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Abstract: In this paper, a novel algorithm is proposed for the two-dimensional (2D) central
direction-of-arrival (DOA) estimation of coherently distributed (CD) sources. Specifically, we focus
on a centro-symmetric crossed array consisting of two uniform linear arrays (ULAs). Unlike the
conventional low-complexity methods using the one-order Taylor series approximation to obtain the
approximate rotational invariance relation, we first prove the symmetric property of angular signal
distributed weight vectors of the CD source for an arbitrary centrosymmetric array, and then use this
property to establish two generalized rotational invariance relations inside the array manifolds in the
two ULAs. Making use of such relations, the central elevation and azimuth DOAs are obtained by
employing a polynomial-root-based search-free approach, respectively. Finally, simple parameter
matching is accomplished by searching for the minimums of the cost function of the estimated 2D
angular parameters. When compared with the existing low-complexity methods, the proposed
algorithm can greatly improve estimation accuracy without significant increment in computation
complexity. Moreover, it performs independently of the deterministic angular distributed function.
Simulation results are presented to illustrate the performance of the proposed algorithm.

Keywords: array signal processing; direction-of-arrival (DOA) estimation; coherently distributed
(CD) sources; crossed array; symmetric property

1. Introduction

In recent decades, the problem of direction-of-arrival (DOA) estimation, which plays an important
role in radar, sonar and wireless communication systems, has attracted a lot of attention. The most
commonly considered system model in the DOA finding techniques is the point source model, where
the signals are assumed to arrive at the array via a single path [1–4]. When dealing with a point
source, conventional subspace-based algorithms, such as the multiple signal classification (MUSIC)
algorithm [5,6] and the estimation of signal parameters via rotational invariance techniques (ESPRIT)
algorithm [7,8], have high DOA estimation resolution. However, in many practical applications, the
signals will reach the array through many rays reflected or scattered from the vicinity, which causes
angular spreading. In these cases, directly applying the MUSIC and ESPRIT algorithms may lead to
biased estimations. Therefore, some researchers have considered a more realistic signal model called
the spatially distributed source model [9,10]. Depending on the correlation among different rays,
distributed sources are classified into two types: coherently and incoherently distributed (CD and ID)
sources. In this paper, we only consider the DOA estimation of the CD sources.

Many DOA estimation techniques for CD sources have been published. Since conventional
subspace-based methods cannot be directly applied to a distributed source, some researchers
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studied modifications to the MUSIC algorithm, which gave rise to the distributed signal parameter
estimator [11], dispersed parametric estimator [12] and Vec-MUSIC estimator [13]. These three methods
were established based on the assumption that the distribution shapes of multiply distributed sources
are identical and known. In addition, the computational complexity is high because of the need for a
two-dimensional (2D) search. The literature [14] used an unstructured model for the part of covariance
matrix, where the 2D search problem was replaced by a successive one-dimensional (1D) search.
With even lower computational complexity, a search-free algorithm called the spread root-MUSIC
algorithm [15] was proposed to fit a two-ray model of the data. However, low-complexity was obtained
in the special case where only one distributed source existed. In [16], the authors considered two
identical and closely spaced sub-arrays. When the distance between the two sub-arrays was far shorter
than the wavelength, an approximate rotational invariance relation between the two sub-arrays was
obtained based on Taylor series approximation, and finally the central DOA of the CD source can be
estimated by total least square estimation parameter via rotational invariance techniques (TLS-ESPRIT)
using the generalized array manifold (GAM) model. All of the aforementioned works [11–16] were
designed for 1D DOA and angular spread estimation of distributed sources. However, when the
distributed source and the receiving sensor array are not in the same plane, it is reasonable to instead
model the source as a 2D distributed source.

Since a 2D CD source is characterized by four parameters: the central azimuth direction, the
azimuth angular extension, the central elevation direction and the elevation angular extension, the
conventional optimum estimators will be computationally expensive owing to high-dimensional
parameters [17]. Consequently, it is very necessary for 2D distributed sources to find some suboptimum
algorithms to reduce the computational cost. To date, several low-complexity DOA estimation
algorithms for 2D CD sources have been proposed. Specifically, the authors in [18] considered a pair of
uniform circular arrays (UCAs). Preliminary estimations of central elevation DOAs were obtained
using TLS-ESPRIT. Next, by using the estimated elevation DOAs, a sequential one-dimensional
searching (SOS) method was proposed to estimate the central azimuth DOAs. In [19], using two parallel
uniform linear arrays (ULAs), a low-complexity algorithm without searching was proposed for CD
sources. Similarly, central elevation DOAs are obtained based on the approximate rotational invariance
relation between the two ULAs. Instead of SOS, the quadric rotational invariance property (QRIP) of
the GAM was used to estimate the central azimuth DOAs. Finally, a parameter matching approach was
given to obtain the correct DOA estimation. In [20], the central elevation and azimuth DOAs were both
estimated based on TLS-ESPRIT, which used two parallel ULAs, and the parameter matching method
was also required. In order to avoid the parameter matching procedure, the literature [21] estimated
the central elevation and central azimuth DOAs by applying the singular value decomposition method
to the cross-correlation (CC) matrix of the received data in the double parallel ULAs. However, all
the algorithms in [18–21] were all based on the special array geometry composed of two sub-arrays.
The approximate rotational invariance relation between the two sub-arrays was obtained by using
the one-order Taylor series approximation, which may introduce additional errors and affect the
estimation accuracy.

In array processing, the crossed array is a commonly used 2D array geometry [22]. Compared to
other 2D arrays such as the UCA and plane rectangular array, the crossed array can provide a larger
aperture and hence offer better resolution for a given number of elements. Moreover, the crossed array
consists of two intersecting ULAs working independently, thus the computational complexity is only
double that of a single dimensional array. Several 2D estimation algorithms based on the crossed array
have been proposed [23,24]. However, they are all based on the point source model. To the best of our
knowledge, there have been few reports about the DOA estimation for CD sources in a crossed array.

In this paper, we consider a crossed array and divide it into two sub-ULAs. In particular,
instead of using the Taylor series approximation, we prove the symmetric property of the angular
signal distributed weight (ASDW) vector for an arbitrary centrosymmetric array, and use this
property to establish the generalized rotational invariance relations inside the GAMs for the two
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sub-ULAs. Resorting to such relations, the central elevation and azimuth DOAs are estimated
based on polynomial-root-based search-free method, respectively. Then simple parameter matching
is accomplished by searching the minimums of the cost function of the estimated 2D angular
parameters. The proposed algorithm does not require that the angular distribution functions of
the multiple distributed sources are the same and known. In addition, it does not suffer additional
errors induced by Taylor series approximation and high computational complexity brought about by
spectrum-peak searching.

The rest of this paper is organized as follows: Section 2 presents the data model. In Section 3, we
describe the proposed algorithm in detail. Some simulation results which illustrate the validity and
performance of the proposed method are given in Section 4. Section 5 concludes the paper.

The following notations will be used throughout this paper. Superscript (·)∗, (·)T, and (·)H

represent the conjugate, transpose and conjugate transpose operations, respectively. The symbol ⊗
denotes the Schur-Hadamard product; E[·] stands for the mathematical expectation and det(·) is the
matrix determinant; diag[·] is a diagonal matrix and the values in the brackets are the diagonal elements.

2. Signal Model

Let us consider the plane crossed array presented in Figure 1. The array is centered at the origin of
the three-dimensional coordinate system with two ULAs directed along the y-axis and z-axis. The ULAs
Ya and Za are composed of My and Mz omni-directional antenna elements, respectively. The distance
between adjacent sensors is d in the two ULAs. We assume that there are D narrowband CD sources
impinging on the crossed array. The observation vectors of Ya and Za at time t are given by [17–21].
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Figure 1. Geometry of the considered crossed array.

y(t) =
D

∑
i=1

x
ay(θ, γ)si(θ, γ, t; µi)dθdγ + ny(t), (1)
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z(t) =
D

∑
i=1

x
az(θ, γ)si(θ, γ, t; µi)dθdγ + nz(t), (2)

where y(t) is the My × 1 array output vector of the sub-array Ya; z(t) is the Mz × 1 array output vector
of the sub-array Za; si(θ, γ, t; µi) is the complex random angular signal density function of the i-th
source. The vector µi = (θi, σθi , γi, σγi ) determines the central azimuth DOA θi, the azimuth angular
spread σθi , the central elevation DOA γi and the elevation angular spread σγi of the i-th sensor; ny(t)
and nz(t) are Gaussian white noise with zero-mean and variance, while σ2

n ; ay(θ, γ) and az(θ, γ) are
the two array manifold vectors at direction (θ, γ):

ay(θ, γ) = [ejη0.5(My−1) sin θ sin γ, ejη0.5(My−3) sin θ sin γ, . . . , e−jη0.5(My−1) sin θ sin γ]
T

,

az(θ, γ) = [ejη0.5(Mz−1) cos γ, ejη0.5(Mz−3) cos γ, . . . , e−jη0.5(Mz−1) cos γ]
T

,
(3)

where η = 2πd/λ, and λ is the wavelength of the coming signal.
For a 2D CD source, the angular signal density function si(θ, γ, t; µi) can be written as:

si(θ, γ, t; µi) = si(t)ρi(θ, γ; µi), (4)

where si(t) is a random variable and ρi(θ, γ; µi) is the deterministic angular distribution function.
Define the GAM vectors of distributed source for subarray Ya and Za as follows:

by(µi) =
s

ay(θ, γ)ρi(θ, γ; µi)dθdγ,
bz(µi) =

s
az(θ, γ)ρi(θ, γ; µi)dθdγ.

(5)

For small angular extensions, we have the following closed forms [11,20]:

by(µi) = ay(θi, γi)⊗ gy(µi),
bz(µi) = az(θi, γi)⊗ gz(µi),

(6)

where gy(µi) and gz(µi) are the ASDW vectors. The observation vectors in (1) and (2) can be written as:

y(t) = By(µ)s(t) + ny(t),
z(t) = Bz(µ)s(t) + nz(t),

(7)

where s(t) = [s1(t), s2(t), . . . , sD(t)]
T is a D × 1 signal vector, and By(µ) and Bz(µ) are the GAM

matrices, which are composed of D GAM vectors:

By(µ) = [by(µ1), by(µ2), . . . , by(µD)],
Bz(µ) = [bz(µ1), bz(µ2), . . . , bz(µD)].

(8)

The total array output vector is expressed as:

x(t) =

[
y(t)
z(t)

]
. (9)

3. The Proposed Algorithm

This section consists of four parts. Firstly, the symmetric property of an ASDW vector is identified
in a centro-symmetric array. Then, by making use of the symmetric property of the ASDW vectors in
the two sub-ULAs Za and Ya, we establish two generalized rotational invariance relations for the GAM
vectors. On the premise of such relations, the central elevation and azimuth DOAs are obtained by
using a polynomial-root-based search-free approach, respectively. Afterwards, and when multiple CD
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sources exist, a simple parameter matching approach is addressed. Finally, we provide the algorithm’s
realization steps and an analysis of the computational complexity.

3.1. Symmetric Property of an ASDW Vector in a Centro-Symmetric Array

In this part, the symmetric property of an ASDW vector in a centro-symmetric array is derived in
detail. Let us consider a centro-symmetric array consisting of M identical antenna elements centered at
the coordinate origin, where the m-th sensor is placed at (xm, ym, zm) for m = 1, 2 . . . , M. The array
manifold vector in direction (θ, γ) is expressed as:

a(θ, γ) =


ej(2π/λ)(x1 cos θ sin γ+y1 sin θ sin γ+z1 cos γ)

ej(2π/λ)(x2 cos θ sin γ+y2 sin θ sin γ+z2 cos γ)

. . . . . .
ej(2π/λ)(xM cos θ sin γ+yM sin θ sin γ+zM cos γ)

. (10)

If we define θ = θi + θ̃ and γ = γi + γ̃, in which θi, γi are the central azimuth DOA and the
central elevation DOA of the i-th source, and θ̃, γ̃ are the corresponding random angular deviations ,
the GAM vector can be presented as:

b(µi) =
s

a(θ, γ)ρ(θ, γ; µi)dθdγ

=
s

a(θi + θ̃, γi + γ̃)ρ(θ̃, γ̃; µi)dθ̃dγ̃,
(11)

For small angular extensions, the m-th element of b(µi) can be written as [11]:

[b(µi)]m ≈ [a(θi, γi)]m ·
x

ejςm ρ(θ̃, γ̃; µi)dθ̃dγ̃. (12)

Thus, the m-th element of ASDW vector is given by:

[g(u)]m =
x

ejςm ρ(θ̃, γ̃; µi)dθ̃dγ̃, (13)

where:
ςm = (2π/λ)[xm(−θ̃ sin θi sin γi + γ̃ cos θi cos γi)+

ym(θ̃ cos θi sin γi + γ̃ sin θi cos γi) + zm(−γ̃ sin γi)].
(14)

We have (xm, ym, zm) = −(xm+M/2, ym+M/2, zm+M/2) in the centrosymmetric array, thus
ςm = −ςm+M/2. Respecting the fact that ρ(θ̃, γ̃; µi) is an even function (see Appendix A), we can
obtain the symmetric property of the ASDW vector such as:

[g(u)]m = [g(u)]m+M/2. (15)

It is obvious that Ya and Za are centrosymmetric arrays, thus we have:[
gy(u)

]
m =

[
gy(u)

]
m+M/2,

[gz(u)]m = [gz(u)]m+M/2.
(16)

3.2. Derivation

3.2.1. Central Elevation DOA Estimation

For sub-array Za, and owing to the symmetric property of the ASDW vector in (16), we can
establish the following generalized rotational invariance relation of the GAM vector:

ΠMZ bz(µi) = Ψ(γi)bz(µi), (17)
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where ΠMZ is the Mz ×Mz exchange matrix with ones on its anti-diagonal and zeros elsewhere. Ψ(γi)

is an Mz ×Mz diagonal matrix which is given by:

Ψ(γi) = diag[e−jη(Mz−1) cos γi , e−jη(Mz−3) cos γi , . . . , ejη(Mz−1) cos γi ]. (18)

If we define the complex variable k = ejη cos γi , Ψ(γi) can be written as:

Ψ(k) = diag[k−(Mz−1), k−(Mz−3), . . . , k(Mz−1)]. (19)

According to the observation vector z(t) in (7), the covariance matrix of z(t) is expressed as:

Rz = E
{

z(t)zH(t)
}
= By(µ)RsBH

y (µ) + σ2
nIMz , (20)

where Rs = E
{

s(t)sH(t)
}

is the signal covariance matrix of the CD sources. The eigenvalue
decomposition of Rz is given by:

Rz = UzΣzUH
z + UnΣnUH

n , (21)

where Uz is the signal subspace matrix, whose columns are the eigenvectors corresponding to the D
largest eigenvalues of Rz. When Rs is of full rank, the subspace spanned by the columns of Uz is equal
to the subspace spanned by the columns of Bz(µ). At this point, there exists a unique non-singular
D× D matrix T1 such that Uz = Bz(µ)T1. According to the generalized rotational invariance relation
in (17), we can formulate a matrix Fz(k):

Fz(k) = ΠMZ Uz −Ψ(k)Uz

= ΠMZ Bz(µ)T1 −Ψ(k)Bz(µ)T1

= [(Ψ(k1)−Ψ(k))bz(µ1), (Ψ(k2)−Ψ(k))bz(µ2),
. . . , (Ψ(kD)−Ψ(k))bz(µD)]T1.

(22)

Therefore, when Ψ(ki) = Ψ(k) for i = 1, 2, . . . , D, the i-th column of Fz(k) is a zero vector.
Hence, Fz(k) is rank deficient and the determinant of FH

z (k)Fz(k) is zero. The central elevation
DOA estimations γ̂i(i = 1, 2 . . . , D) can be obtained by finding the highest D peaks of the following
spectrum function:

Hz(k) = 1/det(FH
z (k)Fz(k)). (23)

However, estimator (23) involves computationally intensive spectral-peak searching. In order to
reduce the complexity, we derive a polynomial-root-based search-free approach. The denominator of
(23) can be written as the following polynomial:

hz(k) = det(FH
z (k)Fz(k)). (24)

It is obvious that the central elevation DOAs can be obtained by rooting this polynomial. Note that
the roots of (24) appear in conjugate reciprocal pairs, as in the conventional root-MUSIC [25]. To find
the D central elevation DOAs, we select the D roots ki(i = 1, 2 . . . , D) inside the unit circle that
maximize (23). Finally, the central elevation DOA estimates are obtained by:

γ̂i = ar cos
(

λ

2πd
arg(ki)

)
. (25)
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3.2.2. Central Azimuth DOA Estimation

The method is similar to that of the central elevation DOA estimate, thus we simplify the process
of deduction. For the centrosymmetric sub-array Ya, we also have the generalized shift invariance
relation:

ΠMy by(µi) = Ω(θi, ϕi)by(µi), (26)

where Ω(θi, ϕi) is a My ×My diagonal matrix which is given by:

Ω(θi, ϕi) = diag[e−jη(My−1) sin θi sin γi , e−jη(My−3) sin θi sin γi ,
. . . , ejη(My−1) sin θi sin γi ].

(27)

If we define the complex variable l = ejη sin θi sin γi , Ω(θi, ϕi) can be written as:
Ω(l) = diag[l−(My−1), l−(My−3), . . . , l(My−1)].

Let Uy be the signal subspace matrix, whose columns are the eigenvectors corresponding to the D
largest eigenvalues of Ry = E

{
y(t)yH(t)

}
. Similarly, there exists a unique non-singular D× D matrix

T2 such that Uy = By(µ)T2. Thus, we introduce a matrix Fy(l) which is expressed as:

Fy(l) = ΠMy Uy −Ω(l)Uy

= ΠMy By(µ)T3 −Ω(l)By(µ)T2

= [(Ω(l1)−Ω(l))by(µ1), (Ω(l2)−Ω(l))by(µ2),
. . . , (Ω(lD)−Ω(l))by(µD)]T2.

(28)

The central azimuth DOA estimations θ̂i(i = 1, 2 . . . , D) can be obtained by rooting the following
polynomial:

hy(l) = det
{

FH
y (l)Fy(l)

}
. (29)

Similarly, we use the roots inside the unit circle, and select the D roots li(i = 1, 2 . . . , D) that
maximize the spectral function such as:

Hy(l) = 1/det(FH
y (l)Fy(l)). (30)

The values of sin θ̂i · sin γ̂i for i = 1, 2, . . . , D are obtained as:

sin θ̂i · sin γ̂i =
λ

2πd
arg(li). (31)

3.2.3. The Parameter Matching Method

For only one CD source, the central elevation and azimuth DOAs can be estimated directly using
(25) and (31). However, when multiple CD sources exist, the estimated elevation and azimuth DOAs
are required to be matched. To perform the pair-matching procedure, we need to consider the GAM
vector of the whole cross array such as:

bx(µi) =

[
by(µi)

bz(µi)

]
. (32)

Let J be an (My + Mz)× (My + Mz) selection matrix which is defined as:

J =

[
ΠMy 0My×MZ

0Mz×My ΠMZ

]
. (33)
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Based on the symmetric property of the ASDW vector in (16), we have the following generalized
rotational invariance relation:

Jbx(µi) = Φ(θi, γi)bx(µi), (34)

where Φ(θi, γi) is an (My + Mz)× (My + Mz) diagonal matrix given by:

Φ(θi, γi) = diag[e−jη(My−1) sin θi sin γi , e−jη(My−3) sin θi sin γi , . . . ,
ejη(My−1) sin θi sin γi , e−jη(Mz−1) cos γi , e−jη(Mz−3) cos γi , . . . , ejη(Mz−1) cos γi ].

(35)

Let Ux be the signal subspace matrix of Rx = E
{

x(t)xH(t)
}

. Similarly, there exists a unique
non-singular D× D matrix T3 such that Ux = Bx(µ)T3. We can also introduce a matrix Fx(θ, γ) which
is written as:

Fx(θ, γ) = JUx −Φ(θ, γ)Ux

= JBx(µ)T2 −Φ(θ, γ)Bx(µ)T3

= [(Φ(θ1, γ1)−Φ(θ, γ))bx(µ1), (Φ(θ2, γ2)−Φ(θ, γ))bx(µ2),
. . . , (Φ(θD, γD)−Φ(θ, γ))bx(µD)]T3.

(36)

Similarly, when Φ(θi, γi) = Φ(θ, γ) for i = 1, 2, . . . , D, the i-th column of Fx(θ, γ) is a zero vector.
Therefore, the central elevation and azimuth DOA estimations can be matched by minimizing of the
following cost function:

f (θ, γ) = det(FH
x (θ, γ)Fx(θ, γ)). (37)

If we pick γ̂i from the elevation DOA estimations {γ̂1, γ̂2, . . . γ̂D}, there will be D pairs of 2D
central DOAs for γ̂i, which is given by

{
(θ̂i1,γ̂i), (θ̂i2,γ̂i), . . . (θ̂iD,γ̂i)

}
. We then substitute the DOA

estimations into (37) and calculate the function value f (θ, γ). If f (θ̂ij, γ̂i) for j = 1, 2, . . . D is the largest,
then (θ̂ij, γ̂i) is the correct match.

3.2.4. Algorithm Implementation and Complexity Analysis

Now, we can summarize the proposed algorithm as follows:

Step 1: Calculate the covariance matrix Rz = E
{

z(t)zH(t)
}

. Through the eigen-decomposition of Rz,
obtain the signal subspace matrix Uz.

Step 2: Construct the matrix Fz(k) in (22), and root the polynomial in (24) to obtain the central
elevation DOA estimations γ̂i for i = 1, 2, . . . D. It is noted that the roots are inside a unit
circle and maximize (23).

Step 3: Calculate the covariance matrix Ry = E
{

y(t)yH(t)
}

. Through the eigen-decomposition of Ry,
obtain the signal subspace matrix Uy.

Step 4: Construct the matrix Fy(k) in (28), and root the polynomial in (29) to obtain sin θ̂i · sin γ̂i for
i = 1, 2, . . . D. It is noted that the roots are inside a unit circle and maximize (30).

Step 5: Compute all the possible 2D DOAs (θ̂ij, γ̂i) for the elevation DOA estimations γ̂i. Calculate
the function values f (θ̂ij, γ̂i) for j = 1, 2, . . . D in (37). The largest one is the correct match.

Step 6: Repeat the process in Step 5 to match all the parameters.

Next, when the number of sensor elements M and the number of snapshots L change, we analyze
the computational complexity of the proposed algorithm in comparison with the SOS algorithm
in [18], the CC algorithm in [21] and Zheng’s algorithm in [20]. The main computational cost of
the proposed algorithm is mostly made of four operations: the estimation of the covariance matrix,
the eigen-decomposition of the covariance matrix, the polynomials rooting, and the pair-matching
procedure. Specifically, the cost involved by the estimation of covariance matrices Rx, Ry and Rz

is found to be in O(6M2L). The eigen-decomposition of the covariance matrices Rx, Ry and Rz

needs O(10M3) multiplications. The computational complexity of rooting polynomials hz(k) and
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hy(k) is found to be in O(2M3), and the pair-matching procedure adds O(D5 + D4M) multiplications
to the proposed algorithm. In above, the computational complexity of the proposed algorithm is
O(12M3 + 6M2L + D5 + D4M). Moreover, the main computational complexity of the SOS algorithm,
the CC algorithm and Zheng’s algorithm is given in Table 1 (N denotes the number of searching points).

Table 1. Comparison of different algorithms in computational complexity.

Algorithm Main Computational Complexity

Proposed algorithm O(12M3 + 6M2L + D5 + D4 M)
SOS algorithm O(8M3 + 4M2L + N(D3 + 3D2 M))
CC algorithm O(M3 + M2L + D3)

Zheng’s algorithm O((2M + 1)3 + (2M + 1)2L + D3)

When the number of searching points N is large, it is clear to see that the propose algorithm
provides lower computational cost compared to the SOS algorithm. Although the computational
complexity of the proposed algorithm is higher than Zheng’s algorithm and the CC algorithm, it
is not significant increment since the proposed algorithm does not require any spectrum searching.
In addition, and unlike the SOS algorithm, Zheng’s algorithm and the CC algorithm, the proposed
algorithm does not use the Taylor series approximation to establish the rotational invariance relation,
as this approximation may introduce additional errors.

4. Simulation Results and Performance Analysis

In the following experiments, noise is a complex Gaussian process with zero mean. The number of
snapshots is 200. We use the root mean squared error (RMSE) to evaluate the estimation performance,
where the RMSE of the central azimuth and elevation DOAs (RMSE(θ) and RMSE(γ)) are defined as:

RMSE(θ) =

√√√√E[
1
D

D

∑
i=1

(θ̂i − θi)
2
], (38)

RMSE(γ) =

√√√√E[
1
D

D

∑
i=1

(γ̂i − γi)
2], (39)

where θ̂i and θi are the estimated and true central azimuth DOA of the i-th source, respectively.
Additionally, γ̂i and γi are the estimated and true central elevation DOA of the i-th source, respectively.

In the following simulations, the signal power of sources is assumed to be the same. In addition,
signal-to-noise ratio (SNR) is defined as:

SNR = 10 log
σ2

s
σ2

n
, (40)

where σ2
s is the signal power of sources, while σ2

n is the variance of noise.

4.1. Effect of Different Deterministic Angular Distributed Functions

In this part, we examine if the proposed algorithm works properly for different angular distributed
functions. The sub-arrays Ya and Za are both composed of My = Mz = 16 sensors. The distance
between adjacent sensors is 0.5λ. The parameters of two CD sources are µ1 = (20◦, 3◦, 20◦, 5◦) and
µ2 = (60◦, 4◦, 80◦, 4◦). Their deterministic angular distributed functions are Gaussian and uniform
shaped, respectively. The SNR is 15 dB. For 30 independent trials, the central DOA estimations of
CD sources are plotted in Figure 2. It can be seen that the proposed algorithm can give the correct
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DOA estimations for cases where different CD sources have different deterministic angular distributed
functions, or unknown deterministic angular distributed functions.
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Figure 2. The 2D central DOA estimation results of the proposed algorithm (30 trials).

4.2. Performance Comparison

In this part, we compare the estimation accuracy of the proposed algorithm with the SOS algorithm
in [18], the CC algorithm in [21] and Zheng’s algorithm in [20] with respect to SNR from 0 dB to 30 dB.
The Cramér-Rao lower bound (CRLB) is also used as a benchmark [26]. The sub-arrays Ya and Za of
the crossed array in proposed algorithm are both composed of My = Mz = 16 sensors. The arrays
in the SOS algorithm and the CC algorithm are both composed of 32 sensors. Since the number of
antenna elements in Zheng’s algorithm must be odd, we set it to 33. In these algorithms, the distance
between adjacent sensors in a sub-array is 0.5λ, the vertical distance between the two sub-arrays is
0.5λ, and the radius of the UCA is λ/(4 sin(π/16)). The parameters of two Gaussian-shaped CD
sources are µ1 = (20◦, 2◦, 60◦, 3◦) and µ2 = (15◦, 3◦, 70◦, 2◦), respectively. Based on 500 Monte Carlo
experiments, the RMSE curves of the central DOA estimations versus SNR are shown in Figure 3.
It is clearly indicated that the estimation accuracy of the proposed algorithm is higher than the SOS
algorithm, the CC algorithm and Zheng’s algorithm, which arises from the fact that the proposed
algorithm does not suffer additional errors brought about by Taylor series approximation.
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4.3. Effect of Snapshots

In this part, we illustrate the influence of the number of snapshots on the performance of the
proposed algorithm. The number of snapshots varies from 100 to 900. The SNR is fixed to 15 dB and
the other parameters are the same as in Section 4.2. Based on 500 Monte Carlo experiments, the RMSE
curves for different algorithms are shown in Figure 4, from which we can draw similar conclusion as
in Section 4.2.
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4.4. Effect of the Central Elevation and Azimuth DOAs

In the last example, we examine the performance of the proposed method versus the central
elevation and azimuth DOAs for a Gaussian-shaped CD source with σθi = σγi = 1◦. First, let us
consider in Figure 5a the influence of the central azimuth DOA on performance. Assume that γi = 30◦,
SNR = 10 dB and the number of snapshots L = 200. As can be seen from the Figure 5a, the RMSE of θ̂i
estimated by the proposed method increases dramatically when the central azimuth DOA approaches
the lower bound (θi = −90◦) or the upper bound (θi = 90◦), but our method can still estimate
effectively the central azimuth DOA. Next, the influence of the central elevation DOA on performance
is examined in Figure 5b. At this time, we assume that θi = 30◦, SNR = 10 dB and L = 200. Similarly,
the RMSE of γ̂i estimated by the proposed method also increases dramatically when the central
elevation DOA approaches the lower bound (γi = 0◦), and our method has still satisfying estimation
performance for approaching the lower bound.Sensors 2017, 17, 1300 12 of 14 
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5. Conclusions

In this paper, we have presented a new approach for estimating the 2D central DOA of CD
sources using a centrosymmetric crossed array. Instead of using the Taylor series approximation,
we derive the symmetric property of an ASDW vector in a centrosymmetric array, based on which
the generalized shift invariance relations inside the GAMs are established in the two sub-ULAs.
Resorting to such relations, the central elevation and azimuth DOAs are estimated based on the
polynomial-root-based search-free method, respectively. After that, the pair-matching method is
presented. The proposed algorithm performs independently of the deterministic angular distributed
function. Compared to the existing low-complexity algorithms, the proposed algorithm does not suffer
additional errors brought by the Taylor series approximation, which allows it to achieve a higher
estimation accuracy. Moreover, the proposed algorithm does not suffer high computational complexity
brought by spectrum-peak searching.
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Appendix A

The most commonly used the deterministic angular distributed functions for a 2D CD source are
presented as follows:

Gaussian shaped:

ρ(θ̃, γ̃; µi) =
1

2πσθσγ
e−

1
2 (θ̃

2/σ2
θ +γ̃2/σ2

γ), (A1)

Uniform shaped:

ρ(θ̃, γ̃; µi) =

{
1

12σθ σγ

∣∣∣θ̃∣∣∣ ≤ √3σθ and |γ̃| ≤
√

3σγ

0 otherwise
, (A2)

Laplacian shaped:

ρ(θ̃, γ̃; µi) =
1

2σθσγ
e−(
√

2|θ̃|/σθ+
√

2|γ̃|/σγ), (A3)

where the small deviation θ̃ and γ̃ are defined as θ̃ = θ − θi and γ̃ = γ− γi, respectively.
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