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Abstract: Concrete is one of the most common materials used to construct a variety of civil
infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential
to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected
collapse. To address this issue, this study proposes a novel method to estimate the early-age
strength of concrete, by integrating an artificial neural network algorithm with a dynamic response
measurement of the concrete material. The dynamic response signals of the concrete, including
both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded
piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance
signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation
in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural
network algorithm is used to verify a relationship between the variation in dynamic response signals
and concrete strength. The results of an experimental study confirm that the proposed approach can
be effectively applied to estimate the strength of concrete material from the early-age stage of the
curing process.

Keywords: early-age concrete strength estimation; artificial neural network; electromechanical
impedance; harmonic wave; embedded piezoelectric sensor

1. Introduction

Concrete is one of the most common materials used to construct civil infrastructures, such as
buildings and bridges. However, it is also one of the most difficult materials to manage because
concrete is a mixture, consisting of cement, water, sand, gravel, and other aggregates. Due to its
heterogeneous property, it is difficult to mathematically predict the compressive strength of concrete
during and/or after curing. In particular, predicting the compressive strength during the curing
process is important to reduce the construction time and cost by determining the appropriate curing
time to achieve sufficient strength. The in situ strength of concrete structures can be determined
with high precision by performing a destructive strength test and material analysis on core samples
extracted from the structure [1]. However, this method can lead to destruction of the integrity of
the host concrete structure. To overcome this problem, a range of nondestructive testing (NDT)
methods has been developed to monitor the strength, without damaging the host structure. These
NDT methods can be categorized into two classes: thermal property-based NDT, and mechanical
property-based NDT.
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Thermal property-based concrete strength NDT methods focus on the hydration heat occurring
during the curing process. Concrete hardens due to the hydration process between water and
cementitious materials. Because the hydration process involves an exothermic reaction, the concrete
generates a certain amount of heat during the curing process. The strength of concrete can be estimated
from the degree of hydration, and it can be calculated by measuring the hydration heat. Therefore,
the strength of concrete can be estimated by measuring the thermal history of concrete through
thermocouples, fiber optic sensors, or other thermal sensors [2,3]. The physical property-based concrete
strength estimation methods are based on the change of mechanical properties. Ultrasonic-based
methods are general NDT methods used for the early-age monitoring of concrete. The properties of
ultrasonic wave propagation, such as velocity or attenuation, are affected by the change of physical
properties [4–8]. Thus, the strength of concrete can be monitored by tracking the changes in ultrasonic
wave propagation. Also, an electromechanical impedance method using piezoelectric sensors could
use to estimate the strength of concrete. The strength of concrete can be estimated by measuring
the resonant frequency of impedance [9,10], calculating the RMSD (root mean square deviation) of
impedance signals [11], or impedance spectrum analysis [12]. Furthermore, a range of methods
based on the acoustical, electrical, magnetic, optical, radiographic, and other mechanical properties of
concrete have been studied [13].

Because the concrete is heterogeneous material, the strength of concrete is hard to estimate using a
formal equation. To overcome this limitation, the neural network was used to estimate the strength of
concrete. The strength of HPC (High Performance Concrete) can be modeled using a modified neural
network architecture [14] and fuzzy-ARTMAP neural network by an analysis of the mix proportion [15].
The main benefits in using a neural network are that all of the behavior of a material can be represented
within the unified environment of a neural network. Also, the neural network-based model is built
directly from experimental data using the learning capabilities of the neural network [15].

In this context, this study proposes a novel method to estimate the strength of concrete at the
early-age stage by integrating an artificial neural network algorithm with dynamic response signals of
the concrete material. The dynamic response signals of the concrete, including both electromechanical
impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module.
The cross-correlation coefficients of the electromechanical impedance signals and the amplitudes of
the guided ultrasonic wave signals are selected to quantify the variations in dynamic response signals
according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used
to verify a relationship between the variations in dynamic response signals and concrete strength.
The results of an experimental study confirm that the proposed approach can be effectively applied to
estimate the strength of concrete materials from the early-age stage of the curing process.

2. Early-Age Concrete Strength Estimation Technique

2.1. Embedded Piezoelectric Sensor

Piezoelectric sensors can interconvert mechanical energy and electrical energy. Due to this
piezoelectric effect, a piezoelectric sensor can be used simultaneously as both an actuator and a sensor.
This study employs a lead zirconate titanate (PZT) patch to generate vibration and waves to the
concrete structure, and measure the dynamic responses of the concrete [16,17]. Table 1 shows the size
and major properties of the PZT used in this study.

Table 1. PZT material properties.

APC 850 WFB Series

Size (mm) Electromechanical Coupling Factor Piezoelectric Charge Constant (10−12 m/V)

Diameter Thickness κ33 κ31 d33 d31

30.00 0.508 0.72 0.36 400 −175
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To obtain dynamic responses from the inside of concrete structures, the sensors should be
embedded within the concrete. However, the PZT can be easily broken by stresses, such as the
thermal stress and shrinkage stress of concrete. To protect the PZT in the concrete, an embedded
piezoelectric sensor has been developed [18]. The novel embedded piezoelectric sensor is fabricated
to improve the signal quality, using a hemi-spherical hollow Styrofoam case, as Figure 1a shows.
The embedded piezoelectric sensor allows one side of the PZT to maintain free boundary condition,
even though the sensor is embedded within the concrete media. Thus, the embedded piezoelectric
sensor can measure the electromechanical impedance as if it were attached to the concrete surface.
The electromechanical impedance is measured using a single sensor with a self-sensing technique,
and the harmonic wave propagation is measured using two sensors; one is used to generate the
harmonic waves, and the other senses the propagated waves. The embedded piezoelectric sensor
module consists of two embedded piezoelectric sensors to simultaneously measure the impedance
and harmonic wave propagation. Figure 1b shows the size of the module.
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Figure 1. Embedded piezoelectric sensor. (a) Schematic of the embedded piezoelectric sensor;
(b) The proposed embedded piezoelectric sensor module.

2.2. Electromechanical Impedance Measurement for Concrete Strength Estimation

The electromechanical impedance (EMI) method has been developed for structural health
monitoring, damage detection, and NDT [19,20]. If the PZT is attached to the host structure and
an alternating electric voltage is applied to the PZT, the elastic waves generated by the PZT are
transmitted to the host structure. The responses on the waves represent the mechanical impedance
of the host structure as shown in Figure 2. The structural impedance directly reflects the effective
electrical impedance through the mechanical coupling effect between the PZT and host structure.
The electromechanical impedance of the PZT, as coupled to the host structure, is given by [16]

Z(ω) =
1

iωC

(
1− κ2

31
kstr(ω)

kPZT + kstr(ω)

)−1

(1)

where, Z(ω) is the electromechanical impedance, C is the zero-load capacitance of the PZT, κ31 is the
electromechanical cross coupling coefficient of the PZT, kstr(ω) is the dynamic stiffness of the structure,
and kPZT is the stiffness of the PZT.
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The dynamic stiffness of concrete changes, according to the development of strength during the
curing process. Also, the EMI signals measured in the concrete media should vary during the curing
stage. Therefore, the strength of concrete can be estimated by tracking the variation of the EMI signals.

In this study, an EMI measurement system based on a self-sensing technique with a single
embedded piezoelectric sensor was used. A voltage divider-based self-sensing circuit as described
in Figure 3 is suitable for use in cast-in-place concrete because it is inexpensive, and has sufficient
accuracy to monitor the development of strength, even though the EMI signals are less accurate than
when using other impedance measurement methods [21,22].
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2.3. Harmonic Wave Propagation Measurement for Concrete Strength Estimation

The harmonic wave measurement method is also used to estimate the strength of concrete.
The embedded piezoelectric sensor module consists of two embedded piezoelectric sensors, one of
which introduces a harmonic wave to the concrete, while the other senses the propagated waves.

The harmonic wave propagation in the concrete media can be idealized as one-dimensional
longitudinal wave propagation, as Figure 4 shows.
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p =
EA2ω2
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EρA2ω2

2
, A =

1
ω

(
4p2

Eρ
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(3)

where, A is the harmonic amplitude, andω is the angular frequency [23].
Concrete is a cementitious material that has the adhesive and cohesive properties to bond inert

aggregates into a solid mass of adequate strength and durability. After casting, the concrete gradually
stiffens, until the hydration is completed. The physical properties of concrete, especially the strength,
are rapidly changed during curing process. Young’s modulus (E) is the factor that affects the most
change, not only of the strength of concrete, but also of the amplitude of harmonic wave propagation.
Hence, the strength of concrete can be estimated by measuring the amplitude of harmonic wave
propagation through concrete [5].

2.4. Artificial Neural Network for Concrete Strength Estimation

Concrete is a composite material that consists of cement, water, and aggregates. Because of this
heterogeneity, the strength of concrete cannot be clearly derived algebraically by mapping the signal
variation and the actual strength. The neural network algorithm, a pattern recognition method, is
utilized to deal with the complex properties of concrete [24,25].

The artificial neural network (ANN) comprises a number of processing elements that are
connected to form layers of neurons, although the networks may be complex. The missing links
between sets of inputs and outputs are found by determining the optimal synaptic weights, based on
the available training data of the inputs and outputs [26]. A supervised multi-layer feed-forward ANN
with backpropagation is typically employed.

The input to the ANN are the variables, (x1, x2, . . . , xN), which are weighted by wh
j,i and bias bh

j ;
and the output results, (y1,y1, . . . ,yk), feed the hidden layers. The output of the j-th hidden unit can be
described as:

yh
j = F1

(
bh

j +
N

∑
i=1

wh
j,i · xi

)
(4)

where, h refers to the quantities of the hidden layer, and F1 is a sigmoid nonlinear function. The output
of the ANN is biased and weighted by the sum of the hidden layer outputs:

yl = F2

(
b0

l +
H

∑
j=1

w0
j,i · y

h
j

)
(5)

where, o refers to the output unit, H refers to the number of units in the hidden layer, and F2 refers
to a linear activation transfer function. The ANN is trained starting with a random set of weights
and biases, and the output is calculated for every input data. Then, the error is calculated from the
output layer and propagated backwards to modify the hidden layers, and has historically been called
the backpropagated error. This learning algorithm is called backpropagation [27]. The training of
the network involves a set of inputs for which the specified output is known. The training process is
finished when the error is smaller than a desired value, or the process reaches a maximum specified
number of iterations [28].

To build the ANN for concrete strength estimation, the network is trained using the set of inputs
representing the condition of the concrete, and the output that is measured compressive strength for
each set of conditions. The inputs are the dynamic response features extracted from impedance/wave
measurements. After training, the strength of concrete can be estimated by inputting the measured
data set into the trained ANN.
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3. Experimental Study

3.1. Experimental Setup and Test Procedure

An experimental study was performed to verify the proposed strength estimation method.
A 50 × 50 × 25 cm concrete specimen was cast, and two piezoelectric sensor modules were embedded
during the casting process, as Figure 5 shows. Module 1 was used to obtain dynamic response data
sets for training the ANN, and module 2 was used to verify the trained ANN. Table 2 shows the mix
proportion of the concrete.
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Table 2. Mix proportion of test concrete.

Water (kg/m3) Cement (kg/m3) Silica Fume (kg/m3) Sand (kg/m3) Gavel (kg/m3) AE (%)

155 433 22.8 737 941 0.45

The specimen was cured in air at room temperature. The reference strength of the specimen was
measured at the early-age of the curing stage from a destructive test using a Universal Test Machine
(UTM), with Φ10 × 20 cm standard cylinders cast with the same concrete as that of the test specimen,
at 16, 25, 38, 51, 75, and 99 h after casting. Table 3 shows the strength of concrete at the early-age of the
curing stage from destructive testing.

Table 3. Reference strength of the test specimen.

Curing Age (h) 16 25 38 51 75 99

Compressive Strength (MPa) 10.24 14.06 18.95 22.65 26.02 28.63

The EMI and harmonic wave signals were measured using the NI-PXI DAQ system (1042Q), and
a self-sensing circuit board was used for EMI measurement. The EMI was measured in the frequency
range of 5 kHz~200 kHz, with a 2 MHz sampling rate. The harmonic wave was actuated with a
100 kHz frequency signal, and measured with a 5 MHz sampling rate. The dynamic response signals
were measured every hour after casting, up to 100 h.
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3.2. Result of EMI Measurement

The measurement result of EMI is shown below. Figure 6 shows the results measured by module 1,
and Figure 7 shows the result measured by module 2 at curing ages of 12, 48, 84, and 100 h. It is
observed that both the EMI signals change during the early-age of the curing stage. In particular, the
resonant frequency (the frequency at the peak of the signal) gradually increases during the curing age.
Because the resonant frequency is proportional to the stiffness, it should increase with time.
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The cross-correlation coefficient index (1-CC) was calculated to provide quantitative information
about signal variation. The 1-CC values were derived using the following equation:

1− CC = 1− 1
N − 1

N
∑

i=1
(Re(Z0)− Re(Z0))(Re(Zi)− Re(Zi))

σZ0 σZi

(6)

where, Re(Z0) is the real part of the impedance function at the baseline (the EMI data before
embedment), Re(Zi) is the real part of the impedance of the i-th hour at each measured data, Re(Z0)

and Re(Zi) are the average of each data set, σZ0 and σZ0 are standard deviation of each dataset and N
is the total number of datasets.
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Figure 8 reveals that the 1-CC data of modules 1 and 2 show almost the same pattern, which has a
similar trend to the typical strength curve at the early-age of the curing stage.Sensors 2017, 17, 1319 8 of 12 

 

 
Figure 8. Cross correlation variations during the early-age of the curing stage. 

The equation for estimating the strength was derived using a linear regression method using the 
1-CC of the impedance signal. The estimation equation from linear regression is shown in Equation (7). 

( ) 210.5 30.24S MPa CC    (7) 

Figure 9 shows the result of the strength estimation using that equation during 100 h. The 
estimation result after 20 h shows almost the same value as the reference strength. However the 
estimation results before 20 h are decreased very steeply, and the estimation strength before 5 h 
represents a minus value. 

 
Figure 9. Strength estimation result using the regression model. 

3.3. Result of Harmonic Wave Measurement 

Figures 10 and 11 show the variations of harmonic wave signals measured by module 1 and 2 
due to the curing process. As the curing age increases, the amplitude of the internal harmonic wave 
decreases. 

Figure 8. Cross correlation variations during the early-age of the curing stage.

The equation for estimating the strength was derived using a linear regression method using the
1-CC of the impedance signal. The estimation equation from linear regression is shown in Equation (7).

S(MPa) = 210.5× CC− 30.24 (7)

Figure 9 shows the result of the strength estimation using that equation during 100 h.
The estimation result after 20 h shows almost the same value as the reference strength. However
the estimation results before 20 h are decreased very steeply, and the estimation strength before 5 h
represents a minus value.
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3.3. Result of Harmonic Wave Measurement

Figures 10 and 11 show the variations of harmonic wave signals measured by module 1 and 2
due to the curing process. As the curing age increases, the amplitude of the internal harmonic
wave decreases.
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To quantify the signal variation, the amplitude of the harmonic wave is extracted as a feature of
wave propagation. Figure 12 shows the amplitude changes of the two modules.
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Figure 12. Wave propagation amplitude change during the early-age of the curing stage.

Although the slope of decreasing amplitude is not clear and both data are not the same, the two
sets of amplitude data show that the amplitude decreases according to the increase of strength. This is
caused by the inverse relationship between the wave amplitude, and the Young’s modulus (E) of
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the propagation media. However the amplitudes only change by 1%, and the variation patterns are
dissimilar between module 1 and 2. This is due to the fact that the path of wave was different because
the placement of aggregates. Thus the amplitude of harmonic wave is not recommended to estimate
concrete strength estimation in this specimen.

3.4. ANN-Based Concrete Strength Estimation

The features of the dynamic response signals have a certain pattern related to the increase in
concrete strength. The ANN was utilized to recognize the pattern and estimate the strength of concrete,
using the features from the dynamic response signals. The transfer function of ANN was tan-sigmoid
function and the learning rule was Levenberg–Marquadt backpropagation. Also, the ANN had
10 hidden layers and one output layer.

The input data consisted 100 sets of the 1-CC of the impedance signals and the output data was
the reference strength. The unmeasured reference strength was calculated by the interpolation using
the measured reference strength and the curing time. The ANN was trained by data from module 1
and the trained ANN was verified by inputting the data from module 2.

Figure 13 shows the result of concrete strength estimation using the ANN model. The maximum
error between the reference strength and estimation strength was 1.33 MPa. Also, the strength before
16 h was reliably estimated. Because the neural network could connect the relationship between signal
variation and strength with higher order than linear regression (and also the network trained using all
of data from module 1), the estimation result from ANN is robust against error than linear regression
results. According to the result, the proposed ANN model could estimate the strength of the test
specimen with negligible error.
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4. Conclusions

In this paper, an ANN model trained by dynamic response signals is proposed to estimate
early-age strength monitoring of concrete. The dynamic response signals, the electromechanical
impedance and ultrasonic harmonic waves are changed by the strength variation of the host concrete.
The EMI and harmonic waves were measured during the curing process using two embedded
piezoelectric sensor modules, and the reference strength was measured using a destructive test on
standard cylinders. From a series of experimental studies, it was confirmed that the dynamic response
signals obtained from the concrete during the early-age of the curing process has a pattern according
to the strength. According to the strength gain, the resonant frequency of EMI was gradually increased
and the amplitude of harmonic wave was decreased. The variation in resonant frequency of the
two sensor modules had a similar tendency while the variation in amplitude of the harmonic wave
response of the two sensor modules had a dissimilar result caused by the path difference. Thus, the
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EMI variation was selected to estimate the strength of concrete. The cross-correlation coefficient was
used to quantify the variation in EMI according to the strength gain. Furthermore, an artificial neural
network algorithm was used to define the relationship between the variation in EMI and the strength of
concrete. The ANN model was trained by the variation in 1-CC of EMI measured by sensor module 1
and verified by the data of sensor module 2. The results conclusively confirmed that the proposed
approach could be effectively applied to estimate the strength of concrete material from the early-age
stage of the curing process.
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