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Abstract:



Waveform sets with good correlation and/or stopband properties have received extensive attention and been widely used in multiple-input multiple-output (MIMO) radar. In this paper, we aim at designing unimodular waveform sets with good correlation and stopband properties. To formulate the problem, we construct two criteria to measure the correlation and stopband properties and then establish an unconstrained problem in the frequency domain. After deducing the phase gradient and the step size, an efficient gradient-based algorithm with monotonicity is proposed to minimize the objective function directly. For the design problem without considering the correlation weights, we develop a simplified algorithm, which only requires a few fast Fourier transform (FFT) operations and is more efficient. Because both of the algorithms can be implemented via the FFT operations and the Hadamard product, they are computationally efficient and can be used to design waveform sets with a large waveform number and waveform length. Numerical experiments show that the proposed algorithms can provide better performance than the state-of-the-art algorithms in terms of the computational complexity.
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1. Introduction


Waveform design has received considerable attention in recent years [1] and been employed in many applications, including polarimetric radar [2], multiple-input multiple-output (MIMO) radar [3,4], stealth communications [5] and the code-division multiple-access (CDMA) system. As a category of the general waveform design research [1], the design of waveform sets (i.e., multidimensional waveforms) is an important research content of MIMO radar. Generally, waveform sets are desired to have a good correlation property, which can effectively improve radar resolution, detection performance, imaging quality, the ability to obtain information and the accuracy of MIMO channel estimation [6,7,8]. In recent years, a large number of scholars has been devoted to designing waveform sets with a good correlation property. The main research covers two aspects: one is the waveform sets with good auto- and cross-correlation properties [9,10,11,12,13,14,15,16], and the other is the complementary sets of sequences (CSS) [17,18,19,20,21,22,23,24,25].



Waveform sets with good auto- and cross-correlation properties, also known as the orthogonal waveform set (OWS), have low autocorrelation sidelobes and low cross-correlation levels. In the early stage, the simulated annealing- [9] and cross entropy-based [10] methods were proposed for OWS design. However, due to the high computational complexity, these methods are not suited to design long waveforms. To improve the computational efficiency, the CAN (cyclic algorithm-new) algorithm [11] based on fast Fourier transform (FFT) is proposed to minimize the autocorrelation sidelobes and the cross-correlation. This algorithm is computationally efficient and can be used for the design of long waveforms. As it is impossible to design completely orthogonal (i.e., both the autocorrelation sidelobes and the cross-correlation are zeroes) waveform sets [11,16], [11] proposes to design the waveform sets that are orthogonal only at the specified intervals and extends the classical WeCAN (weighted cyclic algorithm-new) [26] algorithm to MIMO radar. To solve the same problem, [12] develops the LBFGS (limited-memory Broyden, Fletcher, Goldfarb and Shanno) iterative algorithm, which is more efficient than the WeCAN algorithm. However, because of the complicated linear search rule for determining the step size, the LBFGS iterative algorithm is still time consuming. Recently, the majorization-minimization (MM)-based algorithms (i.e., MM-Corr (MM-correlation) and MM-WeCorr (MM-weighted correlation)) are proposed in [14]. These two algorithms are also based on FFT operations and much faster than the CAN and WeCAN algorithms [11].



Another waveform set with a good correlation property is the complementary sets of sequences (CSS). A waveform set is called CSS if and only if the autocorrelation sum of the waveforms is a delta function [17]. CSS design is proposed to overcome the difficulty of generating a single unimodular waveform with ideal (impulse-like) autocorrelation. A common application of the CSS is the pulse compression [18,19,20]. In pulse compression radar, the complementary sequences are used to modulate consecutive pulses in a coherent pulse train. Then, the autocorrelation sidelobes can be reduced via the coherent [19] or noncoherent [18] accumulation, which can be regarded as the process of obtaining the autocorrelation sum of the complementary sequences. Moreover, due to the good correlation property, CSS has been widely applied to the CDMA system [21], ISI (intersymbol interference) channel estimation [22], orthogonal frequency division multiplexing (OFDM) [23], and many other areas. The main methods of designing CSS are the analytical construction methods, which have great limitation in generating long waveforms. To overcome this problem, [24] introduces a computational framework based on an iterative twisted approximation (ITROX) for periodically complementary sets of sequences design. Subsequently, [25] extends the CAN algorithm [26] and develops a fast algorithm named CANARY (CAN complementary). Additionally, [14] applies the MM method to the design of CSS.



In addition to the good correlation property, waveform sets are expected to have a good stopband property when the radar systems work in a crowded electromagnetic environment. Waveforms with the stopband property, also known as the sparse frequency waveforms (SFW) in many literature works, are a kind of waveforms with several frequency stopbands. The applications of SFW include ultra-wide bandwidth (UWB) systems [27], high frequency surface wave radar (HFSWR) [28,29] and cognitive radar [30]. By designing waveforms with the stopband property, it can effectively overcome the narrowband interference in the congested frequency bands. At present, there are many research works on the design of a single waveform with the stopband property [31,32,33,34,35,36], but they cannot be used in MIMO systems. Therefore, [36] proposes an iterative algorithm combined with the steepest descent (SD) method for MIMO waveform design. By searching along the gradient direction, the convergence speed of this algorithm is improved. However, the computation of the step size along the gradient direction is complicated, which makes the algorithm still costly. In order to improve the computational efficiency, [37] proposes an algorithm named MDISAA-SFW (multi-dimensional iterative spectral approximation algorithm-SFW) based on alternating projection and phase retrieval.



In this paper, we consider the problem of designing unimodular waveform sets with good correlation and stopband properties and propose a gradient-based algorithm, i.e., Gra-WeCorr-SFW (gradient-weighted correlation-SFW). By using the relationship between the correlation function and the power spectrum density (PSD), the design problem is formulated as an unconstrained minimization problem in the frequency domain. Then, the phase gradient is deduced, and its matrix form is given. In order to avoid searching the step size, we use the Taylor series expansion to derive the step size, which is more efficient than the traditional searching methods. Since both the gradient and the step size can be implemented via the FFT operations and the Hadamard product, the proposed algorithm has high computational efficiency. We also deduce the simplified algorithm named Gra-Corr-SFW (gradient-correlation-SFW), which is faster than the Gra-WeCorr-SFW, for the design problem without considering the correlation weights.



The rest of the paper is organized as follows. In Section 2, the design problem is formulated. In Section 3, we develop a gradient-based algorithm by deducing the phase gradient and the step size and then summarize the algorithm. In Section 4, the simplified algorithm for the design problem without considering the correlation weights is derived. Section 5 provides several numerical experiments to verify the effectiveness of the proposed algorithms. Finally, Section 6 gives the conclusions.



Notation: Boldface upper case letters denote matrices, while boldface lower case letters denote column vectors. [image: there is no content], [image: there is no content] and [image: there is no content] denote the complex conjugate, transpose and conjugate transpose, respectively. [image: there is no content] and [image: there is no content] denote the Euclidean norm and the Frobenius norm. [image: there is no content] and [image: there is no content] denote the real and imaginary part, respectively. [image: there is no content] denotes a diagonal matrix formed with the column vector [image: there is no content]. ∘ denotes the Hadamard product. [image: there is no content] denotes the m-th element of the vector [image: there is no content]. [image: there is no content] is the l-th iteration of [image: there is no content]. [image: there is no content] is the all-one vectors of length N. [image: there is no content] denotes the [image: there is no content] identity matrix. [image: there is no content] and [image: there is no content] denote the [image: there is no content]-point FFT and IFFT (inverse FFT) operations of [image: there is no content], respectively. [image: there is no content] and [image: there is no content] represent the FFT and IFFT of each column of the matrix [image: there is no content], respectively. In the (I)FFT operations, if the length of [image: there is no content] is less than [image: there is no content], [image: there is no content] is padded with trailing zeros to length [image: there is no content]. [image: there is no content] is the exponent arithmetic applied to the scalar, vector or matrix.




2. Problem Formulation


As mentioned in the Introduction, this paper focuses on the problem of designing waveform sets with good correlation and stopband properties. Therefore, we first establish two criteria in the frequency domain to measure the correlation and stopband properties and then formulate the waveform set design problem.



2.1. The Criterion for Good Correlation Property


Let [image: there is no content] be the complex waveform set to be designed. The vector form of each waveform can be expressed as:


xm=xm(1),xm(2),...,xm(N)T,m=1,...,M,



(1)




where N is the waveform length and M denotes the number of the waveforms. Then, the correlation function of [image: there is no content] and [image: there is no content] is defined as:


rij(k)=∑n=k+1Nxi(n)xj*(n−k)=rji*(−k),i,j=1,...,M,k=1−N,...,N−1.



(2)







Here, we consider the design problems of complementary sets of sequences and waveform sets with both good auto- and cross-correlation properties. For the complementary set of sequences, the common criterion is the complementary integrated sidelobe level (CISL) metric [14,25], which is defined as:


[image: there is no content]



(3)




for the waveform sets with both good auto- and cross-correlation properties, we consider the following more general weighted measure [14]:


[image: there is no content]



(4)




where [image: there is no content] denote the weights assigned to different time lags. In those specified intervals that are expected to have as low as possible sidelobes, [image: there is no content], else [image: there is no content].



Let:


[image: there is no content]



(5)




be the correlation vector and the corresponding correlation weight vector, respectively. The Fourier transform of the correlation function [image: there is no content] (i.e., power spectrum density (PSD)) can be written as:


[image: there is no content]



(6)




where [image: there is no content] is the [image: there is no content] discrete Fourier transform (DFT) matrix with the following expression:


[image: there is no content]



(7)







According to (5) and (6), (4) can be expressed in the frequency domain as:


[image: there is no content]



(8)




where [image: there is no content]. It is worth noting that the value of the [image: there is no content]-th element of [image: there is no content] has no effect on the objective function. In order to facilitate the derivation below, the [image: there is no content]-th element of [image: there is no content] is set to be one.



Actually, when [image: there is no content] (i.e., the correlation weights are not taken into account), Criterion (8) is equivalent to Criterion (3) (see Appendix A), which means that Criterion (3) is a special case of Criterion (8). Thus, here, we just consider Criterion (8). By ignoring the constant term in (8), the criterion related to the correlation property is given by:


[image: there is no content]



(9)








2.2. The Criterion for the Good Stopband Property


The waveform set with a good stopband property means that the PSD of each waveform has several frequency stopbands. Without loss of generality, we consider that the frequency is normalized. Define the set of frequency stopbands as:


[image: there is no content]



(10)




where [image: there is no content] denotes one stopband and [image: there is no content] denotes the number of the stopbands. Considering the [image: there is no content]-point FFT operations, the corresponding point set of the stopband set [image: there is no content] can be expressed as:


[image: there is no content]



(11)







Define the frequency weight vector as:


[image: there is no content]



(12)







As the PSD of each waveform is nonnegative, the criterion related to the stopband property (or PSD) can be formulated as:


[image: there is no content]



(13)




where [image: there is no content].




2.3. The Minimization Problem


In order to obtain good correlation and stopband properties, both [image: there is no content] and [image: there is no content] should be minimized. Thus, the waveform design problem can be regarded as a multi-objective optimization (also known as Pareto optimization) problem, i.e., finding the Pareto optimal solutions that satisfy the constraints. Here, we apply the traditional weighting method to solve the problem and, thus, formulate a single-objective function as follows:


[image: there is no content]



(14)




where [image: there is no content] is a weight coefficient by which we can balance the relative weight between [image: there is no content] and [image: there is no content], and:


Q=λDf,Q′=14N21−λFDtFH.



(15)




When [image: there is no content], (14) is the criterion for designing waveform sets with a good correlation property. Additionally, when [image: there is no content], (14) becomes the criterion for SFW design. Generally, for maximizing the transmitter efficiency and reducing the requirement to the hardware, the unimodular constraint [38] is required in the waveform design. Therefore, the design problem can be formulated as the following minimization problem:


min{xm}m=1MJTs.t.xm(n)=1,n=1,...,N,m=1,...,M.



(16)







Let [image: there is no content] denote the phase vector of [image: there is no content], i.e., [image: there is no content]. Then, the problem (16) can be reformulated as the following unconstrained problem with regard to [image: there is no content]:


min{ϕm}m=1MJT=∑i=1MpiiHQpii+∑i=1M∑j=1MpijHQ′pij.



(17)









3. Problem Optimization via the Gradient Method


In this section, we optimize Problem (17) by using the gradient-based algorithm, which is able to guarantee that the objective function is monotonically decreasing at each iteration. In the following, we first derive the phase gradient and the step size and then briefly summarize the algorithm.



3.1. Phase Gradient


To facilitate the derivation, let [image: there is no content]. Before deriving the phase gradient [image: there is no content], we first deduce the derivative of [image: there is no content] with respect to the phase [image: there is no content]:


∂JT∂ϕmn=∂∑i=1MpiiHQpii+∑i=1M∑j=1MpijHQ′pij/∂ϕmn=∂pmmHQ+Q′pmm/∂ϕmn+∂∑j=1j≠mMpmjHQ′pmj∑i=1i≠mMpimHQ′pim/∂ϕmn.



(18)







Since [image: there is no content] (see Appendix B), (18) can be rewritten as:


[image: there is no content]



(19)







The first term in (19) can be simplified as:


∂pmmHQ+Q′pmm∂ϕmn=∂pmmTQ+Q′pmm∂ϕmn=∂pmmT∂ϕmnQ+Q′+Q+Q′Tpmm=2∂pmmT∂ϕmnReQ+Q′pmm,



(20)




where the third equality follows from the fact [image: there is no content]. Let:


ymm=ReQpmmy′mi=ReQ′pmi,i=1,...,M,



(21)




then (20) can be expressed as:


∂pmmHQ+Q′pmm∂ϕmn=2∂pmmT∂ϕmnymm+y′mm=2∑k=12N∂pmm(k)∂ϕmnymm(k)+y′mm(k).



(22)







According to (A4) and (A5), we can deduce the derivative [image: there is no content] as follows:


[image: there is no content]



(23)







By substituting (23) into (22), we have:


∂pmmHQ+Q′pmm∂ϕmn=4Re−jxm*(n)∑k=12Nfm(k)ymm(k)+y′mm(k)ej2π2Nnk.



(24)







To compute the second term of (19), we first deduce [image: there is no content]:


[image: there is no content]



(25)







Similarly to the derivation of (23), it is easy to obtain that:


[image: there is no content]



(26)







On the basis of (25) and (26), [image: there is no content] can be further denoted as


[image: there is no content]



(27)







By substituting (24) and (27) into (19), [image: there is no content] can be simplified as:


∂JT∂ϕmn=4Re−jxm*(n)∑k=12Nfm(k)ymm(k)+∑i=1Mfi(k)y′mi(k)ej2π2Nnk.



(28)







Let [image: there is no content] be the inverse FFT (IFFT) of [image: there is no content], i.e.,


zm=F−1fm∘ymm+∑i=1Mfi∘y′mizm(n)=12N∑k=12Nfm(k)ymm(k)+∑i=1Mfi(k)y′mi(k)ej2π2Nnk,



(29)




then [image: there is no content] in (28) becomes:


[image: there is no content]



(30)







By stacking (30) in a vector, the phase gradient [image: there is no content] is given by:


[image: there is no content]



(31)




where [image: there is no content] denotes the first N elements of [image: there is no content]. It is worth noting that [image: there is no content] and [image: there is no content] defined in (21) can be calculated by the Hadamard product and the FFT operations:


ymm=λDfpmm=λwt∘pmm,y′mi=Re14N21−λFDtFHpmi=18N21−λFDtFH+FHDtFpmi=14N1−λFwt∘F−1pmi+F−1wt∘Fpmi.



(32)







From the derivation above, it is easy to see that the calculation of the phase gradient is a little bit cumbersome. In order to make the calculation process concise, we write the gradient in the form of matrix. Let [image: there is no content] and [image: there is no content] denote the matrix of waveform set and the corresponding phase matrix, respectively. Then, the spectrum matrix of [image: there is no content] is [image: there is no content]. Define:


[image: there is no content]



(33)




then the matrix form of (29) is given by:


[image: there is no content]



(34)







Thus, according to (31), the matrix of phase gradient [image: there is no content] can be expressed as:


[image: there is no content]



(35)




where [image: there is no content] denotes the submatrix formed with the first N rows of [image: there is no content]. By defining [image: there is no content] and [image: there is no content], we can easily calculate the gradient matrix. However, it is still hard to calculate [image: there is no content] directly by (33). To efficiently calculate [image: there is no content], define:


[image: there is no content]



(36)







Then it is easy to verify that:


[image: there is no content]



(37)




where [image: there is no content] denotes the column vector consisting of all of the columns of [image: there is no content]. Thus, we can obtain [image: there is no content] via the inverse operation of [image: there is no content], i.e.,


[image: there is no content]



(38)




where [image: there is no content] can be calculated by (32). It is easy to see that [image: there is no content] can be implemented by four FFT (IFFT) operations. Since [image: there is no content], the calculation of [image: there is no content] takes [image: there is no content] FFT (IFFT) operations.




3.2. Step Size Calculation via Taylor Series Expansion


The traditional methods for obtaining the step size are the linear search methods, which require many iterations and thus are quite time consuming. To reduce the computing expense, here we propose to calculate the step size directly. Assume that [image: there is no content] is the phase matrix of the present iteration point [image: there is no content], and [image: there is no content] is the descent direction. Then, the new iteration point can be denoted as:


[image: there is no content]



(39)




i.e.,


xil+1=xil∘ejμdil,i=1,...,M,



(40)




where [image: there is no content] is the step size. Thus, the linear search problem can be formulated as the following minimization problem:


minμ>0h(μ)=JTXl+1=∑i=1Mpiil+1HQpiil+1+∑i=1M∑j=1Mpijl+1HQ′pijl+1.



(41)







By taking the derivative of (41), we have:


[image: there is no content]



(42)







To simplify (41) and (42), we first deduce [image: there is no content]. By using the Taylor series expansion, [image: there is no content] can be approximated as (see Appendix C):


[image: there is no content]



(43)




where:


[image: there is no content]



(44)







Let


[image: there is no content]



(45)




then (43) can be rewritten as:


[image: there is no content]



(46)







By replacing [image: there is no content] with [image: there is no content], the approximate function of [image: there is no content] in (41) can be denoted as:


[image: there is no content]



(47)







Since [image: there is no content] holds when [image: there is no content], it is easy to verify that:


[image: there is no content]



(48)




which indicates that [image: there is no content] and [image: there is no content] have the same function value and slope at [image: there is no content]. As [image: there is no content] is the descent direction, the slopes of these two functions are less than zero. Thus, these two functions have at least one minimum point greater than zero. Since [image: there is no content] is sensitive to the waveform phases, the optimal step size of [image: there is no content] is very small and close to zero. Consequently, we can use the minimum point of [image: there is no content] to approximate the optimal step size.



To calculate the minimum point of [image: there is no content], we replace [image: there is no content] in (42) with [image: there is no content], then the derivative of [image: there is no content] with respective to [image: there is no content] is given by:


∂h1∂μ=2Re∑i=1MciiH+2c′iiHμQpiil+ciiμ+c′iiμ2+∑i=1M∑j=1McijH+2c′ijHμQ′pijl+cijμ+c′ijμ2=aμ3+bμ2+cμ+d,



(49)




where:


[image: there is no content]



(50)







To simplify the calculation, let:


[image: there is no content]



(51)







Then (50) can be rewritten as:


[image: there is no content]



(52)




where the first term of each equality follows from the fact [image: there is no content] ([image: there is no content] are the arbitrary vectors), and the second term of each equality follows from the fact [image: there is no content]. Let [image: there is no content], then the minimum point of [image: there is no content] can be obtained by solving the following cubic equation:


[image: there is no content]



(53)







It is well known that a cubic equation with real coefficients has three roots, in which there is at least a real root. Therefore, we can choose the positive root that is closest to zero as the precise estimation of the step size.



In order to facilitate the calculation, we write the above derivation in the form of matrix. Define:


S=f1,...,fM,S′=f′1,...,f′M,S′′=f′′1,...,f′′M,



(54)




then according to (44) we have:


[image: there is no content]



(55)







Let:


[image: there is no content]



(56)







Then the inverse Fourier transforms of [image: there is no content] can be denoted as:


[image: there is no content]



(57)







According to (52), (56) and (57), the coefficients of the cubic equation can be reformulated as:


[image: there is no content]



(58)








3.3. Algorithm Summary


After deducing the phase gradient and the step size, it is easy to solve the unconstrained problem (17) by using the conjugate gradient algorithm (CGA). Here, we apply the classical Polak–Ribiere–Polyak CGA (PRP-CGA) to deal with the waveform design problem. The searching direction of the PRP-CGA can be expressed as:


[image: there is no content]



(59)




where [image: there is no content] and [image: there is no content] are the gradient vector and the direction vector, respectively. For the problem here, [image: there is no content] and [image: there is no content] are defined as:


[image: there is no content]



(60)




where [image: there is no content]. Since the step size is an approximate value, [image: there is no content] is not equal to zero. Thus, [image: there is no content] may not be descendent, i.e.,


[image: there is no content]



(61)




is not always satisfied. For guaranteeing that the searching direction is descendant, we adopt the following modified direction:


[image: there is no content]



(62)







Actually, (59) can also be expressed as:


[image: there is no content]



(63)







Since


[image: there is no content]



(64)




and (63) can be rewritten as:


[image: there is no content]



(65)







Thus, (62) can be expressed as the following matrix form:


[image: there is no content]



(66)







On the basis of the above derivation, the gradient-based algorithm, which we call Gra-WeCorr-SFW, is summarized in Algorithm 1.





4. Simplified Algorithm for the Design Problem without Considering the Correlation Weights


In Section 3, we present a gradient-based algorithm to handle Problem (17). From (9), we can see that the criterion [image: there is no content] can be simplified when [image: there is no content] (i.e., the correlation weights are not taken into account). Thus, in this section, we derive a simplified algorithm for the design problem without considering the correlation weights. Let [image: there is no content], then the criterion [image: there is no content] can be simplified as:


[image: there is no content]



(67)







Thus we can rewrite the problem (17) as:


[image: there is no content]



(68)




where [image: there is no content]. Like the derivation in Section 3, we deduce the gradient and the step size.





	Algorithm 1: Gra-WeCorr-SFW.



	Initialization: [image: there is no content]



	       [image: there is no content]



	Repeat



	1: [image: there is no content]



	2: Compute [image: there is no content] according to (45).



	3: [image: there is no content]



	4: Compute coefficients [image: there is no content] according to (58).



	5: Solve the cubic Equation (53), and then choose the



	 positive root that is closest to zero as the step size [image: there is no content].



	6: [image: there is no content]



	7: [image: there is no content]



	8: Compute [image: there is no content] according to (32).



	9: [image: there is no content]



	10: [image: there is no content]



	11: [image: there is no content]



	12: Compute the searching direction [image: there is no content] according to (66).



	13: [image: there is no content]



	Until convergence






4.1. Phase Gradient


According to (68), we deduce the derivative [image: there is no content] as:


[image: there is no content]



(69)







Let:


[image: there is no content]



(70)




then according to (23), (69) can be rewritten as:


[image: there is no content]



(71)







By stacking (71) in a vector, the gradient is given by:


[image: there is no content]



(72)




where [image: there is no content]. Define [image: there is no content], then it is easy to verify that:


[image: there is no content]



(73)







Thus, the gradient matrix can be expressed as:


[image: there is no content]



(74)








4.2. Step Size


Similarly to (41), the linear search problem here can be denoted as:


minμ>0h(μ)=λ∑i=1Mpiil+1HDfpiil+1+λ1∑i=1Mpiil+1H∑j=1Mpjjl+1.



(75)







By taking the derivative of [image: there is no content], we have:


[image: there is no content]



(76)







Then, the approximate derivative can be obtained by replacing [image: there is no content] with [image: there is no content] defined in (46):


∂h∂μ≈2Reλ∑i=1Mcii+2c′iiμHDfpiil+ciiμ+c′iiμ2+λ1∑i=1Mcii+2c′iiμH∑j=1Mpjjl+cjjμ+c′jjμ2.



(77)







According the definition (56), we have:


[image: there is no content]



(78)




where Pd,Cd and [image: there is no content] can be expressed as the following equalities according to (45):


[image: there is no content]



(79)







Thus, (77) can be written more compactly as:


[image: there is no content]



(80)




where:


[image: there is no content]



(81)







By solving the cubic equation [image: there is no content], the step size can be easily obtained.




4.3. Algorithm Summary


In the previous two subsections, the gradient and step size for Problem (68) are derived. Then, the simplified algorithm (which we call Gra-Corr-SFW) for the design problem without considering the correlation weights is summarized in Algorithm 2. It is easy to observe that both Algorithm 1 and Algorithm 2 can be easily implemented by the (I)FFT operations and the Hadamard product. Since the Hadamard product is more efficient than the (I)FFT operation, we mainly use the number of (I)FFT operations to measure the time complexity of the algorithms. From Section 3, we know that the calculation of [image: there is no content] needs [image: there is no content] (I)FFT operations. Thus, the Gra-WeCorr-SFW requires [image: there is no content] (I)FFT operations at each iteration. Compared to the Gra-WeCorr-SFW, the Gra-Corr-SFW is simpler and only needs [image: there is no content] (I)FFT operations at each iteration. It is worth noting that the calculation of the cubic function is very simple and needs only a small amount of computation.





	Algorithm 2: Gra-Corr-SFW.



	Initialization: [image: there is no content]



	       [image: there is no content]



	Repeat



	1: [image: there is no content]



	2: [image: there is no content]



	3: Compute the coefficients [image: there is no content] according to (81).



	4: Solve the cubic Equation (80), and then choose the positive root



	 which is closest to zero as the step size [image: there is no content].



	5: [image: there is no content]



	6: [image: there is no content]



	7: [image: there is no content]



	8: [image: there is no content]



	9: Compute the searching direction [image: there is no content] according to (66).



	10: [image: there is no content]



	Until convergence






To analyze the convergence speed, Table 1 presents the per iteration computational complexities of the proposed and existing algorithms. As shown in Table 1, the proposed Gra-WeCorr-SFW requires fewer (I)FFT operations than the MM-WeCorr-acc (MM-WeCorr-acceleration) at each iteration. Compared to these two algorithms, the per iteration computational complexities of the rest of the three algorithms (MM-Corr-acc (MM-Corr-acceleration), MDISAA-SFW and Gra-Corr-SFW), which do not consider the correlation weights, are much smaller. In addition to the per iteration computational complexity, the iteration number is also an important factor affecting the convergence speed. Thus, it is difficult to compare the convergence performance of the algorithms via the per iteration computational complexity. In the following section, several numerical experiments are provided to show the convergence performance of the proposed algorithms.



Table 1. The per iteration computational complexities of different algorithms.







	
Algorithm

	
Number of (I)FFT

	
Complexity






	
MM-WeCorr-acc

	
[image: there is no content]

	
[image: there is no content]




	
MM-Corr-acc

	
[image: there is no content]

	
[image: there is no content]




	
MDISAA-SFW

	
[image: there is no content]

	
[image: there is no content]




	
Gra-WeCorr-SFW

	
[image: there is no content]

	
[image: there is no content]




	
Gra-Corr-SFW

	
[image: there is no content]

	
[image: there is no content]












5. Numerical Experiments


To illustrate the effectiveness and superiority of the proposed algorithms, several numerical experiments are presented in this section. We first validate the monotonicity of the proposed algorithms and then assess the performance of the algorithms by designing three different waveform sets. The proposed algorithms are compared with the MM-Corr-acc [14], MM-WeCorr-acc [14] and MDISAA-SFW [37] algorithms, where MM-Corr-acc and MM-WeCorr-acc are the state-of-the-art algorithms for designing waveform sets with a good correlation property, and MDISAA-SFW is the state-of-the-art algorithm for designing the orthogonal waveform set (OWS) with the stopband constraint.



All of the experiments are performed on a PC with a 3.60-GHz i7-4790 CPU and 8GB RAM. The software environment is MATLAB 2012b. In the following experiments, all of the algorithms are initialized by the unimodular waveform sets with random phases.



5.1. Verification of The Monotonicity


In this subsection, we investigate the monotonicity of the proposed algorithms in three different waveform design problems, which are respectively complementary sets of sequences (CSS) design, waveform set design with zero correlation zone and orthogonal waveform set (OWS) design with the stopband constraint. In order to measure the monotonicity, define the relative error of the l-th iteration as follows:


[image: there is no content]



(82)




where [image: there is no content] denotes the approximate step size of the l-th iteration, which is obtained via the Taylor series expansion, and [image: there is no content] denotes the optimal step size obtained by the searching method. The smaller the value of [image: there is no content] is, the closer the approximate step size is to the optimal step size. Thus, [image: there is no content] can be used to express the accuracy of the approximate step size. When [image: there is no content], we have [image: there is no content], which means the objective function is decreasing at the l-th iteration. Therefore, we can measure the monotonicity of the algorithms by using the following peak relative error [image: there is no content]:


[image: there is no content]



(83)




where [image: there is no content] is the iteration number.



To simulate [image: there is no content] and [image: there is no content], we use the Gra-WeCorr-SFW to design waveform sets with [image: there is no content] waveforms and each waveform of length [image: there is no content]. The simulation parameters of different design problems are shown in Table 2. Additionally, we stop the algorithm after 200 iterations. Figure 1 shows the evolution curves of the relative error with respect to the iteration number. From Figure 1, we can see that the relative error is a little larger at the initial iterations. However, it decreases rapidly and is substantially below [image: there is no content] after several iterations. In the whole iteration process, the relative error is less than one, which means that the objective function is monotonically decreasing. Figure 2 shows the peak relative error of 100 random trials. It is easy to see that the peak relative error of all three cases is very small and less than one. This indicates that the monotonicity of the Gra-WeCorr-SFW is not affected by the initial iteration point. Since the Gra-Corr-SFW is a simplified algorithm of the Gra-WeCorr-SFW, it can also guarantee that the objective function is monotonically decreasing at each iteration.


Figure 1. Evolution of the relative error with respect to the iteration number.



[image: Sensors 17 00999 g001]





Figure 2. The peak relative errors of 100 random trials.
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Table 2. Simulation parameters of different design problems.







	

	
[image: there is no content]

	
Correlation weights [image: there is no content]

	
Stopband [image: there is no content]






	
Case 1a

	
0

	
[image: there is no content]

	




	
Case 2b

	
0

	
[image: there is no content]

	




	
Case 3c

	
0.9

	
[image: there is no content]

	
[image: there is no content]








a: CSS design; b: waveform design with zero correlation zone; c: OWS design with stopband constraint.









5.2. CSS Design or OWS Design


In Appendix A, we have demonstrated that the CSS design is equivalent to the OWS design. In this subsection, we apply the Gra-Corr-SFW to design CSS (or OWS). Since the lower bound of the CISL is zero, we choose [image: there is no content] as the stopping criterion for all of the algorithms in this experiment. The weight coefficient [image: there is no content] and the correlation weights are the same as Case 1 in Table 2. Figure 3 shows the normalized autocorrelation sum of the waveform sets designed by the Gra-Corr-SFW, where the normalized autocorrelation sum is defined as:


[image: there is no content]



(84)






Figure 3. The autocorrelation sum of the waveform sets designed by the Gra-Corr-SFW with different [image: there is no content]. ([image: there is no content])



[image: Sensors 17 00999 g003]






From Figure 3, we can see that the autocorrelation sum of the CSS is a Delta function. Additionally, with the decrease of [image: there is no content], the sidelobes of the CSS are getting lower and lower.



Next, we compare the performance between the proposed Gra-Corr-SFW and the state-of-the-art MM-Corr-acc by designing waveform sets with different waveform number M and waveform length N. For both algorithms, we choose M and N as follows:


M=3k,N=256k,k=1,...,5.



(85)







The evolution curves of MM-Corr-acc and Gra-Corr-SFW are respectively shown in Figure 4a,b. From these two subfigures, we observe that the convergence speed of the proposed Gra-Corr-SFW is much faster than that of the MM-Corr-acc. Even for [image: there is no content], the proposed algorithm takes 1.35 s to coverage to [image: there is no content], while the MM-Corr-acc takes 48.11 s.


Figure 4. Evolution of the CISL with respect to the running time: (a) MM-Corr-acc; (b) Gra-Corr-SFW. [image: there is no content].



[image: Sensors 17 00999 g004]






Further, to eliminate the randomness, we repeat the algorithms 100 times for each [image: there is no content] pair and record the average iteration number [image: there is no content], the average running time t and the average peak sidelobe level of the autocorrelation sum [image: there is no content], where [image: there is no content] is defined as:


[image: there is no content]



(86)







Then, we choose [image: there is no content] for the stopping criterion. The performance parameters [image: there is no content] of these two algorithms are provided in Table 3. As can be seen from this Table, since the algorithms stop the iteration when [image: there is no content], the [image: there is no content] of these two algorithms are basically the same. At the same time, the average running time in Table 3 shows that the Gra-Corr-SFW is an order of magnitude faster than the MM-Corr-acc. From Table 1, we can see that the per iteration computational complexities of both the MM-Corr-acc and the Gra-Corr-SFW are [image: there is no content]. Therefore, the reason for the slower convergence of the MM-Corr-acc may be that the MM strategy in this algorithm makes the objective function loose, so that the iteration number of the MM-Corr-acc is larger than that of the Gra-Corr-SFW (as shown in Table 3).



Table 3. The comparison of the performance parameters between MM-Corr-acc and Gra-Corr-SFW.







	

	
MM-Corr-acc

	
Gra-Corr-SFW






	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
1.249

	
1687

	
−63.8

	
0.071

	
239

	
−65.9




	
[image: there is no content]

	
0.914

	
496

	
−68.7

	
0.110

	
132

	
−71.4




	
[image: there is no content]

	
1.558

	
460

	
−72.0

	
0.178

	
131

	
−74.7




	
[image: there is no content]

	
2.531

	
484

	
−74.4

	
0.265

	
132

	
−77.5




	
[image: there is no content]

	
4.483

	
587

	
−76.1

	
0.343

	
138

	
−79.1











5.3. Waveform Set Design with Zero Correlation Zone


To verify the effectiveness of the Gra-WeCorr-SFW, we consider the problem of suppressing the correlation sidelobes at the specified intervals, i.e., designing the waveform set with the zero correlation zone (ZCZ), and compare the performance with the MM-WeCorr-acc. The experimental parameters are the same as Case 2 in Table 2. For both algorithms, we choose the value of the objective function [image: there is no content] in (4) as the stopping criterion, i.e., [image: there is no content]. The auto- and cross-correlations of the waveform sets designed by MM-WeCorr-acc and Gra-WeCorr-SFW are shown in Figure 5. From this figure, we can see that the proposed algorithm can also generate a waveform set with correlation sidelobes that are almost zero at the specified intervals.


Figure 5. The normalized auto- and cross-correlations of the waveform sets designed by MM-WeCorr-acc and Gra-WeCorr-SFW. [image: there is no content].



[image: Sensors 17 00999 g005]






Similar to Figure 4, for each [image: there is no content] pair, we simulate the evolution curves of the objective function [image: there is no content] with respect to the running time. Additionally, the results of these two algorithms are presented in Figure 6. It is easy to see that the Gra-WeCorr-SFW is faster than the MM-WeCorr-acc. In addition, we can also find that when the objective function [image: there is no content] is less than [image: there is no content], the convergence speed of the MM-WeCorr-acc decreases, especially for a large [image: there is no content] pair.


Figure 6. Evolution of the objective function with respect to the running time: (a) MM-WeCorr-acc; (b) Gra-WeCorr-SFW [image: there is no content].
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Further, Table 4 presents the comparison of performance parameters between MM-WeCorr-acc and Gra-WeCorr-SFW, where [image: there is no content] is the peak sidelobe level at the zero correlation zone defined as:


[image: there is no content]



(87)







Table 4. The comparison of the performance parameters between MM-WeCorr-acc and Gra-WeCorr-SFW [image: there is no content].







	

	
MM-WeCorr-acc

	
Gra-WeCorr-SFW






	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]
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[image: there is no content]

	
0.584

	
335

	
−167.5

	
0.248

	
164

	
−168.2




	
[image: there is no content]

	
2.691

	
407

	
−178.1

	
1.348

	
176

	
−179.5




	
[image: there is no content]

	
10.167

	
445

	
−184.5

	
5.149

	
178

	
−186.3




	
[image: there is no content]

	
37.760

	
486

	
−189.7

	
15.106

	
179

	
−191.5




	
[image: there is no content]

	
84.759

	
549

	
−193.5

	
30.683

	
182

	
−195.1










Similarly, for each [image: there is no content] pair, the algorithms are repeated 100 times. As can be seen from Table 4, the [image: there is no content] of the Gra-WeCorr-SFW is a little bit lower than that of the MM-WeCorr-acc. Moreover, due to fewer iterations, the average running time of the Gra-WeCorr-SFW is about 50% of that of the MM-WeCorr-acc, which indicates that the former is more computationally efficient.




5.4. OWS Design with the Stopband Constraint


In this subsection, we consider the problem of designing OWS with the stopband constraint. Since the Gra-Corr-SFW is a simplified version of the Gra-WeCorr-SFW and needs much fewer (I)FFT operations, it is more efficient than the Gra-WeCorr-SFW. Thus, we only investigate the performance of the Gra-Corr-SFW and compare it with the MDISAA-SFW. Here, [image: there is no content] is employed as the stopping criterion, and the experimental parameters are the same as Case 3 in Table 2. First, we apply these two algorithms to design OWS with the stopband constraint. Suppose the waveform number M is three and the waveform length N is 256. The correlation levels and spectral power of the waveform sets designed by MDISAA-SFW and Gra-Corr-SFW are shown in Figure 7 and Figure 8. From Figure 7, we can see that the waveform set designed by the MDISAA-SFW has better autocorrelation performance, while the waveform set designed by the Gra-Corr-SFW has better cross-correlation performance. This is because the MDISAA-SFW optimizes the autocorrelation explicitly and, thus, places more emphasis on suppressing the autocorrelation sidelobes. Figure 8 indicates that the stopband spectral power of the waveform set designed by the Gra-Corr-SFW is less than that of the waveform set designed by the MDISAA-SFW.


Figure 7. The correlation levels of the waveform sets designed by MDISAA-SFW and Gra-Corr-SFW.



[image: Sensors 17 00999 g007]





Figure 8. The spectral power of the waveform sets designed by MDISAA-SFW and Gra-Corr-SFW.
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In order to fully compare the algorithms, we define the peak autocorrelation sidelobe [image: there is no content], peak cross-correlation [image: there is no content], peak stopband power [image: there is no content] and integrated sidelobe level (ISL) [16] as follows:


[image: there is no content]



(88)




where [image: there is no content] denotes the peak stopband power of the waveform [image: there is no content]. In the above four performance parameters, [image: there is no content] and [image: there is no content] are used to measure the autocorrelation and cross-correlation performances, respectively; [image: there is no content] is the parameter related to the stopband performance; and [image: there is no content] indicates the overall sidelobe performance. Since the decrease of the bandwidth leads to the broadening of the main lobe, [image: there is no content] can be regarded as the autocorrelation main lobe. Thus, the definition of [image: there is no content] does not take [image: there is no content] into account. Here, we consider the waveform sets with [image: there is no content] waveforms and each waveform of length [image: there is no content]. For each [image: there is no content] pair, we repeat these two algorithms 100 times and record the average values of the performance parameters. The comparison of the performance parameters between MDISAA-SFW and Gra-Corr-SFW is shown in Table 5. In addition to the parameters defined in (88), the average iteration number [image: there is no content] and the running time t are provided in Table 5. From this table, we obtain three findings, as follows. Above all, the [image: there is no content] and [image: there is no content] of the Gra-Corr-SFW are lower than that of the MDISAA-SFW, which means that the cross-correlation and stopband performances of the Gra-Corr-SFW are better than that of the MDISAA-SFW. However, in terms of autocorrelation performance, the Gra-Corr-SFW is inferior to the MDISAA-SFW. From the [image: there is no content] in Table 5, it is easy to see that the overall sidelobe performance of the Gra-Corr-SFW is better than that of the MDISAA-SFW. Furthermore, although the per iteration computational complexity of the Gra-Corr-SFW is slightly higher than that of the MDISAA-SFW (see Table 1), the Gra-Corr-SFW needs fewer iterations due to the fast convergence of the gradient algorithm, which makes the proposed algorithm more efficient. Finally, with the increase of the waveform length, both the correlation and stopband performances of these two algorithms are improved, especially the cross-correlation performance.



Table 5. The comparison of the performance parameters between MDISAA-SFW and Gra-Corr-SFW.







	
Algorithm

	
N
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[image: there is no content]
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MDISAA-SFW

	
[image: there is no content]

	
−13.6

	
−13.9

	
−17.5

	
893,573

	
11932

	
2.512




	
[image: there is no content]

	
−13.9

	
−16.6

	
−17.9

	
3,532,447

	
18,602

	
6.045




	
[image: there is no content]

	
−14.1

	
−19.3

	
−18.2

	
14,013,417

	
27,268

	
14.080




	
Gra−Corr−SFW

	
[image: there is no content]

	
−12.5

	
−15.9

	
−20.3

	
832,482

	
1216

	
0.274




	
[image: there is no content]

	
−12.9

	
−18.6

	
−22.2

	
3,321,729

	
2100

	
1.013




	

	
[image: there is no content]

	
−13.3

	
−21.1

	
−23.8

	
13,237,903

	
3577

	
3.033










Next, we investigate the performance of the algorithms under different [image: there is no content]. The average values (100 trials) of [image: there is no content], [image: there is no content] and [image: there is no content] are shown in Figure 9. From this figure, we can see that with the increase of [image: there is no content], the [image: there is no content] and [image: there is no content] of these two algorithms change slowly, while the [image: there is no content] is sensitive to the change of [image: there is no content]. It can also be observed that except the autocorrelation performance, the cross-correlation and stopband performances of the Gra-Corr-SFW are better than that of the MDISAA-SFW. This means that the stopband property can be easily obtained by using the Gra-Corr-SFW. Moreover, since the correlation performance changes slowly with the increase of [image: there is no content], we can choose a relatively large [image: there is no content] (e.g., [image: there is no content]) for the Gra-Corr-SFW to obtain both good correlation and stopband properties.


Figure 9. The comparison of [image: there is no content], [image: there is no content] and [image: there is no content] between MDISAA-SFW and Gra-Corr-SFW versus [image: there is no content] from 0–1. (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content] ([image: there is no content]).



[image: Sensors 17 00999 g009]








6. Conclusions


In this paper, we propose an efficient algorithm named Gra-WeCorr-SFW for designing the waveform set with a good correlation and stopband properties. The algorithm optimizes the objective function directly and can guarantee that the objective function is monotonically decreasing at each iteration. By changing the design parameters, the Gra-WeCorr-SFW can be used to generate different waveform sets, such as CSS, the waveform set with ZCZ and OWS with the stopband constraint. As the main steps can be implemented by the FFT operations and the Hadamard product, the proposed algorithm is computationally efficient and can be used to design waveform sets with large M and N. Besides, the simplified version of the Gra-WeCorr-SFW (named Gra-Corr-SFW) is proposed for the design problem without considering the correlation weights. Compared to the Gra-WeCorr-SFW, the simplified algorithm requires fewer FFT operations and is faster. Numerical experiments show that the proposed algorithms are faster than the state-of-the-art algorithms (MM-WeCorr-acc and MM-Corr-acc) when designing CSS or the waveform set with ZCZ. In the case of designing OWS with the stopband constraint, the simplified algorithm has better stopband performance and computational efficiency compared with the MDISAA-SFW.
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Abbreviations


The following abbreviations are used in this manuscript:



	MIMO
	multiple-input multiple-output



	(I)FFT
	(inverse) fast Fourier transform



	CSS
	complementary sets of sequences



	OWS
	orthogonal waveform set



	CAN
	cyclic algorithm-new



	WeCAN
	weighted cyclic algorithm-new



	LBFGS
	limited-memory Broyden, Fletcher, Goldfarb and Shanno



	MM
	majorization-minimization



	MM-Corr
	MM-correlation



	MM-Corr-acc
	MM-correlation-acceleration



	MM-WeCorr
	MM-weighted correlation



	MM-WeCorr-acc
	MM-weighted correlation-acceleration



	CDMA
	code-division multiple-access



	OFDM
	orthogonal frequency division multiplexing



	SFW
	sparse frequency waveforms



	HFSWR
	high frequency surface wave radar



	UWB
	ultra-wide bandwidth



	MDISAA-SFW
	multi-dimensional iterative spectral approximation algorithm-SFW



	PSD
	power spectrum density



	Gra-WeCorr-SFW
	gradient-weighted correlation-SFW



	Gra-Corr-SFW
	gradient-correlation-SFW



	CISL
	complementary integrated sidelobe level










Appendix A


Proof. 

Due to the unimodular constraint, the energy of each waveform is N, i.e., rii(0)=N,i=1,...,M. Then, (3) can be rewritten as:


[image: there is no content]



(A1)







Since [image: there is no content], we have:


[image: there is no content]



(A2)




by substituting (6) into (A2), CISL can be expressed as:


[image: there is no content]



(A3)







Assume [image: there is no content] is the [image: there is no content]-point discrete Fourier transform (DFT) vector of the waveform [image: there is no content], i.e.,


[image: there is no content]



(A4)




then the PSD vector [image: there is no content] can be written as:


[image: there is no content]



(A5)







According to (A5), it is easy to verify that [image: there is no content]. Thus, (A3) can be denoted as:


[image: there is no content]



(A6)







Let [image: there is no content], then we have [image: there is no content]. Thus, (8) can be simplified as:


[image: there is no content]



(A7)







From (A6) and (A7), we can observe that the only different between CISL and [image: there is no content] is the constant term, i.e., CISL and [image: there is no content] are equivalent. The proof is complete. ☐






Appendix B


Proof. 

According to (A5), it is easy to verify that:


[image: there is no content]



(A8)




by substituting (A8) into [image: there is no content], we have:


[image: there is no content]



(A9)







Since:


[image: there is no content]



(A10)




we have:


[image: there is no content]



(A11)







Thus, (A9) can be rewritten as:


[image: there is no content]



(A12)







The proof is complete. ☐






Appendix C


Proof. 

Here, we temporarily replace the subscripts [image: there is no content] with [image: there is no content] (i.e., [image: there is no content]) to avoid the confusion of the number j and the imaginary unit j. According to (A4), (A5) and (40), the k-th element of [image: there is no content] can be written as:


[image: there is no content]



(A13)




where [image: there is no content] denote the n-th elements of [image: there is no content] and [image: there is no content]. By using the Taylor series, the expansion of [image: there is no content] in (A13) (which we keep the first three terms) is given by:


ejμdpl(n)−dql(m)≈1+jμdpl(n)−dql(m)+jμdpl(n)−dql(m)2jμdpl(n)−dql(m)222.



(A14)







Thus, [image: there is no content] can be approximated as:


ppql+1(k)≈∑n=1N∑m=1Nxpl(n)xql(m)*·e−j2π2Nn−mk+jμ∑n=1N∑m=1Nxpl(n)xql(m)*·dpl(n)−dql(m)·e−j2π2Nn−mk−μ22∑n=1N∑m=1Nxpl(n)xql(m)*·dpl(n)−dql(m)2·e−j2π2Nn−mk



(A15)







Let:


[image: there is no content]



(A16)







Then, (A15) can be rewritten as:


ppql+1k≈fpkfq*k+jμf′pkfq*k−fpkf′qk*−μ22f′′pkfq*k+fpkf′′qk*−2f′pkf′qk*,



(A17)




where [image: there is no content] are the k-th elements of [image: there is no content]. By representing (A17) as a vector, we have:


ppql+1≈fp∘fq*+jf′p∘fq*−fp∘f′q*μ−12f′′p∘fq*+fp∘f′′q*−2f′p∘f′q*μ2.



(A18)







The proof is complete. ☐
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