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Abstract: Faller classification in elderly populations can facilitate preventative care before a fall
occurs. A novel wearable-sensor based faller classification method for the elderly was developed
using accelerometer-based features from straight walking and turns. Seventy-six older individuals
(74.15 ± 7.0 years), categorized as prospective fallers and non-fallers, completed a six-minute walk
test with accelerometers attached to their lower legs and pelvis. After segmenting straight and
turn sections, cross validation tests were conducted on straight and turn walking features to assess
classification performance. The best “classifier model—feature selector” combination used turn
data, random forest classifier, and select-5-best feature selector (73.4% accuracy, 60.5% sensitivity,
82.0% specificity, and 0.44 Matthew’s Correlation Coefficient (MCC)). Using only the most frequently
occurring features, a feature subset (minimum of anterior-posterior ratio of even/odd harmonics for
right shank, standard deviation (SD) of anterior left shank acceleration SD, SD of mean anterior left
shank acceleration, maximum of medial-lateral first quartile of Fourier transform (FQFFT) for lower
back, maximum of anterior-posterior FQFFT for lower back) achieved better classification results, with
77.3% accuracy, 66.1% sensitivity, 84.7% specificity, and 0.52 MCC score. All classification performance
metrics improved when turn data was used for faller classification, compared to straight walking
data. Combining turn and straight walking features decreased performance metrics compared to
turn features for similar classifier model—feature selector combinations.

Keywords: wearable sensors; machine learning; accelerometer; faller classification; faller prediction;
feature selection; elderly; falls; prospective fallers

1. Introduction

Falls within elderly populations are a growing public health concern, with fatal and non-fatal
fall injuries costing an estimated $23.3 billion in the United States, with a projected cost of $52 billion
by 2020 [1,2]. Early fall risk detection and subsequent treatment are needed to mitigate fall incidence
and improve quality of life for elderly individuals [3–5]. Wearable sensors that can be easily
applied at the point-of-care [6] can facilitate quantitative assessments in clinical or older-adult care
environments. Reviews of inertial-sensor applications for fall-risk classification in older-adults have
recommended further research to determine if wearable sensors can be used to improve fall-risk
prediction as a stand-alone assessment tool or supplement to clinical tests [7,8]. Combining appropriate
wearable-sensor based features with machine learning techniques could advance fall-risk prediction
tools and ultimately improve services for elderly people at risk of falling [6,9].
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Fall risk prediction using clinical tests and wearable sensors has had variable success, with
accuracy between 62 and 100%, specificity between 35 and 100%, and sensitivity between 55 and
99% [7]. While the top results are encouraging, the lower rates indicate a need for alternative methods
to achieve consistently high outcomes. Fall risk assessment research has primarily focused on clinical
tests, composed mainly of straight level walking, multiple tasks (e.g., sit-stand, walk-turn), and balance
challenging tasks (e.g., stand on one leg, reach). Few quantitative studies involve more than straight
walking, such as turns, to predict fall risk [10].

Turn-based features have been found to be important because of the decreased stability and
increased energy expenditure when elderly individuals navigate turns [11–14]. Subtle fall-risk
gait-based measures that may not be sensitive enough to reveal fall risk in straight walking may
become highly effective fall-risk indicators when applied to walking turns. Elderly individuals
at high risk of falling often perform a distinct turn (spin turn) compared to those at low risk of
falling [15], suggesting a distinction between fallers and non-fallers for turn walking. A longer turn
duration from the Timed Up and Go Test (TUG) [16] discriminated elderly fallers from non-fallers [17].
A study examining combinations of nine specific movements, turn time, and number of steps per
turn discriminated between multiple fallers, non-multiple fallers, and able bodied individuals [18].
These clinical examinations of turns suggest that wearable-sensor based methods of assessing walking
turns have good potential for classifying fallers.

Existing literature supports the hypothesis that turn data may contain information that can
discriminate between fallers and non-fallers better than straight walking data. However, previous
research using turns has focused on clinical assessment tools, temporal variables (completion time), or
video analysis for fall risk prediction [18–21]. Faller classification research using wearable-sensor-based
features from walking-turns is lacking. Furthermore, no comparison of straight and turn walking
features for faller classification has been reported. Such a comparison would be useful for
developing a better fall-risk assessment tool. Acceleration data acquired during the Six-Minute
Walk Test (6MWT) [22] could provide both turn and straight walking information suitable for such
an investigation. This paper presents a novel wearable-sensor based faller classification method, using
walking-turn accelerometer-based features, and compares older-adult faller classification using straight
and turn walking features. It is hypothesized that turn-walking based accelerometer features will
provide better discriminating ability between prospective fallers and non-fallers, and thus provide
better faller classification performance than corresponding straight-walking based features.

2. Materials and Methods

2.1. Participants

A convenience sample of 76 individuals, 65 years or older, (mean = 74.15 ± 7.0 years) were
recruited from the community. Inclusion criteria were the ability to walk continuously and unaided
for six minutes, no existing self-reported cognitive disorders, and not having experienced a fall during
the six months prior to the study. Participants had a mean weight of 73.35 ± 13.4 kg and a mean
height of 167.25 ± 10.0 cm. The study was approved by the University of Waterloo Research Ethics
Committee on 1 August 2013, ORE #: 19106 and 30 June 2016, ORE #: 21599. All participants gave
informed written consent.

2.2. Protocol

Participants reported their age and sex. Accelerometers (X16-1C, Gulf Coast Data Concepts,
Waveland, MS, USA) were fitted to the posterior pelvis and left and right lateral shanks.
Accelerometers were aligned with the vertical (upward: positive), medial-lateral (ML) (right: positive),
and anterior-posterior (AP) axes (anterior: positive). Accelerometer data were collected with a nominal
sampling rate of 50 Hz, (i.e., sampling rates varied slightly from 50 Hz for all accelerometers, as
manufactured).
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The six-minute walk test (6MWT) was conducted under standard conditions. Participants walked
along a hallway, making consecutive left and right turns around two cones spaced 100 ft (30.34 m)
apart [22]. Participants were instructed to alternate left and right turns around the cones until the end
of the test and thus could not introduce bias into the turning direction.

A six-month follow-up fall-occurrence survey identified participants who fell at least once as
prospective fallers (PF). All other participants were classified as non-fallers (NF). A fall was defined as
an event that results in a person coming to rest unintentionally on the ground or other lower level,
excluding falls from a stroke or overwhelming hazard [23].

Five participants were excluded because of accelerometer failure (two participants), unreliable
data synchronization (one participant), incomplete prospective survey (one participant), and poor turn
segmentation due to excessive noise between straight walking and turning sections (one participant).
Therefore, 71 participants were included in the study, with 43 non-fallers and 28 prospective fallers.

2.3. Data Pre-Processing

Data for each accelerometer were imported into MATLAB 2014b (MathWorks, Natick, MA,
USA) [24]. The sampling rates for each accelerometer differed slightly; therefore, all accelerometer
signals were resampled to 50 Hz and then synchronized. This synchronization was performed using
the first peak in vertical acceleration of each accelerometer.

6MWT data were segmented into turn and straight sections. Turns were identified from a reduced
magnitude in vertical accelerometer signal, defining the start of a turn (Figure 1). This periodic drop in
vertical acceleration magnitude (Figure 2) was consistent with a turn occurring at the end of the 100 ft
pathway that participants were instructed to walk on. The drop in vertical acceleration magnitude
indicated a departure from the periodic straight section gait pattern; therefore, these sections were
determined to be turns. In this paper, a turn was standardized as having five steps: a centre step and
two adjacent steps on each side of the centre step. A 0.2 s buffer was added before and after the first
and last steps. Multiple straight and turn sections were extracted from each 6MWT dataset. In all
sections that follow, turn and straight walking data were treated independently, except during Test IV,
described in Section 2.6.3.
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2.4. Feature Extraction

A review of 40 inertial-sensor based fall risk studies found the dominant Fast Fourier Transform
peak parameters (from lower-back accelerometers) and the ratio of even to odd harmonic (REOH)
magnitudes (from head, upper back and lower back accelerometers) to both be recurring significant
(p < 0.05) features when used to assess fall risk [7]. These features were carried forward in further
research demonstrating their effectiveness for faller classification [25,26]. Temporal and acceleration
descriptive statistics provided direct measures of body motion related to gait.

Accelerometer based features were calculated for each stride and then averaged across all strides,
for each turn or straight section. Steps were identified by peak detection in the vertical acceleration
signals. These peaks corresponded with foot strikes and were used in calculating the following
accelerometer based features:

• Temporal: Cadence, stride time (time (s) from foot strike to the following foot strike of the
same foot).

• Acceleration descriptive statistics: Acceleration maximum, mean, standard deviation for each
direction for each of three axes (positive and negative of vertical, ML, and AP axes).

• Acceleration frequency: First quartile of Fourier transform (FQFFT) of each axis (vertical,
medial-lateral, anterior-posterior). FQFFT is a percentage of acceleration frequencies within
the first quartile (i.e., frequencies below 12.5 Hz) of an FFT frequency plot. A lower FQFFT value
indicates the occurrence of more high frequency acceleration components during walking, which
has been linked to instability [25,27,28].

• Ratio of even/odd harmonics (REOH): Ratio of acceleration signal in phase with stride frequency
(inverse of stride time) [29–31]. Lower REOH values are associated with fall risk [29,30,32–34].
REOH was calculated for each axis (vertical, medial-lateral, anterior-posterior).

Twenty-four features were extracted for accelerometers: three descriptive statistics for each of
three axes in both the positive and negative directions (3 × 3 × 2 = 18 features), FQFFT for three axes,
and REOH for three axes. Cadence and stride time were calculated from acceleration measured by the
lower-back accelerometer, for a total of 26 features for the lower back. Each straight and turn section
had a total of 74 features (24 for left and right shanks, 26 for lower back: 24 + 24 + 26 = 74 features).

A single feature set was created for each participant using the maximum, minimum, standard
deviation, and mean of the 74 features across all of a participant’s straight or turn sections.
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This produced a single feature set with 4 (maximum, minimum, mean, SD) × 74 (accelerometer
derived features) = 296 features for each participant’s turn or straight data. Variation between steps
and gait variability have been associated with fall risk [10,35]. Therefore, the standard deviation of
repeated measurements of features across a test may be useful for faller classification. Extreme values
of features (maxima or minima) have provided more useful information than mean values [36] and
were therefore included with the mean and standard deviations.

2.5. Feature Selection

Classification difficulty may arise if many features are non-informative or redundant.
These features can lead to poor model generalizability since the model may be modelling noise
in the features, leading to poor classification results [37]. Feature selection was performed to eliminate
redundant and non-informative features before classification [38]. Three feature selection methods
(feature selectors) were used for each respective classifier to assess performance. The first feature
selector, Select-k-Best, based on ANOVA F-statistics, selected features that accounted for the most
variance between classes [39,40]. The variable k was set to 5 based on a heuristic search (select-5-best,
S5B). The second feature selector (SEL) was based on Select False Positive Rate (SFPR) and Select
False Discovery Rate (SFDR) methods, which chose features that minimized false positive and false
discovery rates, respectively. The resulting list of SFPR and SFDR selected features were concatenated
into a single non-redundant list. The number of features selected with SEL was not restricted. The third
feature selector, recursive feature elimination (RFE), performed multiple data classifications using
a random forest classifier, kept features that provided better classification results, and eliminated
features with poorer results [41,42]. This process was repeated until the five best features were selected.
Feature selection was performed only on training data for the classifier models. The selected features
were then applied to the testing data for classification. Division and use of training and testing datasets
are described in Section 2.6.2.

2.6. Classification

2.6.1. Machine Learning Models

Six classifier models were trained to classify participants as faller or non-faller: two k-nearest
neighbor (kNN) classifiers with k = 3 (3NN) and k = 5 (5NN); three support vector machines (SVM)
with linear, third, and fifth order polynomial kernels; and one random forest (RF) model. RF and kNN
are non-parametric models that allow irregular class boundaries. All SVMs used a method where
overlapping classes may become separable by using the “kernel trick” by projecting the data into
higher dimensions [43,44]. RF is an ensemble method that creates a strong classifier based on many
decision trees, thereby accommodating individual tree weaknesses. One hundred decision trees were
trained for each RF classifier. Models were generated with the Scikit-Learn library [41].

2.6.2. Cross Validation

A subset of the full dataset was used for model training, and the remaining data subset (testing
dataset) was used to evaluate model performance for all faller-classification tests. Two cross validation
(CV) methods were used (the sequence of tests is described in Section 2.6.3): five-fold cross validation
(5FCV) and 2500-iteration random-shuffle-split cross validation (2500-RSS). Both methods used
stratified data splits, which ensured that the ratio of fallers to non-fallers from the whole dataset
was preserved in both the training and testing data.

5FCV divided the data into five stratified subsets (20% data in each subset), with one subset
chosen for model testing and the remaining four subsets combined for model training. The three
feature selectors (Select-k-Best, SEL and RFE) were applied to the training subset, thereby providing
three best feature sets for classification. Classifier training (on four subsets combined) and testing
(on the fifth subset) were then performed five times such that every subset was used as the
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testing set. The five sets of results were averaged to obtain final results for each classification
model—feature-selector combination. With six classifier methods and three feature selection methods,
a total of 18 classification-model—feature-selector (CM-FS) combinations were generated from 5FCV.
The best CM-FS combinations were used in the 2500-RSS for both straight and turn-based data.

For 2500-RSS, a single stratified-random-shuffle split was configured to select a stratified random
subset of 80% of the data for training the model with the remaining 20% of the data as a stratified
random subset for model testing. This process was repeated for 2500 iterations. For each iteration,
feature selection was performed on the training data and a new classification model was trained and
tested. Feature selection was based solely on cross validation iteration training data. Mean, standard
deviation, and confidence interval were calculated based on results from the 2500 iterations. Unlike
5FCV, this method does not guarantee that all testing subsets will be disjoint. However, because of
the large number of iterations, many unique data splits will determine if the models generalize well.
The chosen number of iterations was based on convergence of the classifier mean accuracy.

Within each cross-validation described above, normalization of features was performed before
feature selection and classifier training. Normalization of features allows faster model training [38,45].
Each feature value in a participant’s feature set was normalized to the range [0, 1] as follows:

ynormalized =
y − ymin

ymax − ymin
, (1)

where y is a feature value from one participant, and ymin and ymax are the minimum and maximum
values of that feature, respectively, across all participants within a training set for each cross-validation
fold. These normalization parameters, ymin and ymax from the training set, were used to normalize the
testing data features. This normalization prevents testing data from biasing classifier training.

2.6.3. Performance Evaluation

Performance for each CM-FS combination was evaluated using accuracy (ACC), specificity
(SPEC), sensitivity (SENS), negative predictive value (NPV), positive predictive value (PPV), F1 score,
and Matthews Correlation Coefficient (MCC) [46,47]. For 5FCV, means for these metrics were calculated
over the five cross-validation folds. For 2500-RSS, mean, standard deviation and confidence interval of
these metrics were calculated over the 2500 iterations.

To determine the best performing CM-FS combination, classifier performance metrics were sorted
in descending order with the largest result (best) given a value of 1, the second a 2, etc. Ties were
given the same rank, with the next non-tied classifier being ranked by their position after accounting
for the tied classifiers (e.g., a three-way tie at position three results in: 1, 2, 3, 3, 3, 6, 7, . . . ) [48].
Rankings were summed across performance measures, with the lowest sum indicating the best
classifier. This generated one score for each CM-FS combination.

Three tests were performed in sequence for both straight and turn data separately (Figure 3),
Test I performed first, then Test II, followed by Test III. A final test, Test IV, was performed using all
turn and straight features together to determine if including all features would further improve or
worsen performance. An overview of the flow of data and classification methods is shown in Figure 4.
Test I used 5FCV for all 18 CM-FS combinations (six classifiers, three feature selectors). The top-nine
combinations were evaluated and one classifier and one feature selector that appeared the least were
discarded, for both straight and turn results, which expedited training. The 10 remaining CM-FS
combinations were then used in Test II. Test II used 2500 RSS cross validation to evaluate performance
of the remaining five classifiers and two feature selectors combinations (10 CM-FS combinations).
Welch’s t-tests compared straight and turn performance metrics for the best straight and turn based
CM-FS combinations from Test II.
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Figure 4. Overview of data processing and classification process.

For Test III, the most frequently occurring (MFO) features from the feature selections of Test II,
selected for 250 or more iterations (selected for 10% of the iterations from 2500-RSS cross validation),
were combined into multiple sets. The entire set of most frequent features was ordered from most
frequent (f 0) to least frequent (fn), X0 = [f 0 . . . fn]. The first set was composed of all of the most
frequent features, X0 = f 0 . . . fn], the second set was composed of the n − 1 most frequent features,
X1 = [f 0 . . . fn − 1], the third set was composed of the n − 2 most frequent features, X2 = [f 0 . . . fn − 2],
and so on until the final subset had only the most frequent feature Xn = [f 0]. Starting with a set of all
the most frequent features to a final set having one feature, 2500-RSS cross validation was performed
for each new generated feature set Xi, i = [0, n] (Figure 5), using the best classifier model from Test II.
This analysis was performed for straight and turn data. Test III determined the best subsets of features
for faller classification.

For Test IV, a combined feature set, composed of all straight and turn based features, was used
with the top four best performing classifier-models from Test II and the best two feature selectors
from Test I, to provide a set of CM-FS combinations. Before feature selection, the feature set of each
participant had a concatenation of all straight and turn features, a total of 592 features (2 × 296).
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A 2500 RSS cross validation was performed to evaluate the classification performance of the combined
straight and turn feature set with the selected CM-FS combinations.

To promote classification generalizability and reliability, and to avoid methodological problems
associated with validation and training-testing protocols seen in the fall-risk assessment literature [49],
two stratified cross-validation methods were used. The top classifiers and feature selectors were chosen
in Test I using 5FCV and then used for Test II, which used 2500-RSS cross validation.Sensors 2017, 17, 1321 8 of 21 
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Figure 5. Test III procedure for testing most frequently occurring feature subsets.

3. Results

3.1. Test I

Test I results for straight-walking using 5FCV are presented in Table 1. The RF and S5B
combination was the best with 62.0% accuracy, 46.4% sensitivity, 72.1% specificity and 0.19 MCC.
The second-best model also used S5B feature selection, and had greater sensitivity (78.6%) but lower
specificity and accuracy.

Table 1. Straight-walking section five-fold cross validation (5FCV) results. PPV: positive predictive
value, NPV: negative predictive value, MCC: Matthews correlation coefficient, S5B: select-5-best, SEL:
false positive and discovery rate method, RFE: recursive feature eliminator, RF: random forest, kNN:
k-nearest neighbour, SVM: support vector machine, linear: linear kernel, poly: polynomial kernel.

Classifier, Feature Selector Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 Score MCC Rank Sum

RF S5B 62.0 46.4 72.1 52.0 67.4 0.49 0.19 24
SVM (poly = 3) S5B 56.3 78.6 41.9 46.8 75.0 0.59 0.21 26

RF SEL 57.7 46.4 65.1 46.4 65.1 0.46 0.12 36
RF RFE 62.0 32.1 81.4 52.9 64.8 0.40 0.16 44

SVM (poly = 5) SEL 54.9 57.1 53.5 44.4 65.7 0.50 0.10 46
SVM (poly = 3) RFE 52.1 71.4 39.5 43.5 68.0 0.54 0.11 47
SVM (poly = 3) SEL 52.1 71.4 39.5 43.5 68.0 0.54 0.11 47

kNN (k = 5) SEL 56.3 42.9 65.1 44.4 63.6 0.44 0.08 51
kNN (k = 3) S5B 54.9 50.0 58.1 43.8 64.1 0.47 0.08 51
kNN (k = 3) SEL 56.3 39.3 67.4 44.0 63.0 0.42 0.07 60
SVM (linear) S5B 53.5 50.0 55.8 42.4 63.2 0.46 0.06 63
SVM (linear) SEL 53.5 50.0 55.8 42.4 63.2 0.46 0.06 64

SVM (poly = 5) RFE 52.1 46.4 55.8 40.6 61.5 0.43 0.02 78
SVM (linear) RFE 52.1 39.3 60.5 39.3 60.5 0.39 0.00 85
kNN (k = 3) RFE 50.7 35.7 60.5 37.0 59.1 0.36 −0.04 97

SVM (poly = 5) S5B 49.3 39.3 55.8 36.7 58.5 0.38 −0.05 100
kNN (k = 5) S5B 47.9 35.7 55.8 34.5 57.1 0.35 −0.08 109
kNN (k = 5) RFE 46.5 35.7 53.5 33.3 56.1 0.34 −0.11 119
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Compared to straight walking, turn data had better faller classification (Table 2). The best
turn-based combination was RF S5B, with 77.5% accuracy, 67.9% sensitivity, 83.7% specificity,
and 0.52 MCC score. The second best results, obtained using RF SEL, were similar to RF S5B.

Table 2. Turn section five-fold cross validation (5FCV) results. PPV: positive predictive value, NPV:
negative predictive value, MCC: Matthews correlation coefficient, S5B: select-5-best method, SEL:
false positive and discovery rate method, RFE: recursive feature eliminator, RF: random forest, kNN:
k-nearest neighbour, SVM: support vector machine, linear: linear kernel, poly: polynomial kernel.

Classifier, Feature Selector Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 Score MCC Rank Sum

RF S5B 77.5 67.9 83.7 73.1 80.0 0.70 0.52 12
RF SEL 77.5 64.3 86.0 75.0 78.7 0.69 0.52 14
RF RFE 69.0 53.6 79.1 62.5 72.3 0.58 0.34 38

kNN (k = 5) SEL 69.0 50.0 81.4 63.6 71.4 0.56 0.33 45
kNN (k = 5) S5B 71.8 42.9 90.7 75.0 70.9 0.55 0.39 46

SVM (linear) S5B 67.6 53.6 76.7 60.0 71.7 0.57 0.31 50
SVM (linear) SEL 66.2 57.1 72.1 57.1 72.1 0.57 0.29 55
kNN (k = 3) S5B 67.6 50.0 79.1 60.9 70.8 0.55 0.30 57

SVM (poly = 3) RFE 62.0 67.9 58.1 51.4 73.5 0.58 0.25 58
kNN (k = 3) SEL 66.2 50.0 76.7 58.3 70.2 0.54 0.28 70

SVM (poly = 3) SEL 60.6 64.3 58.1 50.0 71.4 0.56 0.22 73
SVM (poly = 5) SEL 54.9 78.6 39.5 45.8 73.9 0.58 0.19 76
SVM (poly = 5) S5B 60.6 60.7 60.5 50.0 70.3 0.55 0.21 81

kNN (k = 5) RFE 63.4 35.7 81.4 55.6 66.0 0.43 0.19 89
SVM (linear) RFE 60.6 50.0 67.4 50.0 67.4 0.50 0.17 94

SVM (poly = 3) S5B 59.2 57.1 60.5 48.5 68.4 0.52 0.17 97
kNN (k = 3) RFE 62.0 39.3 76.7 52.4 66.0 0.45 0.17 98

SVM (poly = 5) RFE 57.7 46.4 65.1 46.4 65.1 0.46 0.12 114

RF, 3NN, and 5NN, and linear and third order polynomial SVM classifiers performed best in
Test I. The worst performing classifier was the fifth degree polynomial SVM, which appeared only once
in the top-nine combinations for the straight data and not at all for the turn data. S5B and SEL feature
selectors performed better than RFE using the same classifier models. The worst feature selector was
the RFE, which appeared four times, compared to seven times for S5B and SEL methods. Based on
these results, the fifth order polynomial SVM classifier and RFE selector were eliminated from further
tests. Therefore, RF, 3NN, 5NN, and linear and third order polynomial SVM classifiers, and S5B and
SEL feature selectors were used for Test II, for both turn and straight datasets.

3.2. Test II

3.2.1. Classification

Faller classification results for Test II (Tables 3 and 4) were similar to Test I. Faller classification
with turn data (Table 4) outperformed straight walking data (Table 3). The best turn-based combination
(RF S5B) had 73.4% accuracy, 60.5% sensitivity, 82.0% specificity, and 0.44 MCC score. The best
straight-walking-based combination (3NN S5B) had 55.5% accuracy, 46.1% sensitivity, 61.8% specificity
and 0.08 MCC score. All performance metrics (accuracy, sensitivity, specificity, PPV, NPV, F1-score,
and MCC) of the best turn-feature based CM-FS combination (RF S5B) were significantly greater
(p < 0.001) than the corresponding metrics of the best straight-feature based CM-FS combination
(3NN S5B).
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Table 3. Straight-walking section results for 2500-iteration random-shuffle-split cross validation (2500-RSS), ordered by ranked performance. PPV: positive predictive
value, NPV: negative predictive value, MCC: Matthews correlation coefficient, S5B: select-5-best method, SEL: false positive and discovery rate method, RFE: recursive
feature eliminator, RF: random forest, kNN: k-nearest neighbour, SVM: support vector machine, linear: linear kernel, poly: polynomial kernel, x: mean, SD: standard
deviation, CI: 95% confidence interval.

Classifier, Feature Selection
Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 MCC

x SD CI x SD CI x SD CI x SD CI x SD CI x SD CI x SD CI

kNN (k = 3) S5B 55.5 12.0 0.47 46.1 21.2 0.83 61.8 16.2 0.64 44.6 16.9 0.66 63.2 11.5 0.45 0.45 0.17 0.007 0.08 0.26 0.010
RF S5B 56.2 11.4 0.45 39.8 20.3 0.80 67.2 15.9 0.62 44.7 19.6 0.77 62.6 9.9 0.39 0.42 0.18 0.007 0.07 0.26 0.010
RF SEL 56.9 11.2 0.44 34.5 20.3 0.79 71.9 18.3 0.72 45.0 25.2 0.99 62.2 8.7 0.34 0.39 0.18 0.007 0.07 0.30 0.012

SVM (poly = 3) SEL 51.7 11.1 0.43 59.7 33.6 1.32 46.4 30.3 1.19 42.6 18.8 0.74 63.3 25.6 1.00 0.50 0.20 0.008 0.06 0.39 0.015
kNN (k = 5) S5B 55.0 11.8 0.46 43.6 21.8 0.85 62.7 17.0 0.67 43.8 18.3 0.72 62.5 11.2 0.44 0.44 0.18 0.007 0.06 0.26 0.010

SVM (linear) SEL 53.4 12.1 0.48 50.3 23.7 0.93 55.5 23.7 0.93 43.0 17.3 0.68 62.6 15.9 0.62 0.46 0.16 0.006 0.06 0.30 0.012
SVM (linear) S5B 50.9 11.9 0.47 53.6 25.4 0.99 49.1 19.3 0.76 41.3 15.0 0.59 61.4 16.4 0.64 0.47 0.17 0.007 0.03 0.27 0.011
kNN (k = 3) SEL 54.0 11.4 0.45 37.5 19.9 0.78 65.1 17.3 0.68 41.7 19.6 0.77 61.0 9.7 0.38 0.39 0.17 0.007 0.03 0.25 0.010

SVM (poly = 3) S5B 48.7 10.4 0.41 61.6 33.6 1.32 40.1 26.2 1.03 40.7 16.1 0.63 61.0 26.4 1.03 0.49 0.20 0.008 0.02 0.35 0.014
kNN (k = 5) SEL 53.8 10.8 0.42 34.6 19.9 0.78 66.6 17.7 0.69 40.8 20.5 0.80 60.4 9.2 0.36 0.37 0.17 0.007 0.01 0.26 0.010

Table 4. Turn section results for 2500-iteration random-shuffle-split cross validation (2500-RSS), ordered by ranked performance. PPV: positive predictive value,
NPV: negative predictive value, MCC: Matthews correlation coefficient, S5B: select-5-best method, SEL: false positive and discovery rate method, RFE: recursive
feature eliminator, RF: random forest, kNN: k-nearest neighbour, SVM: support vector machine, linear: linear kernel, poly: polynomial kernel, x: mean, SD: standard
deviation, CI: 95% confidence interval.

Classifier, Feature Selector
Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 MCC

x SD CI x SD CI x SD CI x SD CI x SD CI x SD CI x SD CI

RF S5B 73.4 10.6 0.42 60.5 20.5 0.81 82.0 12.8 0.50 69.1 18.2 0.71 75.7 10.2 0.40 0.65 0.17 0.007 0.44 0.24 0.009
RF SEL 71.6 10.9 0.43 58.3 20.7 0.81 80.4 13.3 0.52 66.5 18.5 0.72 74.3 10.3 0.41 0.62 0.17 0.007 0.40 0.24 0.010

kNN (k = 5) S5B 69.2 11.2 0.44 49.0 21.4 0.84 82.7 13.3 0.52 65.3 22.5 0.88 70.8 9.7 0.38 0.56 0.19 0.008 0.34 0.27 0.011
kNN (k = 3) S5B 68.0 11.2 0.44 50.8 20.7 0.81 79.6 13.9 0.55 62.4 20.9 0.82 70.8 9.8 0.39 0.56 0.18 0.007 0.32 0.26 0.010

SVM (linear) S5B 66.7 11.7 0.46 57.6 20.8 0.82 72.8 16.0 0.63 58.5 17.7 0.69 72.0 11.7 0.46 0.58 0.16 0.006 0.30 0.25 0.010
SVM (linear) SEL 64.7 13.0 0.51 57.6 24.2 0.95 69.5 17.9 0.70 55.7 19.3 0.76 71.1 14.4 0.56 0.57 0.19 0.007 0.27 0.31 0.012
kNN (k = 5) SEL 67.2 12.5 0.49 48.7 21.6 0.85 79.5 14.9 0.58 61.3 23.2 0.91 69.9 10.5 0.41 0.54 0.20 0.008 0.30 0.29 0.012
kNN (k = 3) SEL 66.8 12.7 0.50 50.0 21.3 0.83 78.0 15.2 0.60 60.3 22.2 0.87 70.1 10.8 0.42 0.55 0.19 0.008 0.29 0.29 0.011

SVM (poly = 3) SEL 61.8 13.1 0.51 50.7 25.3 0.99 69.2 24.8 0.97 52.3 25.1 0.98 67.8 15.4 0.61 0.51 0.18 0.007 0.20 0.33 0.013
SVM (poly = 3) S5B 60.7 13.8 0.54 55.7 23.6 0.93 64.1 22.3 0.87 50.8 20.0 0.78 68.4 15.8 0.62 0.53 0.17 0.007 0.20 0.30 0.012
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3.2.2. Selected Features

As described in Section 2.4, a single feature set was created for each participant using the
maximum, minimum, standard deviation (SD), and mean of the 74 features across all of a participant’s
straight sections, and similarly a single feature set was created based on all turn sections.

Histograms of 2500-RSS selected features with selection frequencies above 8% (200 out of
2500 iterations) for straight walking, using SEL and S5B, are shown in Figures 6 and 7, respectively
(note that “MFO features” include only features with selection frequency above 250). The most
frequently occurring S5B features, in descending order of frequency, were: maximum of SD of anterior
RS acceleration, SD of maximum posterior LS acceleration, minimum of SD of anterior RS acceleration,
mean of SD anterior RS acceleration, SD of mean inferior LB acceleration, mean of mean anterior RS
acceleration, maximum of SD anterior LB acceleration, maximum of mean anterior RS acceleration,
maximum of maximum anterior LB acceleration, maximum of mean anterior LB acceleration, mean
of maximum anterior LB acceleration, SD of SD inferior LB acceleration, SD of mean anterior LB
acceleration, SD of mean posterior LS acceleration. For the SEL method, the top features were similar;
however, SEL frequencies were lower overall and frequency ordering was not the same.

Histograms of 2500-RSS selected features with selection frequencies above 8% (200 out of
2500 iterations) for turns, using SEL and S5B, are shown in Figures 8 and 9, respectively (note that
“MFO features” include only features with selection frequency above 250). The most frequently
occurring turn based features for the S5B method, in descending order of frequency, were: minimum of
anterior-posterior REOH for RS, SD of SD anterior LS acceleration, SD of mean anterior LS acceleration,
maximum of medial-lateral FQFFT for LB, maximum of anterior-posterior FQFFT for LB, SD of
maximum anterior LS acceleration, SD of vertical FQFFT for RS, maximum of vertical FQFFT for LS,
and maximum of anterior-posterior FQFFT for LS. For the SEL method, the top features were similar;
however, frequency ordering was slightly different.

3.3. Test III

The best results for straight walking (Table 5) were for the 5 MFO feature subset (maximum of SD
of anterior RS acceleration, SD of maximum posterior LS acceleration, minimum of SD of anterior RS
acceleration, mean of SD anterior RS acceleration, SD of mean inferior LB acceleration), with 64.1%
accuracy, 59.9% sensitivity, 66.9% specificity, and 0.26 MCC score. For turn walking (Table 6), the best
results were for the 5 MFO feature subset (minimum of anterior-posterior REOH for RS, SD of SD
anterior LS acceleration, SD of mean anterior LS acceleration, maximum of medial-lateral FQFFT
for LB, maximum of anterior-posterior FQFFT for LB), with 77.3% accuracy, 66.1% sensitivity, 84.7%
specificity, and 0.52 MCC score. The Test III results were generally superior to those of Test II, where
all accuracies of Test III were greater than those for Test II.

3.4. Test IV

3.4.1. Classification

The best classification results for the combined set of straight and turn based features (Table 7)
were attained using a RF S5B combination, with 71.6% accuracy, 57.5% sensitivity, 81.1% specificity and
0.4 MCC score. The best three CM-FS combinations for Test IV were the same as the best turn-based
feature CM-FS combinations in Test II. The CM-FS combinations from Test IV (combined straight and
turn based feature sets) provided better performance metrics than the corresponding straight-based
feature CM-FS combinations in Test II, and were similar or slightly worse performance metrics than
for the corresponding turn-based feature CM-FS combinations in Test II.
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Table 5. Most frequently occurring (MFO) feature subsets for straight-walking section results and 3NN classifier using 2500-iteration random-shuffle-split cross
validation (2500-RSS), ordered by ranked performance. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, x:
mean, SD: standard deviation, CI: 95% confidence interval.

# Features
Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 MCC

x SD CI x SD CI x SD CI x SD CI x SD CI x SD CI x SD CI

5 64.1 10.8 0.42 59.9 19.2 0.75 66.9 14.5 0.57 54.7 14.3 0.56 71.4 11.0 0.43 0.57 0.14 0.006 0.26 0.23 0.009
3 63.1 11.3 0.44 61.2 20.0 0.78 64.4 14.9 0.59 53.4 14.0 0.55 71.3 11.9 0.47 0.57 0.15 0.006 0.25 0.24 0.009
4 62.2 10.8 0.42 57.7 18.9 0.74 65.2 15.0 0.59 52.5 14.6 0.57 69.8 10.7 0.42 0.55 0.14 0.006 0.23 0.23 0.009
9 61.5 10.4 0.41 42.1 18.8 0.74 74.5 14.0 0.55 52.4 20.0 0.79 65.9 8.5 0.33 0.47 0.17 0.007 0.17 0.24 0.009
10 60.7 11.1 0.43 44.7 19.9 0.78 71.4 14.6 0.57 51.1 19.1 0.75 66.0 9.5 0.37 0.48 0.17 0.007 0.17 0.25 0.010
6 60.6 12.3 0.48 56.1 20.1 0.79 63.6 16.7 0.66 50.7 16.0 0.63 68.5 12.2 0.48 0.53 0.16 0.006 0.20 0.26 0.010
2 60.0 11.5 0.45 57.2 19.3 0.76 61.8 15.9 0.62 50.0 14.5 0.57 68.4 11.7 0.46 0.53 0.15 0.006 0.19 0.24 0.009
8 60.6 10.3 0.40 38.5 18.7 0.73 75.4 13.8 0.54 51.1 21.6 0.85 64.8 8.2 0.32 0.44 0.17 0.007 0.15 0.25 0.010
11 59.6 11.1 0.43 41.9 19.4 0.76 71.4 14.9 0.59 49.4 19.7 0.77 64.8 9.3 0.37 0.45 0.17 0.007 0.14 0.25 0.010
7 59.2 11.2 0.44 44.0 18.8 0.74 69.3 15.1 0.59 48.9 18.6 0.73 65.0 9.4 0.37 0.46 0.16 0.006 0.14 0.24 0.010
1 57.0 11.0 0.43 50.2 20.1 0.79 61.5 15.7 0.62 46.5 14.8 0.58 64.9 10.9 0.43 0.48 0.15 0.006 0.12 0.24 0.009
13 57.8 10.9 0.43 37.4 19.1 0.75 71.4 14.5 0.57 46.6 20.4 0.80 63.1 8.9 0.35 0.41 0.17 0.007 0.09 0.25 0.010
14 57.6 10.5 0.41 37.6 18.9 0.74 70.9 14.5 0.57 46.3 19.7 0.77 63.0 8.5 0.33 0.42 0.17 0.007 0.09 0.24 0.010
12 57.0 10.5 0.41 36.5 19.1 0.75 70.6 14.0 0.55 45.3 20.2 0.79 62.5 8.5 0.33 0.40 0.17 0.007 0.07 0.25 0.010

Table 6. Most frequently occurring (MFO) feature subsets for turn section results and random forest classifier using 2500-iteration random-shuffle-split cross validation
(2500-RSS), ordered by ranked performance. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, x: mean, SD:
standard deviation, CI: 95% confidence interval.

# Features
Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 MCC

x SD CI x SD CI x SD CI x SD CI x SD CI x SD CI x SD CI

5 77.3 9.1 0.36 66.1 19.6 0.77 84.7 11.4 0.45 74.3 15.5 0.61 79.0 9.7 0.38 0.70 0.15 0.006 0.52 0.20 0.008
6 77.1 9.4 0.37 66.2 19.5 0.76 84.4 11.7 0.46 73.9 15.9 0.62 78.9 9.7 0.38 0.70 0.15 0.006 0.52 0.21 0.008
3 77.0 9.6 0.38 67.7 18.9 0.74 83.2 12.2 0.48 72.9 15.7 0.62 79.5 9.7 0.38 0.70 0.14 0.006 0.52 0.21 0.008
9 76.3 9.6 0.38 63.3 19.8 0.78 84.9 11.6 0.46 73.6 16.7 0.66 77.6 9.6 0.38 0.68 0.15 0.006 0.50 0.22 0.009
2 76.4 9.4 0.37 65.9 18.9 0.74 83.4 12.0 0.47 72.6 15.8 0.62 78.6 9.6 0.38 0.69 0.14 0.006 0.50 0.20 0.008
7 75.8 9.6 0.38 62.4 19.5 0.76 84.7 12.0 0.47 73.2 16.7 0.66 77.2 9.5 0.37 0.67 0.15 0.006 0.49 0.21 0.008
8 75.7 9.7 0.38 62.4 19.7 0.77 84.5 12.0 0.47 72.9 16.9 0.66 77.1 9.6 0.38 0.67 0.15 0.006 0.48 0.22 0.009
4 75.5 9.5 0.37 63.3 19.5 0.76 83.7 11.9 0.47 72.2 16.5 0.65 77.4 9.6 0.38 0.67 0.15 0.006 0.48 0.21 0.008
1 75.3 9.4 0.37 61.5 19.5 0.76 84.6 11.7 0.46 72.7 16.8 0.66 76.7 9.3 0.36 0.67 0.15 0.006 0.48 0.21 0.008
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Table 7. Combined straight and turn-walking feature results for 2500-iteration random-shuffle-split cross validation (2500-RSS), ordered by ranked performance. PPV:
positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, S5B: select-5-best method, SEL: false positive and discovery rate
method, RFE: recursive feature eliminator, RF: random forest, kNN: k-nearest neighbour, SVM: support vector machine, linear: linear kernel, x: mean, SD: standard
deviation, CI: 95% confidence interval.

Classifier, Feature Selection
Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 MCC

x SD CI x SD CI x SD CI x SD CI x SD CI x SD CI x SD CI

RF S5B 71.6 10.8 0.42 57.5 20.8 0.82 81.1 13.2 0.52 66.9 18.9 0.74 74.1 10.2 0.40 0.62 0.17 0.007 0.40 0.25 0.010
RF SEL 69.5 11.7 0.46 54.3 21.1 0.83 79.7 14.5 0.57 64.1 20.7 0.81 72.3 10.4 0.41 0.59 0.18 0.007 0.35 0.27 0.010

kNN (k = 5) S5B 67.4 11.2 0.44 48.6 21.3 0.84 80.0 13.9 0.55 61.8 21.6 0.85 70.0 9.9 0.39 0.54 0.19 0.007 0.30 0.27 0.011
SVM (linear) S5B 65.7 11.6 0.45 56.1 21.0 0.83 72.1 15.9 0.62 57.3 17.7 0.70 71.1 11.5 0.45 0.57 0.16 0.006 0.28 0.25 0.010
kNN (k = 3) S5B 65.9 11.4 0.45 49.3 20.6 0.81 77.0 14.4 0.56 58.8 20.6 0.81 69.5 10.0 0.39 0.54 0.18 0.007 0.27 0.26 0.010

SVM (linear) SEL 63.7 12.5 0.49 54.9 23.8 0.94 69.6 17.9 0.70 54.6 19.9 0.78 69.8 13.5 0.53 0.55 0.19 0.007 0.24 0.30 0.012
kNN (k = 3) SEL 65.3 12.7 0.50 49.0 21.1 0.83 76.2 15.3 0.60 57.9 21.8 0.85 69.2 10.8 0.42 0.53 0.19 0.007 0.26 0.29 0.011
kNN (k = 5) SEL 65.4 12.5 0.49 47.2 22.0 0.86 77.5 15.1 0.59 58.3 23.3 0.91 68.8 10.7 0.42 0.52 0.20 0.008 0.26 0.29 0.012
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3.4.2. Selected Features from Combined Straight and Turn Feature Set

The S5B and SEL methods selected similar MFO features. For both methods, nine of the ten
MFO features selected from the combined straight and turn feature set were turn-based features.
These nine features were the same as the turn-based MFO features from Test II. These included: the
minimum of anterior-posterior REOH for RS, SD of SD anterior LS acceleration, SD of mean anterior
LS acceleration, maximum of medial-lateral FQFFT for LB, maximum of anterior-posterior FQFFT for
LB, SD of maximum anterior LS acceleration, SD of vertical FQFFT for RS, maximum of vertical FQFFT
for LS, and maximum of anterior-posterior FQFFT for LS. The only straight walking feature among the
10 MFO features was the SD of maximum posterior LS acceleration using the S5B algorithm, and the
maximum of SD of anterior RS acceleration for the SEL algorithm.

4. Discussion

A new method for faller classification in older adults was developed using walking-turn
accelerometer-based features extracted from wearable sensor data. This research confirmed that
turn features performed better than straight walking features for prospective faller classification,
and the best overall classification method used a random forest classifier and five turn-based features,
obtained from the S5B feature selection process.

Test I determined that turn features performed better than straight walking features for prospective
faller classification since turn-based models had greater accuracy, sensitivity, specificity, F1-score,
and MCC than straight-walking models. Test II reinforced the conclusions from Test I, since turn
features also outperformed straight walking features for faller classification. The best turn-based
classifier-feature selector combination (RF-S5B) had results that were at least 24% greater than
corresponding best straight-walking results, with the worst turn-based classifier outperforming the
best straight-walking-based classifier. All performance metrics of the best turn-feature based CM-FS
combination were significantly greater than the corresponding metrics of the best straight-feature based
CM-FS combination. The narrow confidence intervals, which were less than ±1% for turn classification
performance metrics and ±1.32% for straight walking, support the generalizability of these results for
population-based applications. Based on the law of large numbers [50] and narrow 95% confidence
intervals, the 2500-RSS, used for Tests II and III, generated viable mean results, indicating that the
mean values were likely similar to population values.

Test III, using 2500-RSS cross validation, again confirmed the findings that turn features produced
a better performing classifier than straight-walking based features. Test III also determined that,
for turns, the best feature subset included minimum of anterior-posterior REOH for right shank,
SD of SD anterior left shank acceleration, SD of mean anterior left shank acceleration, maximum
of medial-lateral FQFFT for lower back, and maximum of anterior-posterior FQFFT for lower back.
Feature maxima, minima, and SD appeared more often in the best feature subset than mean-based
features. This suggested that extreme values (maximum and minimum) and variability (SD) provide
better discriminative information for turns, as found in previous research [36].

Test IV was performed to determine if all available features from both straight and turn
sections would further improve performance over turn-only-based features. Poorer performance
was observed for the CM-FS combinations of Test IV (straight and turn features) compared to their
corresponding turn-only-based feature CM-FS combinations from Test II. This suggests that adding
straight-walking-based features does not aid in faller classification when turn-based features are used.
Furthermore, it was found that during the 2500 iterations of feature selection for both S5B and SEL
methods, nine of the ten MFO features were turn-based features, showing that the information in the
turn-based features was more useful for classification.

The most frequently occurring turn feature in the feature selection process (Test II and Test IV)
was minimum anterior-posterior REOH for the right shank, which composed the 1 MFO feature subset.
Interestingly, only modest differences occurred between the 1 MFO feature subset and the best feature
subset (5 MFO Feature). The strong performance using only the minimum-AP-REOH-right-shank
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feature indicates the importance of this feature for faller classification. This result is supported
by [25,29,30,32–34,51], where a small REOH indicated step-to-step asymmetry within strides and
possibly gait instability. Two features in the 5 MFO feature subset involved the lower back sensor
maximum FQFFT, across all turn sections for the anterior-posterior and medial-lateral axes. A low
FQFFT value indicates more high frequency than low frequency components. Walking can be
associated with activities linked to decreased stability [52] and higher frequency components indicate
less steady movements [27,28] and possibly sudden movements to recover balance; therefore, frequency
components at the lower back may be useful for faller classification. The remaining two features of the
5 MFO feature subset were the SD of the mean anterior left shank acceleration and SD of anterior left
shank acceleration SD. These features were related to variation across different sections, suggesting that
acceleration variation over time can be a good indicator for faller classification. More gait variability
has been linked to fall risk [10,35]. To enable further interpretation of the discriminative ability of the
5 MFO feature subset, a statistical comparison of faller and non-faller group feature values should be
undertaken in a future study.

Previous approaches that used turn-walking to discriminate fallers and non-fallers mainly used
the TUG test [18–21,27]. However, a meta-analysis of 53 studies suggested that TUG was ineffective
for determining fall risk for healthy older individuals [53]. This was primarily due to variations in the
thresholds across studies used to classify fallers and non-fallers. Since this study included multiple
turn sections and found that classification using turn-based features performed better than using
straight-walking features, the methods of this study may be a more suitable alternative than the TUG
for prospectively classifying fallers.

Other faller classification studies have found better and worse classification results compared to
this paper, with accuracies between 62 and 100%, specificities between 35 and 100%, and sensitivities
between 55 and 99% [7] based on straight walking data. The types of populations (retrospective or
prospective fallers; single-fall or multiple-fall fallers) and methodologies vary, and differ from the
current paper. The prospective fall prediction study in [26] permits comparison based on the identical
older-adult population. The turn-feature based classification results in this paper (73.4% accuracy,
60.5% sensitivity, 82.0% specificity, and 0.44 MCC score) were better than the best straight-walking
classification results in [26] (56.5% accuracy, 42.5% sensitivity, 65.4% specificity and 0.083 MCC
score), based on similar accelerometer derived features for 25 ft walk single-task and dual-task
tests, and similar cross validation with 10,000 random stratified splits. Those results for straight
walking were similar to the straight-walking-based classification results in Test II of this paper
(55.5% accuracy, 46.1% sensitivity, 61.8% specificity and 0.08 MCC). Since the straight-walking classifier
performances for [26] and this paper were similar, it is likely that the use of turn-based features was
the main contributing factor to improved classification results (turn compared to straight), rather
than the inclusion of more walking sections (6MWT in this paper compared to 25 ft walk test in [26]).
This strongly suggests that turn-based features provide better information for prospective faller
classification and thus faller prediction.

In this study, a turn was defined using a fixed number of steps. While this standardized the
analysis, this method may have led to one or two extra or missed steps for a participant’s turn.
The effect on the REOH feature from fixing the number of steps in a turn to five is unknown and would
be of interest for further study. Turn segmentation could be improved using gyroscope data or video
capture of the walking trial.

Existing elderly fall screening assessments could benefit by better prospective faller classification.
The results of this research suggest that integrating wearable-sensor turn-based features and machine
learning in elderly screening assessments may improve faller identification. Since a shorter test
might be easier to administer in a clinical setting, future research could study whether a shorter
distance with fewer turns could also be effective. This study has demonstrated that turn-based features
permit better prospective faller classification than using straight-walking features. Future studies
employing improved turn segmentation or turning tasks (e.g., figure-eight patterns) without need for
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segmentation, and additional features (e.g., entropy [54], frequency based) could lead to more reliable
classification suitable for clinical implementation.

5. Conclusions

A novel wearable-sensor based faller classification method using walking-turns was developed.
This work is the first to directly compare prospective classification results using straight and turn
walking data, based on wearable-accelerometer measures. A marked improvement in all classification
performance metrics occurred when turn data was used for faller classification, compared to straight
walking data. Turn data acquired from accelerometers contains useful biomechanical information that
can improve prospective fall risk classification for healthy older adults. A random forest classifier
paired with a select-5-best (S5B) feature selector provided the best classification results for both turn
and straight walking data. The most frequently occurring turn feature in the feature selection process
was the minimum anterior-posterior REOH for the right shank, which formed the 1 MFO feature
subset and produced comparable results to the 5 MFO feature subset, indicating the importance of this
feature for faller classification. Future work could examine the effectiveness of the most frequently
selected, best performing turn features on faller classification in other populations. Combining straight
and turn-based features for prospective faller classification did not improve classification models that
used only turn-based features.
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