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Abstract: Background: Coaches in elite swimming carefully design the training programs of their
swimmers and are keen on achieving strict adherence to those programs by their athletes. At present,
coaches usually monitor the compliance of their swimmers to the training program with a stopwatch.
However, this measurement clearly limits the monitoring possibilities and is subject to human error.
Therefore, the present study was designed to examine the reliability and practical usefulness of
tri-axial accelerometers for monitoring lap time, stroke count and stroke rate in swimming. Methods:
In the first part of the study, a 1200 m warm-up swimming routine was measured in 13 elite swimmers
using tri-axial accelerometers and synchronized video recordings. Reliability was determined using
the typical error of measurement (TEM) as well as a Bland-Altman analysis. In the second part,
training compliance both within and between carefully prescribed training sessions was assessed in
four swimmers in order to determine the practical usefulness of the adopted accelerometric approach.
In these sessions, targets were set for lap time and stroke count by the coach. Results: The results
indicated high reliability for lap time (TEM = 0.26 s, bias = 0.74 [0.56 0.91] with limits of agreement
(LoA) from −1.20 [−1.50 −0.90] to 2.70 [2.40 3.00]), stroke count (TEM 0.73 strokes, bias = 0.46
[0.32 0.60] with LoA from −1.70 [−1.94 −1.46] to 2.60 [2.36 2.84]) and stroke rate (TEM 0.72 str·min−1,
bias = −0.13 [−0.20 −0.06] with LoA from −2.20 [−2.32 −2.08] to 1.90 [1.78 2.02]), while the results
for the monitoring of training compliance demonstrated the practical usefulness of our approach
in daily swimming training. Conclusions: The daily training of elite swimmers can be accurately
and reliably monitored using tri-axial accelerometers. They provide the coach with more useful
information to guide and control the training process than hand-clocked times.
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1. Introduction

Coaches in elite sports carefully design individual training programs to optimize training effects
in their athletes. A prerequisite for adequate evaluation of the effectiveness of the training process is the
compliance of the athlete to the training schedule [1]. Compliance is the fulfillment of the training aims
as defined by the coach. Traditionally, in swimming, coaches monitor training with stopwatches in
order to determine the time over a specified distance, usually lap time and/or stroke rate [2]. Although
simple, fast and practical in use, time recordings are subject to human error. Davey et al. [3] found
a standard deviation (SD) of 0.6 s in manually timed 200 m freestyle trials compared to video-based
timing. According to Hopkins [4] this would imply a typical error of measurement (TEM) of 0.42 s
over this distance. In the 2016 Olympic 200 m freestyle for men this would have been the difference
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between the swimmer finishing in the second and the sixth place, respectively. This effect has also
been observed in running, for which Ebben et al. [5] showed that manual timing was more prone
to variability than electronic timing when measuring sprint times. Moreover, the error is likely to
increase when the number of athletes supervised per coach increases. In swimming, coaches often
simultaneously monitor 10 swimmers or more, starting, turning and finishing within short intervals
from each other, sometimes even on different sides of the pool. This implies that coaches need to
gain information on both lap time and stroke rate for all athletes in the pool at the same time. This
highlights the need for more accurate monitoring tools in swimming, a need that has become even
greater when realizing that the differences between elite athletes have decreased considerably over the
years and increasingly larger investments are necessary to achieve performance gains [6]. For example,
the relative difference between the first and last finisher in the men’s Olympic 100 m freestyle final has
decreased gradually from 4.3% in 1976 to 1.7% in 2016.

When highly accurate and reliable measurements are required, coaches often use video with a
standard frame rate of 50 Hz. However, while video analysis is very useful for accurate measurements
and observational learning [7], it is too time-consuming for the monitoring of daily training practice,
in particular because the aquatic environment causes considerable difficulties for the analysis of video
footage [8,9]. Recent developments in water-resistant, commercially available tri-axial accelerometers
provide opportunities for continuous monitoring of multiple swimmers with high reliability. Various
studies have examined the use of accelerometers for the determination of lap time, stroke count and
stroke rate for various stroke types [8,10–13]. For instance, Davey [11] showed that lap times derived
from accelerometers were significantly more accurate than manually collected data. Several authors
have demonstrated the validity and reliability of stroke rate and stroke count using either zero-crossing
or peak detection algorithms [3,12,14–16]. Similarly, other relevant parameters can be detected such
as kick count and rate [17]. In a recent review, Magalhaes et al. [18] concluded that accelerometers
provide a reliable tool to assess the biomechanics of swimming performance. They suggested that they
allow for continuous monitoring and for detecting changes in swimming technique due to fatigue on
the basis of accelerometer output signals. Furthermore, there is wide methodological variation in the
different studies concerning sensor location, swimming level and experimental protocol [18].

In brief, accelerometers constitute a promising tool for continuous monitoring of multiple
athletes during training, but reports of their use during daily training of elite swimmers are lacking.
Although good reliability and validity have been demonstrated [3,10–20], the experimental protocols
used thus far were relatively short and did not cover whole training sessions. To our knowledge
very few articles have studied all stroke types [12,15,16], and if so, this was typically done with a
small number of subjects of undefined level [18] and without detection of the finish as described
by Davey et al. [3]. In addition to higher reliability, accelerometers can be used to measure
multiple parameters simultaneously enabling the coach to glean extra useful information from the
measurements. It is particularly interesting to verify if swimmers fulfill the training aims as defined by
the coach, i.e., if they show compliance [1].

Therefore, the present study was conducted to: (1) investigate the reliability and (2) the practical
implementation of accelerometers in swimming training. The aims were to improve the algorithms
from the current literature, for all swimming strokes, to measure a complete training session of
elite swimmers, and to demonstrate application possibilities in the daily training environment. We
hypothesized that: (1) stroke type, lap time, stroke count and stroke rate could be reliably measured for
all stroke types for multiple swimmers simultaneously using tri-axial accelerometers, and (2) tri-axial
accelerometers can be used to determine the compliance of elite swimmers to the training program
prescribed by the coach, enabling fast and accurate feedback on multiple parameters simultaneously.
The study was divided in two parts, respectively labeled ‘Reliability’ and ‘Practical usefulness’, to test
these hypotheses.
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2. Materials and Methods

2.1. Participants

Thirteen elite swimmers (five female, eight male) participated in the first part of this study
(reliability). All swimmers were members of the Dutch national team. Characteristics of each swimmer
are given in Table 1. Swimmers trained approximately 28 h per week, consisting of 20 h of swimming
and 8 h of dry land training. Subjects 2, 4, 8 and 9 also participated in the second part of the study
(practical usefulness). Their coach was highly experienced and had supervised swimmers during
the 2008, 2012 and 2016 Olympic Games, including European, World and Olympic medal winners.
The study was approved by the Ethical Committee of the Faculty of Human Movement Sciences,
Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. Swimmers were verbally instructed and
signed an informed consent form before any measurements were conducted. Written parental consent
was obtained for swimmers younger than 18 years of age.

Table 1. Subject characteristics presented in descending order of FINA points. M = Male, F = female,
BU = butterfly, FC = front-crawl, BA = backstroke, BR = breaststroke. FINA points were obtained from
www.swimrankings.net (12 September 2016). Four of the subjects also participated in part 2 of the
study, as indicated in the last column.

Subject Gender
(M/F) Age Height

(cm)
Weight

(kg)
Experience

(Years) Stroke Highest FINA
Points Part 1 Part 2

1 F 29 182 66 24 BU, FC 974 Yes No
2 M 26 193 85 21 FC 940 Yes Yes
3 M 20 190 80 14 BA 881 Yes No
4 M 27 203 93 20 FC 869 Yes Yes
5 M 25 190 82 13 BR 865 Yes No
6 F 18 179 62 14 FC 861 Yes No
7 M 19 183 73 12 BR 853 Yes No
8 M 18 198 98 9 BU 841 Yes Yes
9 F 17 172 61 9 FC 803 Yes Yes
10 F 17 180 72 8 FC 798 Yes No
11 F 17 177 60 10 BA 788 Yes No
12 M 19 195 85 10 BU, FC 779 Yes No
13 M 17 185 76 7 FC 690 Yes No

Mean 21 187 76 13 858
SD 4 9 12 5 66

2.2. Experimental Set-Up

Measurements took place in an Olympic sized swimming pool during regular training sessions.
The first part of the study (see Section 2.2.1) was performed at the regular training environment of
the swimmers, the Sloterparkbad, Amsterdam, The Netherlands. The second part was conducted at
Thanyapura Sports & Leisure Club (Thalang, Thailand) during a three-week training camp. Water
temperature was approximately 27 ◦C in both swimming pools throughout the testing periods.
Moreover, humidity and pressure were similar in both locations since the sensors were under water at
all times. Hence, there was no reason to presume that the difference in measurement environment
would have an effect on the results.

2.2.1. Video Recordings

The pool in Amsterdam was equipped with seven cameras, five under water (scA1400-30gc,
50 Hz, Basler, Ahrensburg, Germany) and two above the water line (Basler piA640-210gc, 200 Hz). All
cameras were synchronized and calibrated for measurements in lane 2, enabling a continuous view
of the first 15 m of swimming (see Figure 1a). Synchronization and recording was performed using
Streampix (version 5.10.1.0, ×64, Norpix Inc., Montreal, QC, Canada) on an ACP 4360 MB computer
(3.20 GHz, 64 bit Windows 7 professional SP 1, Advantech, Taipei, Taiwan). Recordings of each camera
were stored in ‘*.seq’ format on a 2 TB hard drive dedicated specifically to the data from that camera.

www.swimrankings.net
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A separate camera (Coolpix AW-120, 25 Hz Nikon, Tokyo, Japan) was placed to obtain an overview of
the entire pool.
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Figure 1. Experimental setup. (a) Positioning of the cameras. White cameras are positioned underwater;
black cameras are positioned above the water line. (b) Sensor location on the upper back secured with
film dressing. Picture taken by the researchers with the swimmer’s permission.

2.2.2. Tri-Axial Accelerometers

A Zephyr Bioharness 3 (Annapolis, MD, United States) was used to gather and store (in binary
format) acceleration data at a sample frequency of 100 Hz. This sensor consists of a tri-axial
accelerometer with a range of from −16 g to +16 g and a 12 bit resolution. It had the following
characteristics: dimensions 28 mm × 7 mm, weight 18 grams, operating temperature between −30
and +60 ◦C and waterproof up to 1 m (IP67). The sensor was placed on the upper back midway
between the inferior angle of the left and right scapula using Tegaderm semi-permeable film dressing
(10 cm × 12 cm), see Figure 1b. This location was chosen for optimal comfort and minimal drag after
pilot testing with regard to user experience. After the measurements the sensors were placed in a unit
provided by the manufacturer to be transferred via a USB connection to a computer.

2.3. Experimental Protocol

For the first part of the study both the cameras and the accelerometer were used for the
determination of stroke type, lap time, stroke count and stroke rate. First, the accelerometer was
switched on and fixed to the swimmer’s body at the position described above. Synchronization
between the accelerometer and the cameras was ensured by a researcher tapping the accelerometer
three times with his right hand clearly visible in front of the 2.5 m above water camera (Figure 1a),
a modified version of the routine used by Schoonderwalt et al. [21]. Swimmers then performed a
warm-up protocol designed by the coach (Table 2). Video and accelerometer data were collected
throughout the warm-up. During this warm-up swimmers swam at a self-selected speed with no
requirements on lap times. The warm-up phase was chosen in agreement with the coach. All swimmers
performed the same protocol, unlike during regular training. Moreover, from a practical point of view,
it was only possible to obtain a maximum of 45 minutes of video recording due to memory restrictions.

Table 2. The warm-up protocol performed in part 1 of the study. FC = front-crawl, BA = backstroke,
BR = breaststroke, BU = butterfly.

Repetitions Distance Task Rest

1 400 100 FC, 50 BA, 50 BR, 100 FC, 50 BA, 50 BU 20 s
1 300 50 kick, 100 pull, 50 kick, 100 pull 20 s
1 200 Individual Medley 20 s
1 100 Pull 20 s
4 50 Uneven: technical drills. Even: Build-up from start to finish 20 s

Total 1200



Sensors 2017, 17, 990 5 of 14

The second part of the study was performed during a three-week training camp in January 2016
in preparation for the 2016 Olympic Games. Four athletes, subjects 2, 4, 8 and 9, were measured with
accelerometers in the same way as in part 1 during six very similar training sessions. In each session
several identical repetitions of one lap were performed with a target lap time (at one decimal) and
stroke count set by the coach, indirectly specifying a certain stroke rate. Swimmers were asked to count
strokes and to comply with the goals set by their coach. This is something they can do themselves,
without any aids. Researchers had no influence on the training program. The results for the six sessions
were compared to examine differences between sessions. After discussion with the coach, the fifth
session was selected with a prescribed rate of perceived exertion (sRPE) above 8 [22] to examine
the compliance within this session. In this session, the swimmers performed four sets of six times
50 m high intensity front-crawl followed by 300 m front-craw pull with paddles and 100 m recovery.
As before, the target lap time and stroke count in the six times 50 m were determined by the coach.

2.4. Data Processing

2.4.1. Video data

The video data were manually digitized with custom made software code in Matlab
(The Mathworks™, Natick, MA, USA, R2014b, 8.4.0.150421, 64 bit). Several events were digitized:
tapping of the accelerometer for synchronization, stroke type of each lap, push-off (last moment of
contact with the wall), first moment of contact with the wall of each finish, and entry of the hand for
each visible stroke. From these events, the following parameters and characteristics were determined:

• sync time: moment of synchronization between accelerometer and cameras;
• time per 100 m (T100): the time difference between a push-off to the next push-off or finish that

was visible in the video data;
• stroke type: front-crawl, backstroke, breaststroke or butterfly;
• stroke count: number of strokes per lap;
• stroke rate: the inverse of the time it takes to complete one stroke (from one entry of the right

hand to the next).

An expert operator manually performed the digitization process. The intra-operator reliability
was obtained by analyzing the data of two different swimmers twice. TEM, defined as the SD of the
difference divided by square root 2 [4], for push-off (n = 24) and entries of the right hand (n = 40) was
0.01 s, while TEM for the finish (n = 12) was 0.02 s.

2.4.2. Acceleration Data

Acceleration data were processed with custom-made software code in Matlab. In part 1, the
same variables were determined from the acceleration data as from the video data: stroke type, T100
(from lap time), stroke count and stroke rate. First the raw data were converted from binary format to
acceleration in g (g = 9.81 m·s−2), following the specifications provided by the manufacturer. All data
processing was based on low-cost methods in order to be able to apply the algorithms in a real-time
environment in the future. Signal energy levels (the square of the signal after a high-pass second
order Butterworth filter) were calculated for the acceleration in x-, y- and z-direction (ax, ay and az,
see Figure 1b) in accordance with the work of Davey et al. [3]. From these, energy envelopes XE, YE
and ZE were made using an exponentially weighted moving average (α = 0.001 [23]). The moving
average was used to smooth the signal (with more weight for the most recent values) and obtain
clear differences in signal energy in order to distinguish the different stroke types. Also, the resultant
acceleration (ar, using the Euclidean norm) and a corresponding energy envelope (AE) with α = 0.1
were calculated. Separate methods were then used to determine each parameter:

• SyncTime. Detection of three peaks corresponding to the tapping of the accelerometer via manual
selection of the maxima.
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• Stroke type detection was performed for each data-point using a combination of orientation and
energy content of the signal as done by Davey et al. [3], but modified for the Zephyr Bioharness 3.
Backstroke was identified by a negative signal along the y-axis. For differentiation between
front-crawl, butterfly and breaststroke several thresholds were necessary. Similar to Davey et al. [3]
the thresholds were based on empirical analysis of large amounts of collected data. When ZE
exceeded 0.2 g2, data were identified as front-crawl. When XE was above 0.1 g2 data were
identified as butterfly. Below this threshold but above 0.05 g2, data were identified as breaststroke.

• Lap time and T100. The ax data were low-pass filtered with a second order Butterworth filter of
5 Hz [12]. Subsequently, a numerical gradient of the data along the x-axis was used. The resulting
signal was squared to determine its energy content. Finally, maxima in the signal energy above
0.02 g2 were selected as push-off. To detect finishes, moments of rest and swimming were defined.
Swimming was defined to occur when AE was above 0.005 g2 (some activity had to take place)
and ax above −0.6 g (when swimmers were almost in a vertical position). Rest was defined to
take place when AE and ax were below these values, i.e., when swimmers were in an almost
upright position and showed little activity. The finish was detected when a transition occurred
from swimming to rest and both AE and ax remained below the thresholds for at least a 10-frame
window (i.e., 0.1 s). Lap time was the difference between a push-off and the first following
push-off or finish larger than 20 s. T100 was the summed lap time of an uneven lane and the
following even lane.

• Stroke count and stroke rate. The ay and az data were filtered with a second order Butterworth
band-pass filter between 0.25 (to remove gravitational effects) and 0.5 Hz [3,24]. Local maxima
were detected when the sum of ay and az exceeded 0.1 g and maxima were separated by at least
0.5 s but no more than 4 s, corresponding to stroke rate between 15 and 120 strokes per minute
(str·min−1). Furthermore, strokes were neglected when detected within 1 second of a push-off.
Stroke count was defined as the number of maxima within a lap; stroke rate was defined as the
reciprocal of the time difference between two maxima in str·min−1.

A graphical illustration of the data analysis is shown in Figure 2.
For part 2, lap time, stroke count and stroke rate were determined as in part 1. In addition, another

set of parameters was derived. From stroke rate, the mean and SD of stroke rate per lap were calculated
and the first stroke within each lap was determined as an indication of the underwater phase duration.
Finally, an indication of the stroke index (SI) [25] was calculated using the average velocity per lap (v)
and stroke length (SL):

SR = v·SL (1)

v was calculated by dividing the pool length through lap time (LT):

v = 50/LT (2)

while SL was calculated by dividing v through the stroke rate (SR, in Hz):

SL = v/SR (3)



Sensors 2017, 17, 990 7 of 14Sensors 2017, 17, 990  7 of 14 

 

 

Figure 2. Illustration of the analysis of the acceleration data to obtain lap times, strokes and stroke 

type. (a) raw data with detected strokes (grey dots) and push-offs (black squares). Acceleration (in g) 

in x-, y- and z- direction is shown by a continuous, dashed and dotted line, respectively. A stroke was 

neglected if it occurred within 0.5 s of a push-off. (b) Energy envelope of the signal (in g2) in x-, y- and 

z-direction and resultant acceleration calculated using an exponentially weighted moving average: 

XE, YE, ZE and AE are shown with a black, grey, dashed and dotted line, respectively. The values are 

used to detect stroke type. In this example backstroke (BA), breaststroke (BR) and front-crawl (FC) 

are shown. (c) Energy content of the signal (in g2) in x-direction (EC) from which push-offs (PO, black 

dots) are detected. Note that detection of push-offs would be more difficult in figure (b).  

2.5. Statistical Analysis 

All statistical analyses were conducted in Matlab (The Mathworks™, Natick, MA, USA, R2014b, 

8.4.0.150421, 64 bit) unless mentioned otherwise. The data were tested for normality using the 

Shapiro-Wilks test. The level of significance was set at 0.05. All data are expressed as means with SD 

within brackets. 

For part 1, the reliability of T100, stroke count and stroke rate was identified with the TEM, 

which was calculated with a spreadsheet downloaded from http://sportsci.org [4] and represented as 

absolute values. Since calculation of the TEM lacks graphic illustration, Bland-Altman analysis [26] 

was performed for lap time, stroke count and stroke rate [26] providing the bias and limits of 

agreement (LoA). 95% confidence intervals are given between brackets. Reliability of stroke type 

was given as a percentage of the total laps that were determined incorrectly.  

For part 2, descriptive statistics were used, as only 4 subjects were measured. Lap time, stroke 

count and stroke rate were determined for each lap from all sessions measured. The training output 

as measured with the accelerometers was compared for each lap with the prescribed training to 

assess the compliance within a single training. Based on the work of [4] a compliance range of ±2% 

was defined for lap time and of ±1 stroke for stroke count. Laps were labeled non-compliant (NC) 

when swimmers performed outside of this range. In addition, a range of ±1 SD from the average 

mean stroke rate, SD of the stroke rate, under water phase and stroke index was used to identify laps 

in which subjects performed significantly different for that parameter. To compare the different 

training sessions a scatter plot was made between lap time and mean stroke rate.  

Figure 2. Illustration of the analysis of the acceleration data to obtain lap times, strokes and stroke type.
(a) raw data with detected strokes (grey dots) and push-offs (black squares). Acceleration (in g) in x-, y-
and z- direction is shown by a continuous, dashed and dotted line, respectively. A stroke was neglected
if it occurred within 0.5 s of a push-off. (b) Energy envelope of the signal (in g2) in x-, y- and z-direction
and resultant acceleration calculated using an exponentially weighted moving average: XE, YE, ZE
and AE are shown with a black, grey, dashed and dotted line, respectively. The values are used to
detect stroke type. In this example backstroke (BA), breaststroke (BR) and front-crawl (FC) are shown.
(c) Energy content of the signal (in g2) in x-direction (EC) from which push-offs (PO, black dots) are
detected. Note that detection of push-offs would be more difficult in figure (b).

2.5. Statistical Analysis

All statistical analyses were conducted in Matlab (The Mathworks™, Natick, MA, USA, R2014b,
8.4.0.150421, 64 bit) unless mentioned otherwise. The data were tested for normality using the
Shapiro-Wilks test. The level of significance was set at 0.05. All data are expressed as means with SD
within brackets.

For part 1, the reliability of T100, stroke count and stroke rate was identified with the TEM,
which was calculated with a spreadsheet downloaded from http://sportsci.org [4] and represented as
absolute values. Since calculation of the TEM lacks graphic illustration, Bland-Altman analysis [26] was
performed for lap time, stroke count and stroke rate [26] providing the bias and limits of agreement
(LoA). 95% confidence intervals are given between brackets. Reliability of stroke type was given as a
percentage of the total laps that were determined incorrectly.

For part 2, descriptive statistics were used, as only 4 subjects were measured. Lap time, stroke
count and stroke rate were determined for each lap from all sessions measured. The training output as
measured with the accelerometers was compared for each lap with the prescribed training to assess
the compliance within a single training. Based on the work of [4] a compliance range of ±2% was
defined for lap time and of ±1 stroke for stroke count. Laps were labeled non-compliant (NC) when
swimmers performed outside of this range. In addition, a range of ±1 SD from the average mean
stroke rate, SD of the stroke rate, under water phase and stroke index was used to identify laps in
which subjects performed significantly different for that parameter. To compare the different training
sessions a scatter plot was made between lap time and mean stroke rate.

http://sportsci.org
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3. Results

The reliability results are presented in Table 3. The average TEM of T100 (0.26 s) was well within
the TEM of a stopwatch (0.42 s) [3,4]. Not every finish was perfectly visible on the video footage,
because other swimmers were blocking the view or because turbulence or the swimmer’s own body
obscured the hand contacting the wall. Stroke type was incorrectly determined for two laps, in which
breaststroke was identified as butterfly. This corresponded to 1.28% of all measures.

Table 3. Group differences between accelerometer and video analyses and reliability of the investigated
parameters. SR = stroke rate, PO = push-off, F = finish, T100 = time per 100 m, SC = stroke count,
ST = stroke type, TEM = typical error of measurement, CI = 95% confidence intervals, n = number
of observations.

Parameter Difference TEM (CI) n

PO (s) 0.01 0.03 (0.02–0.03) 111
F (s) 0.88 0.57 (0.49–0.69) 65

T100 (s) 0.74 0.26 (0.23–0.29) 132
SC 0.44 0.73 (0.67–0.81) 235

SR (str·min−1) 0.05 0.72 (0.69–0.75) 888
ST (%) 1.28 - 289

For the main research parameters, lap time, stroke count and stroke rate a Bland-Altman plot
was made (Figure 3). The bias for lap time was 0.74 [0.56 0.91] with LoA from −1.20 [−1.50 −0.90]
to 2.70 [2.40 3.00] and CR of 2.00. In Figure 3a two different trends for lap time can be observed, one
corresponding to laps ending with a turn and the other to laps corresponding with a finish. As noted
in Table 2, push-off detection was more reliable than finish detection. The bias for stroke count was
0.46 [0.32 0.60] with LoA from −1.70 [−1.94 −1.46] to 2.60 [2.36 2.84] and CR of 2.20. The bias for
stroke rate was −0.13 [−0.20 −0.06] with LoA from −2.20 [−2.32 −2.08] to 1.90 [1.78 2.02], and CR of
2.00. Figure 3c shows a divergence at higher stroke rate.

Sensors 2017, 17, 990  8 of 14 

 

3. Results 

The reliability results are presented in Table 3. The average TEM of T100 (0.26 s) was well 

within the TEM of a stopwatch (0.42 s) [3,4]. Not every finish was perfectly visible on the video 

footage, because other swimmers were blocking the view or because turbulence or the swimmer’s 

own body obscured the hand contacting the wall. Stroke type was incorrectly determined for two 

laps, in which breaststroke was identified as butterfly. This corresponded to 1.28% of all measures. 

Table 3. Group differences between accelerometer and video analyses and reliability of the 

investigated parameters. SR = stroke rate, PO = push-off, F = finish, T100 = time per 100 m, SC = stroke 

count, ST = stroke type, TEM = typical error of measurement, CI = 95% confidence intervals, n = 

number of observations. 

Parameter Difference TEM (CI) n 

PO (s) 0.01 0.03 (0.02–0.03) 111 

F (s) 0.88 0.57 (0.49–0.69) 65 

T100 (s) 0.74 0.26 (0.23–0.29) 132 

SC 0.44 0.73 (0.67–0.81) 235 

SR (str∙min−1) 0.05 0.72 (0.69–0.75) 888 

ST (%) 1.28 - 289 

For the main research parameters, lap time, stroke count and stroke rate a Bland-Altman plot 

was made (Figure 3). The bias for lap time was 0.74 [0.56 0.91] with LoA from −1.20 [−1.50 −0.90] to 

2.70 [2.40 3.00] and CR of 2.00. In Figure 3a two different trends for lap time can be observed, one 

corresponding to laps ending with a turn and the other to laps corresponding with a finish. As noted 

in Table 2, push-off detection was more reliable than finish detection. The bias for stroke count was 

0.46 [0.32 0.60] with LoA from −1.70 [−1.94 −1.46] to 2.60 [2.36 2.84] and CR of 2.20. The bias for stroke 

rate was −0.13 [−0.20 −0.06] with LoA from −2.20 [−2.32 −2.08] to 1.90 [1.78 2.02], and CR of 2.00. 

Figure 3c shows a divergence at higher stroke rate.  

 

Figure 3. Bland-Altman plots comparing video (Vid) and accelerometer (Acc) data for (a) lap time 

(LT, in seconds), (b) stroke count (SC) and (c) stroke rate (SR, in strokes per minute). Each dot 

indicates a data point. Black lines show the mean, while grey lines indicate the limits of agreement.  

In the second part of the study, subjects reported an sRPE of 9 (SD 0.82) for session 5. A 

comparison between accelerometer timing and manual timing was not feasible, as the coach was 

unable to measure all times for all four swimmers during the session. Three of the swimmers were 

generally compliant and one was generally non-compliant. 

Figure 4 shows an example of a dashboard that was created for one particular subject. The 

dashboard provides immediate information to a coach or sports scientist. In four laps the subject 

performed outside of the compliance range for lap time and in three laps outside of the stroke count 

range. Especially in the final set (indicated by a triangle), the subject had difficulties maintaining 

compliance. In that set, mean stroke rate, stroke index and under water phase fell out of the ±1 SD 

range.  

Figure 3. Bland-Altman plots comparing video (Vid) and accelerometer (Acc) data for (a) lap time (LT,
in seconds), (b) stroke count (SC) and (c) stroke rate (SR, in strokes per minute). Each dot indicates a
data point. Black lines show the mean, while grey lines indicate the limits of agreement.

In the second part of the study, subjects reported an sRPE of 9 (SD 0.82) for session 5. A comparison
between accelerometer timing and manual timing was not feasible, as the coach was unable to measure
all times for all four swimmers during the session. Three of the swimmers were generally compliant
and one was generally non-compliant.

Figure 4 shows an example of a dashboard that was created for one particular subject.
The dashboard provides immediate information to a coach or sports scientist. In four laps the subject
performed outside of the compliance range for lap time and in three laps outside of the stroke count
range. Especially in the final set (indicated by a triangle), the subject had difficulties maintaining
compliance. In that set, mean stroke rate, stroke index and under water phase fell out of the ±1
SD range.
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Figure 4. Compliance dashboard for subject 9 in session 5. Top row from left to right: lap time (LT),
stroke count (SC), average stroke rate (SR). Bottom row: stroke index (SI), underwater phase (UWP)
and standard deviation of stroke rate (SRsd). Each data point represents a lap, with different symbols
for different sets: = set 1, � = set 2, � = set 3, N = set 4. Black lines represent the compliance range.
Dotted black lines represent the mean value ±1 standard deviation.

Figure 5 shows the comparison between different training sessions of similar type. Subjects 2 and
8 were measured in all sessions. No data were recorded for subject 9 in session 1 due to malfunction of
the sensor, while subject 4 performed training exercises of a different type in sessions 1 and 2. Subjects 2
and 9 showed a relatively constant relationship between lap time and stroke rate over the different
training sessions. Subject 8 showed the largest spread. Especially in sessions 5 and 6, a higher stroke
rate was attained at a certain lap time. For subject 4, the stroke rate at a certain lap time in session 3
appeared to have been higher than in the other sessions measured. In the last session, subject 4 showed
a large variation in lap time and stroke rate—the pacing profile was not constant.
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Each data point represents a lap, with different symbols for different sessions (S1–S6): = session 1,
N = session 2, H = session 3, × = session 4, � = session 5, � = session 6.
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4. Discussion

In the first part of this study it was examined whether lap time, stroke count and stroke rate
can be detected with high accuracy and reliability using tri-axial accelerometers. The TEMs for the
variables of interest were: 0.26 s for lap time, 0.44 for stroke count and 0.72 str·min−1 for stroke rate.
With a TEM of 0.57 s the accuracy of the timing of the finish was considerably lower than that of lap
time. These results were confirmed by the Bland-Altman plots in Figure 3, although a slight bias was
observed for lap time and stroke count. Overall, the results obtained confirmed the first hypothesis
that stroke type, lap time, stroke count and stroke rate can be accurately and reliably measured for all
stroke types and for multiple swimmers simultaneously using commercially available, water-resistant
tri-axial accelerometers.

In doing so, the present study overcame some of the limitations of previous research; low subject
numbers [3,12,16,27], short measurement periods [3,10–17,19,20] and very few studies focusing on
all stroke types [12,15,16]. Firstly, we studied the reliability of accelerometers over a longer distance
with more participants than previously studied. Secondly, we were able to measure lap time, stroke
count and stroke rate for all four stroke types using a finish detection method similar to the one
described by Davey et al. [3]. However, even though longer measurement periods were conducted
in the present study, it was still not possible to evaluate a complete two hour training session due
to the limited memory capacity of the video recording system. Nevertheless, it is likely that the
algorithms developed can indeed be used for longer periods of time, since the results were consistent
over the entire measurement period. Whether the algorithms used are valid for swimmers of different
performance levels could not be determined, because the subjects of the present study formed a
very homogeneous group in terms of an invariably high performance level according to FINA points
(mean of 858, SD 66) [28].

The current results for accuracy and reliability were slightly higher than in previous research.
For example, Davey et al. [3] reported an accuracy of 95% for stroke time detection, while we found
an accuracy of almost 99%. In contrast, the results for stroke count and stroke rate were similar to
those reported in previous studies (TEM < 1). However, we used one algorithm with a combination
of the signal in y- and z-direction for all stroke types, whereas most previous studies focused on
front-crawl [3,29] or used separate algorithms for each stroke type [12,30]. It should be noted that
there appears to be a larger spread at higher stroke rates (Figure 3c). This is due to the 4 times 50 at the
end of the protocol which included technical drills and a build-up from start to finish (see Table 2).
Both exercises cause irregularities in the stroke rhythm, which is reflected in the results presented in
Figure 3c.

The detection of lap time was more accurate compared to that reported by Davey et al. [3].
Although the off-set was higher (0.74 s versus 0.32 s), the standard deviation was lower (0.37 s versus
0.58 s). This difference might be explained by a different definition of the start of a lane. Davey et al. [3]
used a change of orientation as the starting point, whereas we used the last moment of contact with the
wall (i.e., the push-off). The push-off is better reproducible than a change of orientation. Unfortunately,
finish detection was less reliable than push-off detection (Table 3 and Figure 3). The video recordings
showed a large spread in the manner in which a finish was made. Apparently, swimmers finished
in different ways (at least during training): some swimmers were in an almost vertical, upright
position before finishing, while others remained in supine position several moments after finishing.
Furthermore, swimmers sometimes rotated along a longitudinal axis when finishing but not always.
This rotation could lead to detection of an extra stroke, which might have caused the bias in stroke
count. The finish detection might thus be improved by encouraging swimmers to always make a good
finish, i.e., maintain a streamlined position until the wall is touched. The difficulties in finish detection
are the main reason for the bias of 0.74 s of lap time detection. The bias of the finish detection was
0.88 s. After compensation for the bias of finish detection, the bias of lap time detection was 0.02 s.
Nevertheless, it can be concluded that tri-axial accelerometers can be used to accurately and reliably
measure lap time, stroke count, stroke rate and stroke type and we demonstrated that this can be
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accomplished with low-cost processing methods that allow usage of the algorithms in real-time when
such is possible. Further improvements can be obtained by using information from additional sensors,
such as gyroscopes [17,31].

The few validation trials found in literature [18,32], often used a short testing protocol with
a limited number of laps [3,12,13,33]. In the current research 1200 m of swimming was measured
in a group of 13 swimmers. The high reliability and accuracy over a longer testing protocol are
promising outcomes for training practice. As described in the preceding, coaches currently use a
stopwatch to measure training output, usually timing various characteristics of several swimmers
simultaneously. This may lead to an especially complicated and hectic situation when swimmers are
starting and finishing on both sides of the pool, in different lanes and with different training programs
per individual. While the accuracy and reliability of the measurements by the coach rapidly declines
when more swimmers are present, the results from the tri-axial accelerometer algorithms will remain
the same and thus will be superior to manual timing. As such, the results of part 1 of the present
research were the input requirements of part 2.

The results of part 2 demonstrate that the evaluation of training compliance is possible using
tri-axial accelerometers in a group of elite swimmers (n = 4). Compliance, defined as the fulfillment of
the training aims as defined by the coach, was assessed both within and between different training
sessions. A large spread was found in the relationship between lap time and stroke rate over different
sessions with similar training aims. Hence, also the second hypothesis that tri-axial accelerometers
can be used to determine the compliance of elite swimmers to the training program prescribed by the
coach, enabling fast and accurate feedback on multiple parameters simultaneously was confirmed.
However, we were unable to study if higher compliance leads to better performance outcomes at the
important competitions of the year, because the number of participants and training sessions studied
was too small for this purpose.

The compliance boundaries of the dashboard (Figure 4) were based on the TEM of lap time and
stroke count and on SD of mean stroke rate, variation of stroke rate, stroke index and under water
phase. These boundaries were used based on the work of Hopkins [4]. However, it remains unclear
if this is the optimal range for individual athletes in sports practice. The method does provide more
detailed insight into what happens with a certain swimmer when maintaining lap time or stroke
count is difficult within a session. The fact that swimmers applied different solutions to cope with the
task highlights the necessity of individual monitoring of elite athletes [34]. The dashboard (Figure 4)
shows how stable the pacing profile is and provides the coach with more detailed information about
individual training compliance, information that the coach otherwise would not have, except for the
lap times. This information may lead to a different focus in future training sessions. For instance,
subject 9 might focus on maintaining a long under water phase to comply with a certain lap time
and stroke count. In addition, she swam the fastest lap in the first repetition of set 4. It appears she
spent too much energy, since stroke rate was high while she was unable to maintain the prescribed lap
time. The coach might tell this swimmer to control herself in the first repetition of a set in order to
maintain compliance.

To our knowledge, only Stewart and Hopkins [1] studied the compliance of exercise performance
with exercise prescription in swimming. They found that swimmers were able to perform the
prescribed distances and to stick to the rest intervals, but were less able to comply with the prescribed
velocity pace especially on an individual level as indicated by a poor relationship between prescribed
and observed velocity pace (r = 0.30). In the current research, the coach prescribed both lap time
and stroke count. Unfortunately, it is difficult to compare the results of this session with the work of
Stewart and Hopkins [1], since only one velocity (via lap time) was set in our study and not a range
of velocities.

The potential of repetitive measurements is evident from Figure 5. With this information, training
sessions can be designed with new targets for lap time and stroke count. Subject 2 and 9 showed
a small variation around the relationship between lap time and stroke rate over different training
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sessions, whereas subjects 4 and 8 showed much more variation. The question remains why this
variation occurred, how much variation is preferable or inevitable and how a coach should treat this
variation. It is unlikely that performance level explains the variation [35], because the subjects were all
elite swimmers (see Table 1). More likely, the variation might have been due to the complexity of the
task at hand, which involved an additional constraint: swimmers had to swim a certain lap time, with
a certain stroke count. This constraint is likely to have an effect on the coordination and the variability
of the stroke pattern of the swimmer [36]. Furthermore, the task was difficult from a physiological
point of view. The swimmers fatigued, which is known to lead to more variability [37]. Indeed, fatigue
leads to less efficient swimming [38]. This might be reflected in physiological parameters such as heart
rate [39] and/or in changes in intra-cyclic acceleration [40]. Future research could include heart rate
for which an additional monitor would be necessary, but it should be possible to measure intra-cyclic
acceleration with the current set-up. This will lead to interesting new areas of investigation for future
research with direct relevance for training practice.

5. Conclusions

Tri-axial accelerometers can be used to accurately and reliably measure swimming parameters and
monitor training performance. Tri-axial accelerometers may thus be used to examine the compliance of
individual swimmers to preset training targets. Moreover, they provide the coach with more, and more
detailed, information to guide and control individual training programs. When real-time processing
and transmission of the relevant data become reality, coaches will no longer have to use a stopwatch
to monitor the training of multiple swimmers. As a result, they will have more time, for instance,
to provide swimmers with feedback on technique. Continuous monitoring of the training process
with tri-axial accelerometers might offer additional information on dose-response relationships and
the balance between load and load capacity. This makes tri-axial accelerometers a powerful tool for
coaches to optimize the training program.
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