of individuals, P(t), evolve by making it
pass through random processes, as those observed in biological evolution (particularly, crossover and
mutation), and a selection process according to a criterion, which allows deciding which individuals are
the best adapted [23]. Briefly speaking, a GA randomly generates an initial population of individuals,
assigning a fitness value to each one (a calculated value representing its “quality”with respect to
the others); then, it applies stochastic operators, such as selection, crossover and mutation, over the
population, aiming to generate a new population of individuals. These processes are successively
repeated until a certain stopping criterion is accomplished. This stopping criterion can be the execution
of a certain number of iterations (generations) or the finding of an individual with a fitness with some
desired characteristics.

When developing genetic algorithms, the main components to design are: (1) the codification
scheme; (2) the initial population; (3) the fitness function; (4) the selection process; (5) the crossover;
(6) the mutation; (7) the replacement (the pass to the next generation); and (8) the stopping criterion.
The following subsections describe the components of the proposed GA in order to find suitable
solutions to the explained interleaving problem. The adopted codification scheme and the crossover
and mutation operators correspond to components adopted in works where it is necessary to maintain
all of the elements of a sequence (permutations) consistent [24,25].

3.1. Codification Scheme

As the codification scheme, we adopt a stream of different integer numbers to represent a given
chromosome. The integer numbers symbolize the image’s blocks to be packetized in a line-by-line
sequence, such as illustrated in Figure 2. In [25], this kind of codification scheme is considered as
a natural representation in problems requiring symbolizing a sequence. In this paper, we represent
an individual I as a vector of (N ×M) different integer numbers, where N and M are the number of
rows and columns of the matrix of blocks to packetize.
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Image
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representation
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Figure 2. Illustration of the adopted codification scheme to represent a chromosome.

Note that each block contains a certain number of pixels. In image processing, many compression
algorithms divide the image into blocks of pixels, and then, they apply some transform over each block.
For example, the JPEG algorithm works over blocks of 8× 8 pixels; the TiBsalgorithm works over
blocks of 2× 2 pixels [17], and so on. For simplicity (and this is the principle adopted in this paper),
many interleaving-based schemes consider packetizing each block as a whole in one packet, so the
entire block is either received or lost. With this, as explained before, the quality of a packetization
scheme is based on its capacity to increase the probability of receiving neighboring blocks to a lost one
considering that neighboring blocks can be used to estimate the intensities of a missing one.

3.2. Initial Population

An initial population of Tp candidate solutions is randomly generated from the search space,
through random permutations of a vector of (N ×M) integer values as illustrated in Figure 3.

( 1 2 3 4 5 6 7 8 )     Individual 1

( 1 2 6 4 5 3 7 8 )     Individual 2

( 2 1 6 7 5 3 4 8 )     Individual 3

                                                  .

                                                  .

                                                  .

Individual Tp

Figure 3. Example of initial population generation.

3.3. Fitness Function

In order to evaluate candidate solutions, in this work, we adopt the cost function proposed by
Rombaut et al. in [14], addressed as Rombaut’s Cost Function (RCF). This function evaluates the
interpolation mask used for packetization, which is based on properties that, according to the authors,
enhance the packetization robustness. RCF is a function to minimize; hence, the closest to zero possible
value is the optimal solution.

According to Rombaut et al.’s notation, an image is defined as a signal f defined in the
discrete domain D. According to that, a packetization interpolation mask is defined as a matrix
f = { f0,0, f0,1, . . . fN−1,M−1} where fs,t contains the number of sequences of the data packet in which
the block at coordinate (s, t) is transported.

The evaluation function Q is thus given by the combination of three terms as described by
Equation (2):

Q(B) = αQ1(B) + βQ2(B) + γQ3(B) (2)

where:

B: represents the solution,
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Qi(): (i ∈ {1, 2, 3}) corresponds to the properties of a proper packetization, according to
Rombaut et al., namely:

1. a large enough distance between packets, considered by factor Q1,
2. maximal spreading over the packets of the set of elements necessary to reconstruct

an element j, considered by factor Q2, and
3. maximal spreading of the elements necessary to reconstruct all of the elements of

one packet over all of the other packets, considered by factor Q3. Finally,

α, β and γ: allow considering the importance of each desired property and are calculated with the
knowledge of a determined packet loss model.

Equations for calculating factors Qi, α, β and γ are given in the Appendix at the end of this paper.

3.4. Selection

After evaluation, the best adapted individuals are selected for the next generation, i.e., solutions
with higher fitness values are selected with higher probability than others with lower fitness, so the
survival of the best adapted individuals principle is imposed. In our work, we adopt the roulette
wheel selection, which consists of assigning to each individual x of the current generation a section of
size P(x) representing its probability to be chosen, so that ∑ P(x) = 1, ∀x [26].

3.5. Crossover

Crossover combines parts from two or more solutions, in order to create new (and possible better)
solutions. Crossover is the operator that gives to genetic algorithms its strength; it allows that different
solutions share genetic information; thus, it is expected that, over the generations, the combination of
two or more good individuals generates better solutions.

In this work, we adopt Order Crossover (OX1) [27], which is applied to find solutions to the
classical Traveling Salesman Problem (TSP) in [24,25], providing good results in comparison with other
crossover operators.

OX1 includes an associated crossover probability, Pc, which determines whether a pair of
individuals cross or not. If two individuals, P1 and P2, are selected to cross, Algorithm 3 describes the
creation of resulting individuals H1 and H2 that we implemented for our interleaving problem.

3.6. Mutation

Unlike crossover, the mutation process operates in particular individuals separately. The mutation
operator is used to generate new chromosomes (individuals) by (generally, in a random way) changing
little portions of a given individual. In this work, we adopt the mutation operator known as Inversion
Mutation (IVM), also referred to as inverted displacement mutation, as has been reported in various
studies as having advantages for solving TSP [24,25]. IVM consists of taking a segment of the
chromosome, inverting its values and re-introducing them in a new location.

The operator has an associated mutation probability Pm, which determines whether an individual
generated after crossover mutates or not. In our proposal, we adopt Pm as a fixed input parameter of
the algorithm.

In genetic algorithms, mutation’s role is to allow restoring the lost or unexplored genetic material
or in the population, aiming to prevent the premature convergence to sub-optimal solutions. Indeed,
such changes are necessary because, as the less adapted members of the population are discarded,
some aspects of their genetic material could be definitively lost. Through random changes in
chromosomes, the new individuals can explore a place of the space domain, which is not possible to
reach with simple crossover.
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Algorithm 3 Order Crossover (OX1) algorithm for the interleaving problem.
Require: Parent P1 = {P1(0), P1(1), . . . , P1(N.M− 1)} {The first individual to cross, with P1(i) ∈
{1, 2, . . . , N.M} and ∀i 6= j, P1(i) 6= P1(j).}

Require: Parent P2 = {P2(0), P2(1), . . . , P2(N.M− 1)} {The second individual to cross, with P2(i) ∈
{1, 2, . . . , N.M} and ∀i 6= j, P2(i) 6= P2(j).}

Require: Cutting points c1 and c2, with c1 < c2, and c1 ≥ 0 and c2 ≤ (N.M− 1).
1: Initialize the first resulting individual, H1, as a vector of N.M elements. {Let us start with

generating H1.}
2: Copy elements from P1(c1) to P1(c2) into H1(c1) to H1(c2).
3: i← (c2 + 1) mod (N.M)
4: j← i
5: while i 6= ((c1− 1) mod (N.M)) do

6: if P2(j) is not in H1 then

7: H1(i)← P2(j)
8: i← (i + 1) mod (N.M)
9: end if

10: j← (j + 1) mod (N.M)
11: end while
12: Initialize the second resulting individual, H2, as a vector of N.M elements. {We continue by

generating H1.}
13: Copy elements from P2(c1) to P2(c2) into H2(c1) to H2(c2).
14: i← (c2 + 1) mod (N.M)
15: j← i
16: while i 6= ((c1− 1) mod (N.M)) do

17: if P1(j) is not in H2 then

18: H2(i)← P1(j)
19: i← (i + 1) mod (N.M)
20: end if
21: j← (j + 1) mod (N.M)
22: end while

3.7. Replacement (Passing to the Next Generation)

Some decisions must be made about making genetic material pass to the next generation.
The new population can be entirely conformed of new individuals, resulting of the genetic operators
crossover and mutation, or it can be a fraction of surviving individuals from the current population
(PS: Percentage of Survival). This percentage is also known as gap generation [28]. In our proposal,
we adopt a PSas a fixed input parameter of the algorithm.

3.8. Stopping Criterion

The stopping criterion consists of defining which condition(s) make a genetic algorithm stop
iterating. Usually, it consists of reaching a certain number of iterations, which is called the maximum
Number of Generations (NG), and/or finding an individual with a fitness value satisfying certain
characteristics. In our proposal, as the stopping criterion, we adopt the following conditions:
(1) defining a maximum number of generations, NG, as a fixed input parameter of the algorithm;
and (2) finding an individual with a fitness value equal to zero, which is a desired (not always
possible) optimum.
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3.9. The Genetic Algorithm

The explanations above underlie a probabilistic process that can be very complex, with multiple
possible solutions. Because of the complexity of the problem, in this work, we adopt the most simple
version of a GA described in Algorithm 4.

Algorithm 4 Adopted genetic algorithm (general description).
1: t← 0
2: Initialize P(0) {as defined in Section 3.2.}
3: Evaluate P(0) {with RCF described in Section 3.3}
4: while stopping condition {as defined in Section 3.8} is not reached do

5: t← t + 1
6: Select P(t) from P(t− 1) {with Selection strategy defined in Section 3.4}
7: Apply Crossover and Mutation over P(t) to create new individuals P′(t) {following the

procedures described in Sections 3.5 and 3.6}
8: Evaluate P′(t) {with RCF}
9: Replace P(t) from P′(t) and P(t− 1) {applying description in Section 3.7}

10: end while

4. Experimental Results

4.1. Evaluation by RCF Optimization

In this section, we analyze the enhancement in robustness allowed by our proposal, according
to the RCF. Comparisons with torus automorphism in [11] and Rombaut’s SA [14] are also given.
Different strategies where implemented in the Java language (Java 8 Update 91) and executed in an
HP Envy 4-1152la computer with an Intel Core i5-3317U 64-bit processor, 8 GB RAM, 128GB SSD and
Windows 8.1 PRO as the operating system.

For evaluation purposes, we select a number of different scenarios that represent various possible
situations reported in the application field of Wireless Visual Sensor Networks (WVSN) [29,30].
We must note that, even if we restrict the number of scenarios to some particular cases due to the
problem’s complexity, the number of scenarios simulated in this paper exceeds most of the related
works found in the literature. Eight application scenarios were selected, differing in mask sizes
( f matrix) and the number of elements per packet P. For simplicity, we consider a fixed Packet Loss
Rate (PLR) of 0.2, based on previous applications, which show that this represents a usual situation
in real-world WVSN, such as the work in [8] (note that this simplifies Prob(Nlost = i) calculation in
Equations (A6)–(A8) to one if i corresponds to the 20% of the required amount of packets and zero
in any other case). In any case, we must argue that, from experimentation, we observe no significant
changes in resulting RCF when varying (even greatly) PLR, for the selected evaluation scenarios.

Note that, as the optimization problem considers mask size and elements per packet as input
parameters, not making any specifications about the blocks content, one combination of parameters
(and the resulting output) can be applied to many application cases. For example, a mask size of
8× 8 blocks with a number of elements (blocks) per packet P = 6 may, represent, in the same way,
the following application cases:

1. The input image has a 8× 8 pixel resolution, codified in 8 bpp and divided in blocks of 1× 1 pixels
(by pixels) to be packetized into packets of six bytes of payload (so, six elements per packet),

2. the input image has a 8× 8 pixel resolution, codified in 4 bpp (so it is compressed) and divided
in blocks of 1 × 1 pixels (by pixels) to be packetized into packets of three bytes of payload
(so, six elements per packet),

3. The image is 64× 64 pixels resolution, codified in 1 bpp, divided in blocks of 8× 8 and packetized
into packets of 48 bytes of payload (so, six elements per packet).
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The considered scenarios for the evaluation of the packetization mask generation are summarized
in Table 1. As usual, each case considers a squared number of blocks, defining masks of N× N elements.

As said, selected parameters are based on related works with application in WVSN. Parameters
scenarios were selected considering:

1. Maximum block size according to the JPEG standard (8× 8)
2. Image sizes according to real-world WVSN resolutions 16× 16, 32× 32, 64× 64 and 128× 128.
3. Payload packets according to various reported applications, particularly: 27 bytes (as Cyclops

camera firmware [31]) and 100 bytes as works in [32,33] related to IEEE 802.15.4 XBee modules [34].

For evaluation purposes, the following parameters were selected for each considered method:

• For the proposed Genetic Algorithm (GA):

– Number of executions (number of times the algorithm was executed with the same parameters,
but different random seeds): 20

– NG = 500
– Tp = 150
– Pc = 0.8
– Pm = 0.03
– PS = 0.2

• For Rombaut Simulated Annealing (RA):

– Number of executions: 20
– Equilibrium criteria for SA: 500 iterations
– Equilibrium criteria for the Metropolis algorithm: 150 iterations
– T0 = 1, 500, 000
– SA acceptance probability α = 0.9 (according to [35,36])

• For Torus Automorphisms (TA):

– Best parameters k and n (Equation (1)) obtained by exhaustive search for each different
scenario (according with methodology in [11]). Identified parameters are presented in Table 2.

Table 1. Evaluation scenarios for evaluating packetization mask generation.

Scenario Mask Size (N × N) Elements per Packet (P)

1 8 × 8 6
2 8 × 8 25
3 16 × 16 6
4 16 × 16 25
5 16 × 16 27
6 16 × 16 100
7 32 × 32 6
8 32 × 32 25

Table 2. Best parameters found for TA for each evaluation scenario.

Scenario k n

1 4 1
2 3 1
3 1 7
4 4 2
5 12 6
6 1 3
7 1 2
8 12 9
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Obtained results are in terms of the average Best-obtained RCF (BRCF) from all of the iterations,
for the case of GA and RA, and of the Obtained RCF (ORCF) for the case of deterministic cases
Without Interleaving (WI; i.e., sequential communication line-by-line) and TA with its best parameters.
Each BRCF value is obtained by averaging the best result of each of the 20 executions for the
corresponding iteration number (so it represents the average best results of the genetic algorithm at
a certain number of iterations, for a given number of executions).

Results for each scenario are shown in Figure 4.
Obtained BRCF values for GA and RA at the considered 500 iterations, for each evaluation

scenario, are shown in Table 3. ORCF for the TA and WI cases are also given. Finally, the table also
shows the Average RCF (ARCF) for GA and RA, which represents the average of all of the results at
the 500th iteration, for each evaluation scenario.

Table 3. RCF results for the test scenario.

Scenario WI ORCF GA BRCF GA ARCF RA BRCF RA ARCF TA ORCF

1 29.2727 5.8364 6.3186 9.3091 9.3363 8.7455
2 109.3333 20.0000 23.7894 31.3333 31.3333 24.6667
3 383.2625 227.4618 229.1624 217.495 218.1787 295.495
4 217.3091 20.0364 21.6105 18.4364 18.5327 23.3455
5 250.8222 22.7778 24.6070 20.1778 20.5511 23.7778
6 557.3333 141.3333 150.0000 112.6667 117.7333 114.0000
7 2778.2573 2550.3018 2550.3139 2557.0901 2557.0901 2550.3018
8 898.7805 244.3707 249.9034 206.7951 209.8641 522.9854

As a general rule, the results summarized in Table 3 (and each of the graphics in Figure 4) show
better RCF results of interleaving-based methods in comparison with the non-interleaving case (WI).
In terms of the best obtained RCF values, Scenarios 1, 2 and 7 show that the proposed GA presents
equivalent or superior results to RA and TA, while only in Scenarios 1 and 2, the average RCF obtained
by GA outperforms the other methods. In Scenarios 3, 4, 5 and 8, the best results were reported by RA.
Finally, in Scenarios 6 and 7, the obtained results are slightly in favor of TA.

Regarding the performance of the proposed metaheuristic with respect to the deterministic method
TA, most of the considered scenarios show the advantage of our GA, but this advantage seems to
decrease as the complexity of the problem increases. Indeed, Scenarios 1 to 4 (also 8) present better
performance of GA, but, when the amount of possible combinations increases (because of the mask
size), TA seems to perform better. The same observation can be done for RA. In this sense, there is
still an open question about the number of iterations necessary for botGA and SA, in order to reach
solutions as best as possible, or a more suitable stopping criterion. What is clear (and is not said in other
works) is that TA, even if effective, is far from ensuring optimal values as observed in Scenarios 3 and 8.

In the matter of the metaheuristic approaches’ comparison, even if the number of generated
solutions and iterations was the same for both GA and RA, the RCF values reached for those methods
differ. Indeed, only in Scenarios 1, 2 and 7, GA results overtake RA, while in Scenarios 3 to 6 and 8,
RA shows the best RCF results. Regarding their behavior, GA does not present abrupt changes over
the iterations, while RA presents a temporary big acceleration on the improvement of the calculated
RCF around Iteration 150.

From these results, even if GA achieved good RCF values in various cases, better or equal to
other methods, in most of the scenarios, the better results were achieved by RA or TA. Even though,
it is difficult to evaluate this disadvantage because there are no recipes to assess a difference of one
RCF point. Indeed, results are in terms of an absolute value coming from penalty functions, but it
results in being hard to estimate which difference is significant. We expect to find a valuable answer
by using the generated packetization masks for communicating images through unreliable channels,
as commented in the following subsection. Anyway, the first results are encouraging, and future works
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could enhance these indicators by applying other kinds of operators or (event) computing approaches,
such as parallel or distributed computing.
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Figure 4. Average results for GA, SA, TA and WI for each considered scenario. (a) Scenario 1;
(b) Scenario 2; (c); Scenario 3; (d) Scenario 4; (e) Scenario 5; (f) Scenario 6; (g) Scenario 7; (h) Scenario 8.
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About the execution times, the eventual enhancing of the resulting patterns allowed by using
metaheuristics contrasts with their required time of execution. Indeed, the calculation of TA (and
other deterministic methods) is performed in a few milliseconds [11]. Actually, TA complexity is low
enough to be implemented in very resource-constrained hardware [8]. Simulation times for RA and
GA are summarized in Figure 5. Of course, execution times depend on the hardware adopted and the
implementation itself. For the executions of the selected scenarios, our implementations of RA and GA
spend almost the same time. For example, for a 32× 32 mask (mask size = 1024), the obtained average
execution times are around 250 and 268 minutes for GA and RA, respectively. This is much too complex
for being applied in real time or resource-constrained devices, even if enhancements can be allowed by
using other kinds of platforms (like parallel or distributed computing), but the real goal of applying
metaheuristics for this kind of problem is to provide optimal parameters for off-line analysis and design.
In particular, this kind of solution can be valuable for, e.g., providing comparison references to evaluate
how “optimal”a packetization mask, obtained by deterministic/fast methods, is, the off-line design of
the optimal packetization mask for sensor hardware or interleaver chip designs, etc.
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Figure 5. Comparison of the execution times between RA and GA. Pointed lines are fitted curves to the
obtained samples.

4.2. Image Quality Assessment Results

Results reported in Section 4.1 allow one to observe the behavior of our GA compared with
the considered related works RA and TA, in terms of their reached RCF values. From all of the
executions, from each of the considered method, we select the best obtained patterns (masks) in
order to evaluate the improvement in the quality of images transmitted through unreliable media
using simulation framework Sim-LIT 2.0 [37]. Sim-LIT allows analyzing the effects of packet loss in
communicated images, providing results in terms of the well-known quality assessment metric PSNR
(Peak Signal-to-Noise Ratio). As said above, the considered scenarios are based on WVSN, so we select
images in typically adopted resolutions and color depths. For testing purposes, we select:

• eight different loss rates: 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80%,
• 200 different, randomly generated, loss distributions, for each different PLR, and
• eight different uncompressed (raw) 8 bpp grayscale images.

For testing, and in order to consider different kinds of images, we select classical testing images
Baboon, Barbara, Cameraman, F-16, Goldhill, Lena, Peppers and Sailboat, which are depicted in Figure 6.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6. Images adopted for image quality assessment: (a) Baboon, (b) Barbara, (c) Cameraman,
(d) F-16, (e) Goldhill, (f) Lena, (g) Peppers and (h) Sailboat.

For estimating the intensities of missing pixels, we adopt the average value of an eight-connected
pixel neighborhood, as the error concealment technique.

Finally, the considered parameters defining the simulation scenarios are summarized in Table 4.

Table 4. Scenarios corresponding to the evaluation based on other parameters.

Scenario Image Resolution Block Size Payload Partitions Number of Packets Mask
(pixels) (bytes) (bytes) (Elements) to Transmit Size

A 16× 16 1× 1 27 27 10 16× 16
B 64× 64 2× 2 100 25 41 32× 32

Simulation results are presented separately by packetization mask and image. Without loss of
generality and due to the enormous quantity of obtained data, we describe only results analysis
Scenario A and examples of reconstructed images for Scenario B. We must argue that the rest of the
scenarios and executed simulations behave in a similar way. With this, we attempt to provide results
to validate the suitability of the selected metric.

Figure 7 presents the average PSNR of reconstructed images, as a function of the loss rate.
Each graphed average result corresponds to the 200 resulting images at each different PLR. As seen,
in terms of average PSNR, interleaving-based communication using GA, RA and TA indeed achieves
better qualities of the reconstructed images than the sequential communication case (WI). However,
the obtained quality results do not allow one to observe discernible differences among the selected
interleaving schemes, resulting in average PSNR fairly similar for all GA, RA and TA, even if they
obtain quite different RCF results. A similar observation can be made by looking at the results in
Figure 8, where the highest and lowest resulting PSNR for all of the reconstructed images are presented.

Reconstructed images from Scenario B in Table 5 show the effect of data loss, when applying
a packet loss rate of 50%, per each of the adopted images used in the simulations. These results
correspond to the highest reached PSNR from the 200 loss distributions (at a 50% PLR) after applying
the best GA packetization mask and WI communication. As seen, even if the resulting RCF for the WI
and GA cases are distant, the obtained image qualities are similar, as when high PLR occurs, a good
packetization in terms of RCF does not ensure good reconstruction of missing information. This is
rather a combination of factors, including error concealment and the losses’ nature.

Table 6 shows the Baboon image reconstructed after applying different loss rates (10%, 30%, 50%
and 70%), for the WI case and the interleaving-based schemes based on GA, RA and TA according
to their best resulting packetization masks (from the 200 distributions), corresponding to Scenario B.
As the previous case, even if the resulting RCF are different, PSNR results are fairly similar.

The previous comments are reinforced by Figures 9 and 10, which contrast, for Scenarios A and B,
respectively: (a) the best obtained RCF per algorithm; and (b) the best PSNR results. Both cases present
results with an applied loss rate of 20%
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Figure 7. Average PSNR results for Scenario A, per testing image. (a) results for Baboon; (b) results
for Barbara; (c) results for Cameraman; (d) results for F-16; (e) results for Goldhill; (f) results for Lena;
(g) results for Peppers; (h) results for Sailboat.
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Figure 8. Highest and lowest PSNR results for Scenario A, per testing image. (a) results for Baboon;
(b) results for Barbara; (c) results for Cameraman; (d) results for F-16; (e) results for Goldhill; (f) results
for Lena; (g) results for Peppers; (h) results for Sailboat.
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Table 5. Obtained images with the highest reached PSNR after simulations with 50% PLR, Scenario B.

Original WI Case (RCF = 898.7805) GA-Based Case (RCF = 244.3707)

Image Image with Losses Reconstructed Image Image with Losses Reconstructed Image

Baboon PSNR: 21.6493 dB PSNR: 22.2398 dB

Barbara PSNR: 20.7704 dB PSNR: 20.9886 dB

Cameraman PSNR: 22.1295 dB PSNR: 21.8912 dB

F-16 PSNR: 20.4662 dB PSNR: 20.5709 dB

Goldhill PSNR: 22.4507 dB PSNR: 23.2100 dB

Lena PSNR: 20.9367 dB PSNR: 20.5371 dB

Peppers PSNR: 18.1289 dB PSNR: 18.9816 dB

Sailboat PSNR: 18.7318 dB PSNR: 19.4676 dB

 0

 100

 200

 300

 400

 500

 600

 700

B
R

C
F

 |
 O

R
C

F

Method

WI

GA
RA TA

(a)

 10

 15

 20

 25

 30

 35

P
S

N
R

 (
d
B

)

Method

WI GA
RA

TA

(b)

Figure 9. Results from Scenario A, at a 20% packet loss. The figure contrasts the (a) best RCF values
reached with packetization masks generated by GA and the other applied methods; and (b) the PSNR
values reached on the evaluation of image quality for the image Baboon.
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Figure 10. Results from Scenario B, at a 20% packet loss. The figure contrasts (a) the best RCF values
reached with packetization masks generated by GA and the other applied methods; and (b) the PSNR
values reached on the evaluation of image quality for the image Baboon.

Table 6. Reconstructed images with best PSNR reached after simulations applying masks from the WI,
GA, RA and TA cases, Scenario B.

Loss Rate
Reconstructed Images

WI Case GA Case RA Case TA Case
(RCF = 898.7805) (RCF = 244.3707) (RCF = 206.7951) (RCF = 522.9854)

10%
PSNR: 30.7916 dB PSNR: 31.1916 dB PSNR: 30.9109 dB PSNR: 31.0231 dB

30%
PSNR: 25.2869 dB PSNR: 25.6539 dB PSNR: 25.4085 dB PSNR: 25.7146 dB

50%
PSNR: 21.6493 dB PSNR: 22.2398 dB PSNR: 22.1582 dB PSNR: 22.5291 dB

70%
PSNR: 19.2372 dB PSNR: 19.6966 dB PSNR: 19.6124 dB PSNR: 19.8461 dB

5. Conclusions

The problem of finding a packetization pattern with genetic algorithms was tackled.
This technique allows one to engage the huge amount of possible solutions to the problem, when
robustness against packet loss is required. This problem has been treated very little in the literature,
but it has enormous application in image communication systems where resource savings are required.

Patterns generated by the proposed GA were evaluated using as the fitness function the
cost function defined by Rombaut et al. in [14], which evaluated a resulting packetization mask
in accordance with three main properties. The proposed GA, along with the proposed SA by
Rombaut et al. and a TA-based interleaver, was tested in different scenarios using parameters from
WVSN works. Results in terms of obtained RCF (the selected fitness metric) present significant favor
for interleaving methods against simple sequential non-interleaved packetization. Research results
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show that, however, no determinant conclusion can be made about what implemented interleaving
method is best suited, as they present similar results, some in favor of GA and some in favor of the
other. Moreover, there is no basis of comparison to determine how much points of RCF represent a
significant difference when comparing two different masks. In terms of image quality assessment,
research results allow one to show that, even if clear differences can be obtained by RCF, visual
observation and PSNR results do not vary much in most of the considered cases. Most of these
conclusions are due to the fact that, for the inability to access better computing equipment, we limited
our study to cases where the size of the data blocks is high in comparison to the matrix sizes, so the
amount of possible combinations is low. In any case, our results put in evidence the need for evaluation
metrics that consider these facts, providing useful information about the suitability of packetization
patterns as a technique for enhancing robustness in image communication. In this sense, it is expected
to prove the statistical representativity of the results, which is no treated in the literature. To be
more useful, a proper evaluation function should represent results in terms of image quality, but also,
the comparison methodologies must be validated. Other image quality metrics will be considered
in future works, such as the structural similarity index (SSIM). Furthermore, new techniques for
finding optimal patterns are required; as future work, we expect to study other kinds of a approaches,
such as Particle Swarm Optimization (PSO) and the Greedy Randomized Adaptive Search Procedure
(GRASP). The proposed GA, even if it does not overcome the other interleaving functions, presents
promising results at the level of other related works. Further works will consider the application of
parallel computing and other genetic operators. As a final comment, most of these issues are still open,
presenting challenging problems to the research community.

Acknowledgments: This works was supported by Conicyt-Chile under Fondecyt Grant No. 11121657 and the
University of the Bío-Bío under grants DIUBB 161610 2/R and GI 160210/EF. Furthermore, the authors thank
María Angélica Pinninghoff Junemann for her invaluable advice, which allowed improving the quality of the
obtained results, and Eric Orellana-Romero for providing useful technical information at the first stages of
this work.

Author Contributions: All authors contributed to the development of the paper. Katherine Zapata-Quiñones
designed and developed the genetic algorithm operators and performed the simulation. Cristian Duran-Faundez
and Vincent Lecuire contributed with the definition and modeling of the general problem, development
of TA and Rombaut functions and experiment design. Gilberto Gutiérrez collaborated with ideas and
experience on genetic algorithms and contributed to the modeling of the final solution and parameter
specification. Christopher Arredondo is the main developer of the SimLIT 2.0 framework and contributed
with the programming of experimental results and the obtainment of the image quality results. Hugo Jara Lipán
contributed in metaheuristics software design and implementation, incorporating many details that enhanced the
quality of the final solution. All authors collaborated with the results analysis and general discussions. All authors
contributed to the writing of the manuscript and its revision.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ARCF Average RCF (from a set of values)
BRCF Best-obtained RCF (from a set of values)
GA Genetic Algorithm
IVM Inversion Mutation
ORCF Obtained RCF
PLR Packet Loss Rate
PSNR Peak Signal to Noise Ratio
RA Rombaut et al.’s Algorithm
RCF Rombaut’s Cost Function
SA Simulated Annealing
TA Torus Automorphisms
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TSP Traveling Salesman Problem
WI Without Interleaving
WVSN Wireless Vision Sensor Networks

Appendix A. Calculation of Terms of RCF

According to [14], RCF terms are calculated as follows:

Q1(B) =
1
P

P−1

∑
i=0

#SB
i −1

∑
k=0

#SB
i −1

∑
l=0
l 6=k

C(d(sBi,k, sBi,l )) (A1)

Q2(B) =
1

P(P− 1)

P−1

∑
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P−1

∑
j=0
i 6=j

#SB
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∑
k=0

#SB
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∑
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∑
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1(d(sBi,k, sBj,l ) ≤ dN) ≥ 2

 (A2)
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#SB
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#SB
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l=0

1(d(sBi,k, sBj,l ) = dn)− Nn,j

∣∣∣∣∣∣
 (A3)

where:

#Si: is the number of elements in packet Si.
sBi,k: is the position of the k-th element in the packet i of the partition.
d(s, t): is the distance between s and t given by:

d(s, t) =
√
(xs − xt) mod M + (ys − yt) mod N (A4)

C(d): is the cost associated with the distance d. This cost function C(d) is directly related to
the error concealment technique (the technique that allows estimating the intensities
of a lost block by using the correctly received ones). In this work, we adopt as the
error concealment technique the average of the eight directly connected (and, of course,
correctly received) blocks, so we define C(d) as:

C(d) =

{
1 if d = 1∨ d =

√
2

0 otherwise
(A5)

1(expr): evaluates expression expr. If expr is true, it returns 1 (one); otherwise, it returns
zero (zero).

dN: according to the error concealment technique, is the distance by which the more distant
element needed to reconstruct a missing block is from that block in the original image.
In this case, it is considered N = 3, dN = 2.

Nn,j: is the amount of elements that a packet should have.

Factors α, β and γ are calculated as:

α =
P

∑
u=0

iProb(Nlost = i) (A6)

β =
P

∑
i=0

i(i− 1)Prob(Nlost = i) (A7)

γ =
P

∑
i=0

i(i− 1)Prob(Nlost = i) (A8)
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where Prob(Nlost = i) is the probability of, according to the considered packet loss model, losing
i packets.
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