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Abstract: Since articular cartilage has a limited regeneration potential, for developing biological
therapies for cartilage regeneration it is important to study the mechanisms underlying chondrogenesis
of stem cells. Bioluminescence assays can visualize a wide range of biological phenomena such as
gene expression, signaling, metabolism, development, cellular movements, and molecular interactions
by using visible light and thus contribute substantially to elucidation of their biological functions.
This article gives a concise review to introduce basic principles of bioluminescence assays and
applications of the technology to visualize the processes of chondrogenesis and cartilage regeneration.
Applications of bioluminescence assays have been highlighted in the methods of real-time monitoring
of gene expression and intracellular levels of biomolecules and noninvasive cell tracking within
animal models. This review suggests that bioluminescence assays can be applied towards a visual
understanding of chondrogenesis and cartilage regeneration.

Keywords: bioluminescence assays; cartilage regeneration; chondrogenesis; real-time monitoring;
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1. Introduction

Articular cartilage is a type of vascular connective tissue and thus cannot be accessed by blood
supply and mesenchymal stem cells (MSCs) originating from the bone marrow. Hence, cartilage tissues
have limited regeneration potential [1,2]. Regenerative medicine and technology based on stem cells
can be an attractive strategy to repair cartilage damage in patients. For developing biological therapies
for cartilage regeneration, it is important to understand the mechanisms underlying chondrogenesis of
stem cells [3].

Molecular imaging enables the visual monitoring, characterization and quantitative analysis of
biological processes within living organisms [4]. Thus, molecular imaging can be a powerful research
tool for studying mechanisms for chondrogenesis of stem cells and developing stem-cell therapy for
cartilage regeneration. Among molecular imaging techniques, bioluminescence and fluorescence-based
imaging techniques have been developed with the development of cameras with highly sensitive
photosensors and have their applications in living organisms [5]. Fluorescence imaging requires
external light absorption for light emission at a longer wavelength, whereas bioluminescence imaging
requires the oxidation of luciferin catalyzed by luciferases to release photons of light [6,7]. Advanced
molecular imaging systems including the development of a cooled charged coupled device (CCCD)
camera allow us to quantify photons both in vitro and in vivo despite their light-absorbing and
scattering properties [4]. Thus, the combination of optical systems and bioluminescence reporter
systems enables us to monitor a variety of biological processes in real-time [8]. Real-time monitoring
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based on these advanced bioluminescence technologies can observe biological processes continuously,
instead of at discrete time points, and thus provide the essential information for understanding
tissue regeneration which is the sequential processes. Therefore, researchers are now trying to apply
bioluminescence assays to regenerative medicine and its clinical applications [9]. This article will
review the applications of bioluminescence assays to clarify underlying mechanisms of chondrogenesis
of stem cell and stem cell-based therapy for cartilage regeneration.

2. Fundamentals of Bioluminescence Assays

Fluorescence requires high-intensity excitation light which is inherently toxic for live cells and thus
can lead to artifacts and abnormal responses. Thus, fluorescence imaging is not suitable for monitoring
long-term processes due to continuous irradiation, causing cell damage and photobleaching (Table 1).
In contrast, bioluminescence, which results from the activity of luciferase to catalyze oxidation of
luciferins, has disadvantages such as lower brightness than fluorescence, requirement of luciferin and
thus dependence on alterations to luciferin uptake rates due to changes in cell health, cellular location,
and metabolic rates. However, it does not require excitation light, thereby having a low phototoxicity ([7],
Table 1). Therefore, bioluminescence imaging is very useful for monitoring long-term processes of
stem cell differentiation. Moreover, bioluminescence imaging offers higher sensitivity than fluorescent
imaging due to the extremely low background signal ([6], Table 1). Until now, the Photinus pyralis
(firefly) luciferase (Fluc), the Renilla reniformis luciferase (Rluc) and the Gaussia princeps luciferase (Gluc)
have been widely used in biomedical research. Fluc converts D-luciferin to oxyluciferin by using ATP
and Mg2+ as cofactors, resulting in green light emission at 562 nm [10], while Rluc uses coelenterazine
to emit a blue light at 482 nm without any cofactors but has a significantly lower quantum yield and
less enzymatic efficiency than Fluc [11]. Gaussia luciferase (Gluc) is a naturally secreted luciferase to
emit the blue bioluminescence (480 nm peak) [12]. Although Gluc is much more sensitive than Fluc
and Rluc, Gluc is less suitable for in vivo imaging because Gluc is highly absorbed by hemoglobin
and melanin or is scattered by various tissues in living organisms [13]. The red-emitting luciferases
from Pyrophorus plagiophthalamus [14], Photinus pyralis [15], Luciola italica [16] and railroad worm are
known to be useful for the molecular imaging of deep tissues. Moreover, multicolor bioluminescence
reporters based on beetle luciferases to emit green, orange, and red light allowed the simultaneous
monitoring of the expression of multiple genes [17]. Recently, it was demonstrated that the bacterial
bioluminescence lux system consisting of five genes (luxCDABE) can produce fully autonomous
bioluminescence in mammalian cells without the addition of any chemical substrates [18]. The utility
of these bioluminescence reporters allows for analysis of various aspects of biological functions,
not only gene expression but also quantity of biomolecules, post-translational modification, and
protein–protein interaction [19].

Table 1. Comparison of bioluminescence and fluorescence.

Advantage Disadvantage

Fluorescence

Superior brightness Requirement of excitation light

Shorter imaging time (miliseconds)

High phototoxicity
High photobleaching

High background
Autofluorescence
Autofluorescence

Bioluminescence

Low phototoxicity Low brightness
Low background Longer imaging time (minute)
High sensitivity Requirement of substrates

Broad linear range
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3. Real-Time Monitoring of Gene Expression

3.1. Principles

Reporters consisting of the reporter genes under the control of a selected gene promoter have
been used to analyze the transcriptional activities [20]. In comparison to typical reporter enzymes
such as green fluorescent protein, β-galactosidase, and chloramphenicol acetyltransferase, luciferases
have high sensitivity due to greatly reduced background, thereby providing the superior linear
response range and thus are the most useful reporter enzymes for the quantitative analysis of gene
expression [19]. Thus, bioluminescence reporter assays have been widely used in measuring gene
expression levels in a variety of biological and pathological states from embryo development to disease
progression. In general bioluminescence reporter assays, the luciferase reporters are transfected into
target cells, the transfected cells expressing luciferases are lysed after an appropriate period, and
then the quantitative levels of the expressed luciferase are measured by detecting a light signal to
estimate the target promoter activity as a light intensity [21]. Thus, bioluminescence reporter assays
have shortcomings such as requirement of cell lysis and time delays between luciferin application and
bioluminescent signal acquisition. However, a molecular imaging system based on a CCCD camera and
the bright bioluminescence reporters enables real-time monitoring of the level, the localization, and the
duration of the gene expression without cell lysis, which is required for investigating dynamic processes
of cell differentiation and tissue regeneration [22]. Furthermore, advanced luciferase technology,
involving progress in both the multicolor reporter system and the detection equipment, has allowed
us to simultaneously monitor the expressions of multiple genes because luciferases can emit different
colored light in the catalysis of a single D-luciferin substrate and each of the intensities can be quantified
by splitting these mixed emission spectra with optical filters (Figure 1) [23–25].
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Figure 1. Bioluminescence imaging of dual gene expression at the single-cell level. (A) The dual-color 
bioluminescence imaging of NIH3T3 cells cotransfected with the Bmal1-red luciferase plasmid (red) 
and the Per2-green luciferase plasmid (green), showing circadian rhythms of green and red 
luminescence, respectively. Each spot is on a separate cell. Scale bar, 20 μm; (B) Representative 
circadian bioluminescence rhythms from individual NIH3T3 cells cotransfected with Bmal1-pSLR 
plasmid (red) and Per2-pEluc plasmid (green) for 3–4 days. Each graph represents real-time analysis 
data of quantitative bioluminescence intensity for the respective spot shown in Figure 1A. 
Reproduced with permission from [25]. 
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Figure 1. Bioluminescence imaging of dual gene expression at the single-cell level. (A) The dual-color
bioluminescence imaging of NIH3T3 cells cotransfected with the Bmal1-red luciferase plasmid
(red) and the Per2-green luciferase plasmid (green), showing circadian rhythms of green and red
luminescence, respectively. Each spot is on a separate cell. Scale bar, 20 µm; (B) Representative
circadian bioluminescence rhythms from individual NIH3T3 cells cotransfected with Bmal1-pSLR
plasmid (red) and Per2-pEluc plasmid (green) for 3–4 days. Each graph represents real-time analysis
data of quantitative bioluminescence intensity for the respective spot shown in Figure 1A. Reproduced
with permission from [25].
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3.2. Application into Cartilage Researches

The discovery of clock genes and their organization into transcription–translation feedback loops
has motivated the development of techniques to monitor messenger ribonucleic acid (mRNA) and
protein levels over time. Thus, bioluminescence reporters of clock genes which consist of the luciferase
genes under the promoters of clock genes were incorporated into cell or animal models as indicators of
clock function [24]. In mammalian research, firefly luciferase has been used typically under the control
of promoter elements from the Period1 (Per1), Period2 (Per2) or brain and muscle arnt-like 1 (Bmal1)
genes [24]. Dual-color bioluminescence reporter systems using beetle luciferases enabled us to monitor
simultaneously Bmal1 and Per2, which are responsible for circadian rhythm [25]. Bioluminescence
imaging reported the peripheral tissues exhibit robust circadian rhythms in culture by monitoring
gene expression of clock genes [26]. More recently, bioluminescence imaging found autonomous
circadian rhythms in explant cultures of xiphoid and femoral head cartilage and that temperature
cycles were able to entrain the cartilage circadian rhythm [27], indicating that the temperature response
could provide a mechanism by which the central clock can synchronize cartilage rhythms. Our study
showed that chondrogenic cell line, ATDC5, which was stably transfected with either the Bmal1-Luc
reporter or the Per2-Luc reporter, revealed robust circadian rhythms by dexamethasone treatment
but the amplitude of circadian rhythms gradually decreased over time (Figure 2A). Subsequently,
we performed single-cell imaging of the rhythmic expression of Bmal1 in the chondrogenic cells
by using Brazilian click beetle luciferase (Eluc) which reveals a much brighter signal than Fluc [28].
The bioluminescence imaging of ATDC5 cells stably transfected with the Bmal1-Eluc reporter found
that Bmal1 oscillations in individual cells were synchronized by dexamethasone treatment but showed
the decrease in their amplitudes and the gradual desynchronization over time (Figure 2B). Furthermore,
bioluminescence imaging of chondrogenic cells also showed that the circadian clock was strongly reset
by parathyroid hormone in a circadian time-dependent manner [29]. In addition, the study using a
Per2-Luc transgenic mouse showed that Per2 expression continues to oscillate with circadian rhythms
in the articular cartilage tissues for several months (Figure 3A–C) and that cartilage clocks were reset by
forskolin and dexamethasone in a time-specific manner (Figure 3D–F), which suggests that hormones
such as glucocorticoids play a role as internal time-cues for the circadian clock in cartilage tissues [30].Sensors 2017, 17, 1306 5 of 14 
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Figure 3. Bioluminescence imaging of circadian rhythms in Per2-Luc mouse femur. (A) The overview 
of the distal half of the femur. The dotted line indicates epiphyseal cartilage. The mirror-reversed 
image was used for comparison to the bioluminescence image. A sample was obtained from a 16.5-
week old mouse and cultured for 6 days before observation. (B) The bioluminescence image obtained 
by a microscope-based high sensitivity CCCD camera system. (C) A time series analysis of the 
epiphyseal cartilage (ROI-1) and femoral trochlea (ROI-2). The right panel shows set ROIs. (D–F) 
Effects of forskolin and dexamethasone (DEX) on circadian clocks. Representative data showing the 
phase advancement (upper panels) or phase delay of the bone circadian clock (lower panels). The 
arrowhead indicates chemical administration. From left to right, the vehicle (ethanol; EtOH) (D), DEX 

(E), or forskolin (F). Reproduced with permission from [30]. 
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bioluminescence monitoring of ATDC5 cells transfected with the Bmal1-pEluc plasmid or the
Per2-pEluc plasmid, shows circadian rhythms. (B) The single-cell imaging of ATDC5 cells transfected
with the Bmal1-pEluc plasmid shows circadian rhythms in individual cells.
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Figure 3. Bioluminescence imaging of circadian rhythms in Per2-Luc mouse femur. (A) The overview of
the distal half of the femur. The dotted line indicates epiphyseal cartilage. The mirror-reversed image
was used for comparison to the bioluminescence image. A sample was obtained from a 16.5-week
old mouse and cultured for 6 days before observation. (B) The bioluminescence image obtained by a
microscope-based high sensitivity CCCD camera system. (C) A time series analysis of the epiphyseal
cartilage (ROI-1) and femoral trochlea (ROI-2). The right panel shows set ROIs. (D–F) Effects of
forskolin and dexamethasone (DEX) on circadian clocks. Representative data showing the phase
advancement (upper panels) or phase delay of the bone circadian clock (lower panels). The arrowhead
indicates chemical administration. From left to right, the vehicle (ethanol; EtOH) (D), DEX (E), or
forskolin (F). Reproduced with permission from [30].

Bioluminescence imaging, which can monitor changes in gene expression of cells implanted
in animal models, facilitates the development of cell therapies for tissue regeneration. In cartilage
development, type II procollagen (COL2A1) gene expression is known to be upregulated by sex
determining region Y-box (Sox) 9, L-Sox5 and Sox6 in response to environmental signals [31], which
suggests that COL2A1 is a marker of chondrogenesis [32]. To monitor cartilage formation in an animal
model, progenitor cells were transfected with both the Fluc under the control of the COL2A1 promoter
as a reporter of chondrogenic marker and Rluc under the control of a cytomegalovirus promoter as a
reporter of cell proliferation [33]. In vivo bioluminescence monitoring also showed that the Pluc/Rluc
ratio represents changes in gene expression of aggrecan in the mice implanted with the CL1 cell line
and MSCs, which revealed different patterns of in vivo chondrogenesis. In addition, it was shown
that both bioluminescent signal intensity and area decreased with natural aging from 2 to 13 months,
indicating that the bioluminescence intensity can be used as a quantitative indicator of regenerated
tissues during cartilage regeneration [34].

4. Realtime Monitoring of Biomolecules

4.1. Principles

ATP serves numerous vital functions as the central molecule of metabolism in the cell because
molecules used as energy sources, for instance glucose, are broken down in the cell, and the energy
obtained from them is stored in the phosphate-anhydride bonds of ATP [35]. ATP also maintains
the proper concentrations of other nucleotides. ATP is interchanged into the other NTPs, which are
incorporated into DNA and RNA. In addition, extracellular ATP functions as an autocrine/paracrine
signaling molecule which regulates many physiological functions [36]. Ligand-gated ionic channels,
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P2X receptors, which have been identified mainly in neurons and muscle cells, respond to ATP directly
by activating depolarizing currents [37,38]. Thus, ATP detection assays are crucial for understanding
many physiological and pathological conditions [39–41]. Beetle luciferases which catalyze the oxidation
of the luciferin by using ATP in the presence of O2 and Mg2+ to emit luminescence have been widely
used as an excellent ATP reporter for detecting intracellular ATP levels [6,7]. Previous studies showed
that the beetle luciferases under the control of a constitutive promoter can be used for monitoring
intracellular ATP level in real time [42,43], which indicates that the beetle luciferases can continuously
monitor intracellular ATP levels. Luciferase-based assays can also detect ATP-converting reactions
such as oxidative phosphorylation, photophosphorylation [44].

Ca2+ is an intracellular signal molecule that regulates differentiation, secretion, contraction,
cellular excitability and gene expression. Ca2+ regulates many intracellular processes in the cytosol
and inside organelles such as endoplasmic and sarcoplasmic reticulums, mitochondrias, endosomes,
Golgi apparatus, and lysosomes [45,46]. Therefore, accurate measurement of the Ca2+ levels inside the
organelles is important for understanding the physiological functions of Ca2+ signals. Since aequorin,
which is the protein-based Ca2+ indicator isolated from the jellyfish Aequorea forskalea, was firstly
used in the early 1970s [47], several Ca2+-binding photoproteins have been used to measure Ca2+

levels [48,49]. In comparison to synthetic fluorescence dyes, the advantage of the protein-based
Ca2+ indicators is their ability to be targeted to specific intracellular locations by coupling to specific
promoters and targeting sequences [50]. Furthermore, the protein-based Ca2+ indicators enable not
only long-term imaging of Ca2+ signals in specific subcellular compartments and intact living animals,
but also repeated imaging of the same living organisms. Aequorin emits blue light (465 nm) when Ca2+

binds to at least two sites among three Ca2+-binding sites of aequorin [51], the molecular oxygen in
aequorin is released, and then the coelenterazine is oxidized to coelenteramide [52]. Thus, aequorin has
been widely used for detecting Ca2+ levels in living organisms [53–55]. Recent work also developed
fluorescent Ca2+ sensors by combining an improved GFP variant and aequorin [56].

Cyclic adenosine 3′,5′-monophosphate (cAMP) functions as one of the principal signal molecules
by regulating a number of signal pathways, including those activated by G protein-coupled receptors
in response to hormones and neurotransmitters [57]. Thus, biochemical cAMP assays have been
developed for basic research and drug discovery. The cAMP reporter based on bioluminescent enzymes
used N-terminal fragments of a click beetle luciferase from Brazil (ELucN) and one from Jamaica
(CBRN) and one C-terminal fragment of carboxy-terminal fragment engineered from click beetle
luciferase (McLuc1) which dimerize with the above N-terminal fragments, forming two distinct
luminescent enzymes with different emission peaks well-separated from each other [58]. In this cAMP
reporter, the cAMP-binding domain of PKA (RIIβ) was used for sensing cAMP levels. McLuc1 and
ElucN form a functional enzyme to emit red light (613 nm) in the absence of cAMP. cAMP binding
to PKA RIIβ of the cAMP reporter results in conformational rearrangement, driving separation of
the red light-producing luciferase and migration of McLuc1 toward CBRN, which consequently
emits green light (538 nm). Thus, cAMP levels could be expressed by red/green ratio. Other cAMP
luminescent indicators were also developed by using a circularly permutated variant of a Fluc fused
with cAMP-binding domain B of PKA RIIβB [59,60]. These cAMP reporters are very highly-sensitive
cAMP sensors with a detection limit in low nanomolar range and also have high signal/noise ratio [60],
which enables real-time monitoring of cAMP dynamics in living organisms.

4.2. Application to Cartilage Research

Continuous monitoring of biomolecules during chondrogenesis offers the exciting possibility to
clarify the mechanism underlying cartilage regeneration. Prechondrogenic condensation is the most
critical process for skeletal patterning during limb development [61,62]. Since the secreted molecules
such as adhesion molecules and extracellular matrix (ECM) are considered to be strictly controlled
to determine the patterns of condensations during cartilage formation, how secretory activity is
regulated during chondrogenesis was examined by monitoring the dynamics of intracellular ATP
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which is required for secretion processes [63,64]. Bioluminescence monitoring using a Phrixothrix
hirtus red luciferase (PxRe)-based ATP reporter showed that intracellular ATP level oscillates in
chondrogenesis ([65]; Figure 4A). In addition, a dual-color bioluminescence assay which simultaneously
monitors both ATP and oxygen levels in real time was developed by using PxRe to emit red and Rluc to
emit blue light [66]. In this dual-color monitoring analysis, Rluc oscillations revealed troughs roughly
corresponding with the peak of PxRe oscillations during chondrogenesis (Figure 4B), which can be
explained by the fact that ATP is synthesized by oxygen consumption in mitochondria. However, Rluc
oscillations also had an additional mode with a large phase difference relative to PxRe oscillations
(Figure 4B), indicating the oscillations of non-mitochondrial oxygen consumption in chondrogenesis [67].
Since it was demonstrated that metabolic intermediates involved in glycolysis oscillate during
chondrogenesis [65], the glycolytic oscillations may drive the non-mitochondrial oxygen oscillations.
However, oxygen consumption by peroxidases and plasma membrane-bound NADPH-oxidase may
be involved in non-mitochondrial oxygen oscillations.
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Figure 4. Bioluminescence imaging of ATP, Ca2+ and oxygen during chondrogenesis. (A) Right
panel: Bioluminescence imaging at the single-cell level shows that bioluminescent intensities of
Actin-Phrixothrix hirtus red luciferase (PxRe) to report intracellular ATP levels in individual cells oscillate
collectively by intercellular synchronization during chondrogenesis. Left panel: Time course data of
PACTIN-PxRe intensities of individual cells indicated by red squares after chondrogenic induction.
Reproduced with permission from [65]. (B) Simultaneous monitoring of intracellular oxygen (blue line)
and ATP (red line) levels during chondrogenesis in the micromass culture of mesenchymal stem cells
(MSCs) by using an oxygen reporter (PACTIN-Rluc) and ATP reporter (PACTIN-PxRe). Reproduced with
permission from [65]. (C) Simultaneous monitoring of intracellular Ca2+ (blue line) and ATP (red line)
levels during chondrogenesis in micromass culture of ATDC5 cells using a calcium reporter (aequorin)
and ATP reporter (PACTIN-PxRe). Reproduced with permission from [67].
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Similarly, by using a blue-emitting aequorin and a red-emitting PxRe luciferase, intracellular Ca2+

and ATP levels were simultaneously monitored during chondrogenesis [67]. The results showed
that both Ca2+ and ATP levels oscillated and Ca2+ oscillations were nearly antiphase to ATP
oscillations ([67]; Figure 4C). It was known that Ca2+ stimulates Ca2+ pumps and other intracellular
reactions such as exocytosis, which leads to ATP consumption. Moreover, Ca2+ can suppress ATP
synthesis by inhibiting glycolytic enzymes and collapsing mitochondrial membrane potential [68,69].
Likewise, the decrease in Ca2+ level can reduce ATP consumption and increase ATP production [70].
This positive Ca2+ effect on ATP consumption and the negative Ca2+ effect on ATP production can
explain the antiphase relationship between Ca2+ and ATP oscillations.

5. Real-Time Monitoring of Exocytotic Activity

5.1. Principles

Molecular imaging of exocytotic activities in cells has used total internal reflection fluorescence
and two-photon laser scanning microscopy [71,72]. However, these fluorescence methods have
limitations in monitoring a limited section of the cells and require continuous light excitation to
cause cellular toxicity and photobleaching. Bioluminescence imaging can provide distinct advantages
over fluorescence imaging in monitoring protein secretion and other secretory processes in cells
because bioluminescence imaging does not require light excitation and thus has no phototoxicity.
The visualization of secretion of Cypridina luciferase (Cluc) and Gaussia luciferase (GLuc) was realized
in mammalian cells, showing that the secreted luciferases are secreted via the constitutive exocytotic
pathways [73,74]. Cluc was thus utilized for imaging neurotransmitter release [75].

5.2. Application to Cartilage Research

Since the secreted molecules including ECM and adhesion molecules must be strictly controlled
to determine the skeletal patterns during chondrogenesis, it was examined how secretion activity is
regulated during chondrogenesis. Secretory activity was monitored by using a reporter based on the
Cluc gene fused to a constitutive promoter. The bioluminescence monitoring system combined with
the perfusion culture system was used for simultaneous monitoring of both intracellular ATP level and
secreted Cluc levels during chondrogenesis. The result revealed that Cluc secretion oscillated during
chondrogenesis ([65]; Figure 5A). The oscillation period of Cluc secretion was the nearly same period
ATP oscillations. In addition, 2-deoxy glucose which eliminated ATP oscillations suppressed the Cluc
oscillations ([65]; Figure 5B), indicating that the oscillatory secretion is driven by ATP oscillations in
chondrogenesis. Furthermore, it was shown that secretion levels of Bone morphogenetic protein 2
(BMP2) and transforming growth factor-β1 (TGF-β1) oscillated during chondrogenesis and that each
peak of the oscillatory secretion of BMP2 and TGF-β1 appeared at the peak of ATP oscillations ([76];
Figure 5C,D). However, the oscillatory secretion of the growth factors showed one peak per two
or three peaks of ATP oscillations and thus the frequency of their oscillatory secretion was lower
than that of ATP oscillations ([76]; Figure 4C,D). This result indicates that the secretion patterns of
the growth factors depend on not only secretory activity but also other processes. The oscillatory
secretion of growth factors would play a crucial role in prechondrogenic condensation and subsequent
skeletal patterning.
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Figure 5. Simultaneous monitoring of secretory activity and intracellular ATP levels during
chondrogenesis. (A) Time course data taken with simultaneous monitoring of PxRe intensity (red line)
and secreted Cypridina luciferase (CLuc) intensity (blue line) during perfusion with insulin-implemented
medium. Reproduced with permission from [65]. (B) Effect of 2-deoxy glucose (2-DG) treatment on the
oscillatory secretion of CLuc during perfusion with insulin-implemented medium. Reproduced with
permission from [65]. (C) Simultaneous monitoring of PxRe intensity (red line) and secreted BMP2 levels
(blue line) during perfusion with the chondrogenic medium. Reproduced with permission from [76].
(D) Simultaneous monitoring of PxRe intensity (red line) and secreted TGF-β1 levels (blue line) during
perfusion with chondrogenic medium. Reproduced with permission from [67]. Reproduced with
permission from [76].

6. In Vivo Imaging for Transplanted Cells

6.1. Principles

Cell therapies hold great promise for tissue regeneration. However, before clinical application
of the cell therapies, transplanted cells must be monitored in vivo for understanding the mechanism
underlying tissue regeneration. In vivo bioluminescence imaging enables quantitative and repetitive
measurements of transplanted cells in animal models without a light source to excite fluorophores
and thus provides useful information on cell survival, migration, and proliferation and differentiation
over time in the same animal models [77]. For example, after transplantation into a murine myocardial
infarction model, bone marrow mononuclear cells, mesenchymal stem cells, adipose stromal cells, and
skeletal myoblasts which were labelled with bioluminescence reporters were monitored in vivo. It was
demonstrated that mononuclear cells revealed higher survival rate and induced better heart function
than other cell types [78,79]. However, bioluminenscence imaging has limitaions in its application to
in vivo studies due to the differences in bioluminescent output kinetics among subcutaneous injection,
tail vein injection and intraperitoneal injection, and the stress and wounding effects associated with
repeated luciferin injection. To overcome this limitation, bioluminescence techniques based on the
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bacterial lux system were developed to produce fully autonomous bioluminescence in a human cell
line without the injection of any exogenous substrate [18].

6.2. Application to Cartilage Research

Bioluminescence imaging was used for in vivo cell tracking after the cell sheets made of firefly
luciferase-expressing chondrocytes obtained from transgenic rats were transplanted into the knee joint
of rats for cartilage regeneration [80]. Bioluminescence imaging showed that the transplanted cells
remained in the knee joint and did not migrate to other parts of the body, which confirms the safety of
the chondrocyte sheets ([80]; Figure 6). In vivo bioluminescence imaging also examined the potential
effect of gene delivery on cartilage treatment. The in vivo imaging showed that the adeno-associated
virus-mediated intra-articular transgene can be stably expressed through a single intra-articular
injection and can be regulated by using a tetracycline-inducible system in a rat model [81], which
indicates that the adeno-associated virus-mediated system has a clinical potential for inflammatory
and degenerative arthritis.
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Figure 6. CCD images from the long-term observation of luciferase activity from the right knee joint.
This representative image shows the CCD image of one rat from the AC-SY group (transplanted
with chondrocyte and synovial cell sheets) at the following time points (from left to right): after
transplantation on day 0 and day 4, and at 3, 6, 12, 18, and 21 months. The color bar indicates the
bioluminescence intensity in photons per seconds cm2 per steradian. Reproduced with permission
from [80].

7. Potential Applications of Bioluminescence Assays for Cartilage Regeneration

Understanding how proteins interact during cartilage formation is crucial for biological and medical
research on cartilage regeneration. Bioluminescence resonance energy transfer (BRET) which is based on
energy transfer between a donor and an acceptor is useful for protein–protein interaction [82]. BRET
allows the detection of interactions between fusion proteins without external fluorescence excitation [83],
and thus could identify protein–protein interaction, which play crucial roles for chondrogenesis.
In addition, bioluminescence imaging can monitor successfully the post-transcriptional events such as
RNA processing and splicing, which are known to regulate cartilage formation. For example, mRNA
stability can be monitored by fusing a luciferase reporter to the 3’ untranslated region of an interested
gene [84]. Furthermore, the continuous improvement of the lux system to produce a bioluminescent
signal without exogenous substrate for functions in eukaryotic cells will be useful in basic and applied
scientific research for cartilage regeneration. Further study using these bioluminescence systems
will provide the useful information for understanding the mechanism underlying chondrogenic
differentiation and cartilage regeneration.
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8. Conclusions

Bioluminescence assays can be applied readily into most cell and tissue types because luciferases
can be expressed and luciferin easily permeates into most cells and tissue types, which makes it a
versatile technology for a variety of biomedical research [8]. Furthermore, in vivo bioluminescence
imaging has become a powerful technique for the noninvasive monitoring of animal models, which
will provide insights into molecular mechanism underlying chondrogenic differentiation to cartilage
regeneration. New applications of bioluminescence will continue to deepen our understanding of
cartilage regeneration and consequently lead to therapeutic developments in the future.
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Abbreviations

OA osteoarthritis
CCCD cooled charged coupled device
Fluc Photinus pyralis (firefly) luciferase
Rluc the sea pansy Renilla reniformis luciferase
Gluc the marine copepod Gaussia princeps luciferase
PxRe Phrixothrix hirtus red luciferase
Cluc Cypridina luciferase
lux the bacterial luciferase gene cassette
AAV adeno-associated virus
FRET fluorescence resonance energy transfer
BRET bioluminescence resonance energy transfer
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