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Abstract: Generally, many beamforming methods are derived under the assumption of white
noise. In practice, the actual underwater ambient noise is complex. As a result, the noise removal
capacity of the beamforming method may be deteriorated considerably. Furthermore, in underwater
environment with extremely low signal-to-noise ratio (SNR), the performances of the beamforming
method may be deteriorated. To tackle these problems, a noise removal method for uniform circular
array (UCA) is proposed to remove the received noise and improve the SNR in complex noise
environments with low SNR. First, the symmetrical noise sources are defined and the spatial
correlation of the symmetrical noise sources is calculated. Then, based on the preceding results, the
noise covariance matrix is decomposed into symmetrical and asymmetrical components. Analysis
indicates that the symmetrical component only affect the real part of the noise covariance matrix.
Consequently, the delay-and-sum (DAS) beamforming is performed by using the imaginary part of
the covariance matrix to remove the symmetrical component. However, the noise removal method
causes two problems. First, the proposed method produces a false target. Second, the proposed
method would seriously suppress the signal when it is located in some directions. To solve the
first problem, two methods to reconstruct the signal covariance matrix are presented: based on the
estimation of signal variance and based on the constrained optimization algorithm. To solve the
second problem, we can design the array configuration and select the suitable working frequency.
Theoretical analysis and experimental results are included to demonstrate that the proposed methods
are particularly effective in complex noise environments with low SNR. The proposed method can be
extended to any array.

Keywords: underwater ambient noise; sensor array signal processing; signal-to-noise ratio;
beamforming; noise removal

1. Introduction

Array signal processing is extensively used for noise removal and signal enhancement in
underwater environments with low SNR (see, e.g., [1–3]). The delay-and-sum (DAS) beamforming
and the minimum variance distortionless response (MVDR) [4] methods are the two most important
beamforming methods. The MVDR method is a well-known data-dependent filter which is aimed at
minimizing the energy of noise and interference coming from different directions, while keeping a
fixed gain on the desired direction of arrival. The robustness of the MVDR method is related to the
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number of snapshots, channel amplitude and phase errors, input SNR, and position errors. However,
the MVDR method is not robust in many practical applications. A popular approach to improve
the robustness is the diagonal loading method presented in [5]. The main limitation of the diagonal
loading method is that the process of efficiently picking the penalty weight is not clear, although useful
data-dependent methods have been proposed for specific applications (see, e.g., [6,7]). By contrast, the
DAS method is more robust, so it is widely used in the underwater array signal processing. However,
the noise removal capacity of the method is limited by the array aperture. As a consequence, the low
SNR environment seriously degrades the performance of this method.

Another problem is that the actual underwater ambient noise is complex (see, e.g., [8–11]), and
the noise spatial correlation function [9] is not equal to zero. The received noises of the two arbitrary
array elements are correlated. Typically, the beamforming methods are derived under the assumption
of white noise, whose noise covariance matrix is a scaled identity matrix. Although this assumption
has been observed to be valid in many applications, it may be occasionally violated and yield poor
performance because, in practice, the noise spatial correlation function [9] is not equal to zero.

In conclusion, studying the array signal processing method in complex noise environments with
low SNR is a challenging task. To address this problem, a large number of strategies have been
proposed. On the one hand, the noise is removed by estimating the noise parameters. In [12], the noise
field is assumed as a colored noise field, and the direction of arrival and noise parameters are estimated
by maximum- likelihood estimator. In [13,14], the noise covariance matrix is assumed to keep a
diagonal structure, but the diagonal entries are not identical to each other. Then, the noise subspace
is obtained. On the other hand, the noise is removed by eliminating the real part of the covariance
matrix. A research group proposed a high-resolution bearing estimation method for weak signals
in non-white noise field in [15] and compared the performance of the multiple-signal classification
(MUSIC) method with that of the MUSIC method in which only the imaginary part of the covariance
matrix is applied in [16]. These methods provide better bearing estimation and high resolution in a
low SNR environment under an ideal noise model. In practice, the ideal model cannot be entirely
satisfied, and the noise is always complex in underwater environments. Thus, these methods are
limited. To address this problem, the authors proposed a new noise reduction method that is suitable
for complex noise environments with low SNR (see, e.g., [17,18]). Another serious problem is that
the aforementioned methods may seriously suppress the signal (see, e.g., [15,16]); thus, the signal
cannot be detected. To address this problem, we proposed two methods in [17], but the use of these
two methods is limited. We also designed the array configuration and selected the suitable working
frequency in [18]. In [17,18], the noise reduction method is based on the assumption that the noise
sources are located in a plane, which is not practical. By contrast, the noise reduction method proposed
in this manuscript is based on the fact that the actual received noise is from three- dimensional space.
Consequently, the proposed method is more generally applicable and can be extended to any array.

In this study, a noise removal method is proposed. The received noise (see, e.g., [19–24]), which is
from the 3D space, can be accurately modeled by adding the fields from a large number of uncorrelated
sources (see, e.g., [24–27]). Theoretically, the noise covariance matrix is decomposed into symmetrical
and asymmetrical components. Therefore, the imaginary part of the covariance matrix is used in the
DAS method to remove symmetrical noise in which a false target appears. To address the problem,
a method of reconstructing the signal covariance matrix is presented to eliminate the false target
based on the constrained optimization method (CP-RCMDAS) presented in [17,18]. In this study, two
methods of reconstructing the signal covariance matrix are presented to eliminate the false target:
based on the signal variance estimation method (SVE-RCMDAS) and CP-RCMDAS. The advantages
and disadvantages of the two methods are first compared. Theoretical analysis and experimental
results show that the proposed method, which is easy to implement, improves the noise removal
capacity and the output SNR of the DAS method in complex underwater environments with low SNR.

The remainder of this paper is organized as follows: Section 2 describes the signal model, gives
the definition of the symmetrical noise sources, and the spatial correlation of these two symmetrical
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noise sources is derived. Section 3 gives the principle of the noise covariance matrix decomposition.
The noise removal method and its performance are provided in Section 4. Both simulation results
provided in Section 5 and experimental results provided in Section 6 demonstrate the validity of our
proposals. Finally, Section 7 concludes this paper.

2. Background

In this section, the received signal model of the array is established, and then the definition of the
symmetrical noise sources is presented. Finally, the spatial correlation of the two symmetrical noise
sources is derived, which is the basis of the noise covariance matrix decomposition in the next section.

2.1. Array Model

An M-element UCA, which is located on the XY plane of a Cartesian coordinate system, is shown
in Figure 1. The element on the ox axis is labeled as 1, the other elements are labeled as 2, 3, . . . , and M
in the counterclockwise direction. The radius is r. The angle subtended between two adjacent elements
is denoted as β = 2π/M. Consequently, the angle of the mth element is βm = (m− 1)β.
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Figure 1. Array configuration.

The position vector of the array element is described as:

Pm = [r cos βm, r sin βm, 0]T , m = 1, 2, · · · , M. (1)

The UCA captures a zero-mean source signal whose center frequency is f , variance is σ2
s , azimuth

angle is θs ∈ [−π, π), and elevation angle is αs ∈ [0, π]. The signal is uncorrelated to the noise.
The unitary vector indicating the signal direction of arrival can be described as:

vs(αs, θs) = −[sin αs cos θs, sin αs sin θs, cos αs]
T . (2)

The signal waveform is denoted as s(t). Thus, the received signal and noise of the mth element
are easily obtained as:

xm(t) = s(t)e−jkT
s (αs ,θs)Pm + nm(t), (3)

where nm(t) is the received noise, which is assumed to be a zero-mean random process; ks(αs, θs) is
the wave number, which can be calculated by using ks(αs, θs) = ωvs(αs, θs)/c; w = 2π f is the angular
frequency; and c is the sound velocity. The received signal and noise of UCA are acquired as:

X(t) =


e−jkT

s P1

e−jkT
s P2

...
e−jkT

s PM

s(t) +


n1(t)
n2(t)

...
nM(t)

 = ãs(αs, θs)s(t) + N(t), (4)
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where X(t) =
[

x1(t) x2(t) · · · xM(t)
]T

, ãs(αs, θs) is the response vector of the signal, and N(t)
is the received noise vector. Then, the covariance matrix of the received data is calculated by:

R = E[XXH ] = Rs + Rn, (5)

where Rs is the signal covariance matrix and Rn is the noise covariance matrix. Rs is denoted as:

Rs =


σ2

s σ2
s ej∆12(αs ,θs) · · · σ2

s ej∆1M(αs ,θs)

σ2
s ej∆21(αs ,θs) σ2

s · · · σ2
s ej∆2M(αs ,θs)

...
...

. . .
...

σ2
s ej∆M1(αs ,θs) σ2

s ej∆M2(αs ,θs) · · · σ2
s

, (6)

where ∆kl(αs, θs) = sin αs[cos(βk − θs)− cos(βl − θs)]ωr/c is defined as the phase difference.
For notational simplicity, Equation (6) is denoted by Rs = (σ2

s ej∆kl(αs ,θs))M×M, where k denotes the row
number and l denotes the column number. The similar matrices, which will be presented later, are
denoted by the same style.

2.2. Symmetrical Noise Sources

The definition of the symmetrical noise sources is presented. Two received sensors are denoted as
A and B. Moreover, two noise sources exist. The received narrowband noise signals radiated by one
noise source are denoted as NA1(t) and NB1(t), respectively, which satisfy:

NB1(t) = NA1(t)e−j∆1 , (7)

where ∆1 is the phase difference. The received narrowband noise signals radiated by another noise
source are denoted as NA2(t) and NB2(t), respectively, which are independent of NA1(t) and NB1(t).
As a result, we can obtain:

NB2(t) = NA2(t)e−j∆2 , (8)

where ∆2 is the phase difference. If the noise variances of the two received noise signals are equal and
the phase differences are opposite, that is:

E[N2
A1(t)] = E[N2

A2(t)] = σ2
A

∆1 = −∆2
, (9)

then the two noise sources are defined as symmetrical noise sources, and the noise field generated by
them is denoted as a symmetrical noise field.

2.3. Spatial Correlation of Symmetrical Noise Sources

According to Section 2.2, the received noise signal of sensor A is described as:

NA(t) = NA1(t) + NA2(t). (10)

According to Equations (7)–(9), the received noise signal of sensor B is described as:

NB(t) = NB1(t) + NB2(t) = NA1(t)e−j∆1 + NA2(t)ej∆1 . (11)

The correlation function can be obtained as:

rAB = E[NA(t)N∗B(t)] = E[N2
A1(t)]e

j∆1 + E[N2
A2(t)]e

−j∆1 = 2σ2
A cos ∆1. (12)
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Equation (12) shows that the symmetrical noise sources only affect the real part of the correlation
function, and the imaginary part is zero. This result will be the basis of the noise covariance matrix
decomposition in the next section.

3. Noise Covariance Matrix Decomposition

In this Section, the principle of noise covariance matrix decomposition is presented. Based on the
Sections 2.2 and 2.3, the symmetrical noise sources cannot affect the imaginary part of the correlation
function. In practice, the received noise signal of the sensor array is from 3D space, not from two
symmetrical noise sources. Thus, the decomposition of the noise covariance matrix should be studied
in this section under the actual underwater ambient noise.

The received noise can be accurately modeled by adding the fields from a large number of
uncorrelated sources (see, e.g., [24–27]). The noise field is assumed to be generated by the G noise
sources, which are denoted as Ng, g = 1, 2, . . . , G. The center frequency is f, the azimuth angle is
ϕg ∈ [−π, π), the elevation angle is αg ∈ [0, π], and the noise variance is σ2

g . Thus, the received noise
of the mth element is obtained:

nm(t) =
G

∑
g=1

Ng(t)ejω r sin αg cos(βm−ϕg)/c, (13)

where the received noise from Ng is represented as Ng(t). Then, the noise covariance matrix in
Equation (5) is obtained as:

Rn =

(
G

∑
g=1

σ2
g ej∆kl(αg ,ϕg)

)
M×M

. (14)

where:
∆kl(αg, ϕg) = sin αg

[
cos(βk − ϕg)− cos(βl − ϕg)

]
ωr/c (15)

is defined as the phase difference.
We take one off-diagonal element of noise covariance matrix in Equation (14) to discuss:

rkl =
G

∑
g=1

σ2
g ej∆kl(αg ,ϕg), (16)

where k 6= l. The phase difference can be simplified into:

∆kl(αg, ϕg) =
√

c2
1 + c2

2 sin αg sin(ϕg + υkl)ωr/c, (17)

where c1 = cos βk − cos βl , c2 = sin βk − sin βl , and υkl = arg tan(c1/c2). For all noise sources, we can
obtain αg ∈ [0, π] and ϕg ∈ [−π, π). Thus, the partial derivatives of ∆kl(αg, ϕg) with respect to αg and
ϕg are, respectively, given by:

∂∆kl(αg ,ϕg)
∂αg

= c3 cos αg sin(ϕg + υkl)
∂∆kl(αg ,ϕg)

∂ϕg
= c3 sin αg cos(ϕg + υkl)

, (18)

where c3 = ωr/c
√

c2
1 + c2

2. Therefore, setting the derivative in Equation (18) as zero, we obtain two
sets of αg and ϕg, which correspond to the two extremes of the phase difference:{

αg = 0, π

ϕg = kπ − υkl

{
αg = π

2
ϕg = kπ

2 − υkl
, (19)

where ϕg satisfies ϕg ∈ [−π, π) by selecting a suitable k.
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When αg = π/2, two values of ϕg cause the phase difference to be the maximum and minimum.
Moreover, according to Equation (17), we can obtain:

max
[
∆kl(αg, ϕg)

]
= c3, min

[
∆kl(αg, ϕg)

]
= −c3. (20)

According to Equation (20), the maximum is the negative of the minimum, and the phase
difference is continuous when αg ∈ [0, π] and ϕg ∈ [−π, π). Consequently, two noise sources, namely,
N1 and N2, whose variances are denoted as σ2

1 and σ2
2 , must be existed, and the phase differences

satisfy the equation ∆kl(α1, ϕ1) = −∆kl(α2, ϕ2).
Then, the noise field generated by N1 and N2 can be decomposed into symmetrical and

asymmetrical noise fields. The decomposition method is as follows: If σ2
1 > σ2

2 , then the noise source
N1 is decomposed into two noise sources, namely, N′1 and N1∆, and the corresponding variances
are equal to σ2

2 and σp, respectively. The noise sources N′1 and N2 conform to Equation (9), so they
generate the symmetrical noise field, whereas N1∆ generates the asymmetrical noise field. N1 and N2

are arbitrary, so we can infer that the noise field generated by all G noise sources can be decomposed.
The basic idea of the decomposition is that all noise sources that have equal phase differences, are
equivalent to a noise source. Then, some equivalent noise sources are obtained. Finally, the noise field
generated by these equivalent noise sources is decomposed into symmetrical and asymmetrical noise
fields. The specific process is as follows:

(1) All noise sources can be divided into B sets, which are denoted as Gb, b = 1, 2, · · · , B.
The principle of dividing the set is that the phase differences of all noise sources in the set
Gb are equal, denoted as (∆kl)b. Therefore, the noise sources in the set of Gb are equivalent to a
noise source denoted as Ñb. Consequently, B equivalent noise sources are obtained.

(2) The phase differences of Ñb, b = 1, 2, · · · , B conform to Equation (20). Consequently, for arbitrary
Ñb, another noise source must be existed, without losing generality, denoted as ÑB−b+1, whose
phase difference satisfies (∆kl)B−b+1 = −(∆kl)b. Consequently, the noise sources of Gb and
GB−b+1 can be decomposed. Thus, the summation is calculated by:

εb = ∑
g∈Gb

σ2
g ej∆kl(αg ,ϕg) + ∑

g∈GB−b+1

σ2
g ej∆kl(αg ,ϕg). (21)

εb is simplified into:

εb = E1ej(∆kl)b + E2e−j(∆kl)b = P′b cos((∆kl)b) + Pbejµb(∆kl)b , (22)

where P′b = 2min(E1, E2), Pb = max(E1, E2) − min(E1, E2), and E1, E2 are denoted as
E1 = ∑

g∈Gb

σ2
g and E2 = ∑

g∈GB−b+1

σ2
g , respectively. If E1 > E2, then µb = 1; otherwise, µb = −1.

(3) For all G noise sources, the off-diagonal element of the noise covariance matrix in Equation (16) is
simplified into:

rkl =
B′

∑
b=1

εb =
B′

∑
b=1

(
P′klb cos((∆kl)b) + Pklbejµklb(∆kl)b

)
, (23)

where B′ = B/2. Different k and l result in different Gb, b = 1, 2, · · · , B. Thus, P′klb, Pklb, and µklb
change with k and l.

(4) All off-diagonal elements of the noise covariance matrix in Equation (14) can be analyzed by the
same procedure.

Finally, Equation (23) shows that the symmetrical component affects the real part but not the
imaginary part of the noise covariance matrix. Therefore, we can infer that most of the noise can be
removed by using only the imaginary part of the covariance matrix in the array signal processing to
improve the output SNR.
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4. Noise Removal Method

According to Section 2, the noise removal method can improve the output SNR and noise removal
capacity. In this section, we take the DAS method as an example to present the imaginary DAS
(IDAS) beamforming method in Section 4.1 and the performance of the IDAS method is presented in
Section 4.2. The result shows that the IDAS method generates a false target. Moreover, Section 4.3
provides two methods to address this problem.

4.1. IDAS Method

This paper takes the DAS method as an example. The output variance of the DAS method is
described as:

PDAS(α, θ) = wH(α, θ)Rw(α, θ)

= wH(α, θ)Rsw(α, θ) + wH(α, θ)Rnw(α, θ)

= Pso + Pno

, (24)

where w(α, θ) = a(α, θ)/M is the array weight vector, a(α, θ) is the array manifold vector, θ and α are
the scanning azimuth angle and scanning elevation angle, respectively. Moreover, Pso and Pno denote
the output signal and output noise variances, respectively. The output SNR can be obtained as:

SNRo =
Pso

Pno
=

σ2
s

(
G
∑

g=1
σ2

g)wH(αs, θs)ρnw(αs, θs)

, (25)

where ρn is the normalized noise covariance matrix.
The IDAS method is implemented by using only the imaginary part of the covariance matrix,

which is used in the DAS method. Thus, the output intensity is obtained as:

PIDAS(α, θ) = wH(α, θ)Rimw(α, θ), (26)

where Rim is the imaginary part of R.

4.2. Performance of the IDAS Method

The performance of the IDAS method is analyzed in this subsection. Firstly, the signal contained
in the real part is also lost, so the signal loss is analyzed. According to Equation (6), the imaginary part
of the signal covariance matrix is obtained as:

Ris = (jσ2
s sin(∆kl(αs, θs)))M×M, (27)

where j is the imaginary unit.
The off-diagonal element of Ris is simplified into:

jσ2
s sin(∆kl(αs, θs)) =

σ2
s

2
ej∆kl(αs ,θs) − σ2

s
2

e−j∆kl(αs ,θs). (28)

According to Equation (28), Ris can be described as the difference between the matrices Ris1 and
Ris2, which are expressed as:

Ris1 =

(
σ2

s
2

ej∆kl(αs ,θs)

)
M×M

, Ris2 =

(
σ2

s
2

e−j∆kl(αs ,θs)

)
M×M

. (29)

Ris1 and Ris2 can be viewed as two signal covariance matrices: one is the actual target whose
azimuth angle, elevation angle, and variance are θs, αs, and σ2

s /2, respectively, and the other is the
false target whose azimuth angle, elevation angle, and variance are θs ± π, αs, and σ2

s /2, respectively.
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Consequently, Rim contains the actual and false targets. When the output signal intensity is calculated,
Ris1 and Ris2 should be included simultaneously. The output signal intensity is described as:

Piso(αs, θs) = wH(αs, θs)Ris1w(αs, θs)−wH(αs, θs)Ris2w(αs, θs) =
σ2

s
2
(1− L1), (30)

where L1 is defined as loss coefficient:

L1 =
1

M2

M

∑
i=1

e−j4πrλ sin αs cos(βi−θs)
M

∑
i=1

ej4πrλ sin αs cos(βi−θs), (31)

where rλ is defined as the radius to wavelength ratio. Notably, the loss coefficient is related to rλ, array
element position, and signal direction. When the loss coefficient is equal to 1, Piso(αs, θs) is smallest.
However, when the loss coefficient is equal to 0, Piso(αs, θs) is largest, that is σ2

s /2. The quantitative
analysis of the loss coefficient is presented in Section 5.

Similarly, According to Equation (23), the imaginary part of the noise covariance matrix is
described as:

Rin =

(
j

B′

∑
b=1

Pklb sin(µklb∆kl(αb, ϕb))

)
M×M

. (32)

Then, the output noise intensity is obtained as:

Pino(α, θ) = wH(α, θ)Rinw(α, θ). (33)

According to Equations (30) and (33), the output SNR is obtained as:

SNRio =
wH(αs, θs)Risw(αs, θs)

wH(αs, θs)Rinw(αs, θs)
=

σ2
s (1− L1)

2wH(αs, θs)Rinw(αs, θs)
. (34)

The output noise intensity expressed in Equation (33) reflects the capability to remove symmetrical
component. In practice, the output noise intensity is different for various received noises. Thus, the
noise removal capacity depends on the characteristic of the noise field. According to Equation (32), the
greater the symmetrical component is, the stronger the noise removal capacity is. Although the signal
contained in the real part is also lost in Equation (30), the noise loss is always more than the signal loss.
As a consequence, the output SNR of the IDAS method is always larger than that of the DAS method
by comparing the Equation (34) with the Equation (25). As an example, the noise removal capacity in a
spherical isotropic noise field is analyzed in Section 5.

4.3. False-Target Elimination Method

The IDAS method contains the actual and false targets. The reconstructed real part of the signal
covariance matrix is obtained to eliminate the false target. Then, the reconstructed covariance matrix
composed of the imaginary and reconstructed real parts is applied to the DAS method (DAS based
on the reconstructed covariance matrix, RCMDAS). Consequently, the false target is eliminated.
This section presents two methods: based on the signal variance estimation method (SVE-RCMDAS)
and based on the constrained optimization method (CP-RCMDAS).

4.3.1. Based on the Signal Variance Estimation Method (SVE-RCMDAS)

According to Equation (5), the first row of the imaginary part of covariance matrix is denoted as
Q, and can be expressed in matrix form, as follows:

S(αs, θs)σ
2
s + Nim = QT , (35)
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where NT
im is denoted as the first row of Rin and S(αs, θs) is denoted as:

S(αs, θs) =
[

sin(∆12(αs, θs)) sin(∆13(αs, θs)) · · · sin(∆1M(αs, θs))
]T

. (36)

The estimated azimuth angle of signal θ̂s and elevation angle α̂s are obtained from the IDAS
method. The actual and false targets are acquired from the IDAS method. The actual target cannot be
distinguished; thus, α̂s and θ̂s may be the actual target or the false target. By substituting α̂s and θ̂s into
Equation (35), the linear equation of signal variance estimation ê is acquired in matrix form:

Ŝ(α̂s, θ̂s)ê + Nim = QT . (37)

For notational simplicity, Ŝ(α̂s, θ̂s) is denoted by Ŝ. Then, the minimal norm least square solution
of Equation (37) is obtained:

ê = Ŝ+
(QT −Nim) = Ŝ+QT − Ŝ+Nim = e′ − δ (38)

where “+” denotes the generalized inverse, e′ = Ŝ+QT , and δ = Ŝ+Nim.
If α̂s and θ̂s are the angles of the actual target, then ê is positive; if α̂s and θ̂s are the angles of the

false target, then ê is negative. As a result, the estimated signal variance is calculated as σ̂2
s = |ê|.

In practice, QT and Ŝ+
can be obtained. Nevertheless, Nim cannot be precisely estimated.

Therefore, the signal variance is estimated as:

σ̂2
s ≈

∣∣∣Ŝ+QT
∣∣∣ = ∣∣e′∣∣ = |ê + δ| = σ2

s + δ′. (39)

The estimated signal variance from Equation (39) can be interpreted as the actual signal variance
that adds an error δ′. The relative error of signal variance estimation is defined as:

∆δ =
|δ′|
σ2

s
. (40)

In conclusion, the estimated signal variance is affected by the azimuth angle of signal θ̂s, elevation
angle α̂s, and relative error ∆δ. The quantitative analysis of ∆δ is presented in Section 5.

According to the estimated signal variance σ̂2
s , the reconstructed real part of the signal covariance

matrix is obtained as:
R̂re = σ̂2

s ρre = σ2
s ρre + δ′ρre = R̂rs + R̂δ, (41)

where R̂rs is the real part of the signal covariance matrix, R̂δ = δ′ρre, and ρre is the normalized R̂rs,
which is denoted as:

ρre =
(
cos(∆kl(α̂s, θ̂s))

)
M×M. (42)

According to Euler’s formula, R̂δ can be described as the sum of matrices R̂δ1 and R̂δ2, which are
described as:

R̂δ1 =

(
δ′

2
ej∆kl(α̂s ,θ̂s)

)
M×M

, R̂δ2 =

(
δ′

2
e−j∆kl(α̂s ,θ̂s)

)
M×M

. (43)

R̂δ1 can be viewed as a signal covariance matrix whose azimuth angle, elevation angle, and
variance are θ̂s, α̂s, and δ′/2, respectively, which enhances the signal. Meanwhile, R̂δ2 can be viewed
as a signal covariance matric whose azimuth angle, elevation angle, and variance are θ̂s ± π, α̂s, and
δ′/2, respectively, which corresponds to the false target.

According to Equations (27), (32) and (41), the reconstructed covariance matrix is obtained as:

R̂ = R̂re + Rim = R̂s + R̂n, (44)
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where R̂s = R̂rs + Ris + R̂δ1 and R̂n = Rin + R̂δ2 are denoted as the estimated signal covariance matrix
and estimated noise covariance matrix, respectively. Then, the output SNR is obtained as:

SNRSVE =
σ2

s + δ′
2

wH(αs, θs)Rinw(αs, θs) +
δ′
2 L1

. (45)

The output signal intensity of the SVE-RCMDAS method is denoted as Psso, which is the sum of
σ2

s and δ′
2 . Meanwhile, the output noise intensity of the SVE-RCMDAS method is represented as Psno.

When δ′ is large, the numerator and the denominator increase and the undesired false target appears
in the direction spectrum. Thus, δ′ should be small. The quantitative analysis of the change of the
relative error with input SNR is presented in Section 5.

4.3.2. Based on the Constrained Optimization Method (CP-RCMDAS)

Instead of employing the minimal norm least square solution, we introduce another new technique
to eliminate the false target based on the constrained optimization method.

An estimated variance of signal σ̂2
s is generated randomly, and 0 < σ̂2

s < λmax, where λmax

is the maximum of the diagonal of the covariance matrix. Then, the reconstructed real part of the
signal covariance matrix is obtained by using Equation (41) and the reconstructed covariance matrix is
acquired by employing Equation (44). The output intensity is achieved:

P(σ̂2
s , α, θ) = wH(α, θ)R̂w(α, θ). (46)

According to Equation (44), the output in the direction of the actual target is calculated as:

Prs = wH(αs, θs)R̂sw(αs, θs) = σ2
s +

δ′

2
, (47)

and the output in the direction of the false target is obtained:

Pri = wH(αs, θs ± π)R̂δ2w(αs, θs ± π) =
δ′

2
. (48)

Comparing Equation (47) with Equation (48), Prs > Pri can be observed. As a result, the output
in the direction of the actual target is maximum. Thus, the constrained optimization problem for
obtaining σ̂2

s can be formulated as follows:

min
σ̂2

s

max
|θ − θ̂s| > ∆θ

|α− α̂s| > ∆α

∣∣∣P(σ̂2
s , α, θ)

∣∣∣, s.t. 0 < σ̂2
s < λmax, (49)

where ∆θ and ∆α denote the main-lobe width. The constrained optimization problem is solved by
using the particle swarm algorithm. The output SNR denoted as SNRCP of the CP-RCMDAS method
is obtained by using Equation (45), and the output signal intensity is denoted as Pcso. The advantage
of this method is that it avoids the estimation of the signal variance; thus, its performance is
stable. However, the disadvantage of this method is its slow computing speed because of the
optimization process.

5. Simulation Experiment

For an M-element UCA, the eigen wavelength λt is generally defined as:

λt = 2dcr ⇒ rt =
M
4π

, (50)
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where dcr denotes the arc length between two adjacent elements and rt denotes the eigen
radius-to-wavelength ratio that corresponds to λt.

When M = 8, 16, 24, 32 and the radius is equal to 2 m, rt = 2/π, 4/π, 6/π, 8/π, respectively.
The change of the loss coefficient with the azimuth and elevation angles is shown in Figure 2.
The estimated capacity of the azimuth angle worsens and the loss coefficient is approximately equal
to 1 when the elevation angle is in the area near 0◦ or 180◦. However, this case is less common and
make no sense. Apart from this area, the loss coefficient clearly reaches its second maximum when
the elevation angle is near 90◦. The elevation angle is selected as 90◦ in the following context of this
section because the worst performance should be considered.
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Next, the change of the loss coefficient with the azimuth angle when the elevation angle is selected
as 90◦ is discussed in this paragraph. According to the characteristics of the UCA and Equation (31),
the loss coefficient can vary regularly with the change of the azimuth angle. M peaks and M valleys
exist for an M-element UCA. When the target is located in the direction that corresponds to the valley,
the loss coefficient is small, and the output signal intensity of the IDAS method is approximately
equal to σ2

s /2, according to Equation (30). The peak value and width decrease with the increase of the
number of elements. The peak values are 0.38, 0.28, 0.13, and 0.11 in Figure 2a–d, the corresponding
signal losses are 5.09, 4.44, 3.62, and 3.52 dB, respectively, according to Equation (30).

Then, the frequency characteristics of the loss coefficient are analyzed. The change of the loss
coefficient with rλ and the azimuth angle is shown in Figure 3, with the red lines representing rt. From
this figure, the loss coefficient is large when rλ is small, because the small rλ leads to the small exponent
in Equation (31). Consequently, the IDAS method cannot be used and make no sense. Apart from the
area of small rλ, the second maximum decreases with the increase of the number of elements, and the
corresponding rλ is larger than rt. Between the maximum and second maximum, the area where the
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loss coefficient is small, is called the feasible area of the IDAS method. The comparison of these four
figures shows that the width of the feasible area increases with the increase of the number of elements.
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According to Figures 2 and 3, the signal loss can be predicated by selecting the number of elements,
radius, and working frequency. Next, the noise removal capacity is analyzed, furthermore, the output
SNR is obtained.

Firstly, the error between the noise modeled by a number of uncorrelated noise sources
and the actual noise should be discussed. In this paper, the isotropic noise field is taken as an
example. The well-known theoretical spatial coherence function for spherically isotropic noise and
omnidirectional sensors is described as:

r(d/λ) =
sin(2πd/λ)

2πd/λ
, (51)

where d is the distance of two sensors, and λ is the wavelength. The error between the spatial coherence
calculated from the noise model and the theoretical spatial coherence is defined by the normalized
mean square error (MSE) between these two values [25], that is:

MSE(G) =

K/2
∑

k=0
(r( fk)− r̂( fk, G))2

K/2
∑

k=0
r2( fk)

, (52)

where K denotes the number of discrete frequencies and r̂( fk, G) denotes the estimated spatial
coherence obtained by using G noise sources. The result is shown in Figure 4. For a large G, the
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MSE asymptotically reaches a certain level. In case the number of noise sources is larger than
100, the theoretical spatial coherence is well approximated. G is selected as 300 in the subsequent
simulation experiments.
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Then, a 24-element UCA is given, the radius is 2 m, the center frequency of the narrowband signal
and noise is 2000 Hz, the bandwidth of signal is 50 Hz, the bandwidth of noise is 100 Hz, and the
sampling frequency is 16 kHz. The SNR is defined as the variance ratio. The input SNR is assumed to
be 0 dB, and the changes of the Pso and Piso with the azimuth angle are shown in Figure 5. The Piso
varies regularly with the change of the azimuth angle, which corresponds to the same law of loss
coefficient. The comparison of the Pso with Piso shows that the maximum signal loss is 3.61 dB and the
minimum signal loss is 3.03 dB.
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Figure 5. The output signal.

The azimuth angle is assumed to be 80◦, and the changes of the Pno and Pino with the input SNR
are shown in Figure 6. Both Pno and Pino do not vary with the input SNR. The Pino is less than Pno

by approximately 16 dB, which is a significant value. The isotropic noise field is simulated in this
paper, such that the symmetrical component is large according to the definition of the symmetrical
component. According to the principle of noise covariance matrix decomposition, the greater the
symmetrical component is, the stronger the noise removal capacity is. Therefore, 16 dB is credible.
According to Figures 5 and 6, the output SNR is improved by using IDAS method.
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Then, the ∆δ, θ̂s, and α̂s should be analyzed because the performance of the RCMDAS method is
based on these factors. Figure 7a presents the change of the sum of the θ̂s and α̂s RMSEs with the input
SNR. When the input SNR is large, the RMSEs of the DAS and IDAS methods are small. The RMSE of
the DAS method increases, whereas that of the IDAS method varies only slightly with the decrease
of the input SNR. As the input SNR continues to decrease, the RMSEs of both methods are large.
This result reveals that the IDAS method provides much better performance in direction of arrival
estimation than DAS method. Figure 7b presents the change of ∆δ with the input SNR. ∆δ decreases
with the increase of the input SNR. This result reveals that the performance of SVE-RCMDAS method
becomes better. According to Equation (37), the θ̂s and α̂s RMSEs affect the ∆δ. However, according to
Equation (41), the ∆δ affects the reconstructed real part matrix, which will affect the output intensity
of the SVE-RCMDAS. According to Equation (49), the θ̂s and α̂s RMSEs influence the result of the
CP-RCMDAS method. As a result, the small θ̂s and α̂s RMSEs and the small ∆δ provide the basis for
the application of the RCMDAS method.
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Figure 8a presents the changes of the Pso, Piso, Psso, and Pcso with the input SNR. The Psso and Pcso

are approximately equal to that of the DAS method, and the output signal intensity of the IDAS method
is smaller by 3.2 dB than those of the other three methods. When the input SNR is low, the output of
the SVE-RCMDAS method appears perturbations because the low input SNR leads to significant error
of the estimated signal variance. This case does not exist in the curve of the CP-RCMDAS method.
According to Figures 6 and 8a, the changes of the output SNRs of the DAS (SNRo), IDAS (SNRio),
SVE-RCMDAS (SNRSVE), and CP-RCMDAS (SNRCP) methods with input SNR can be obtained, as
shown in Figure 8b. The output SNR of the DAS method is the smallest, that of the IDAS method
comes second, and those of the RCMDAS methods are the largest.
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6. Experimental Results 

An experimental 16-hydrophone UCA is used in the South China Sea with two sea conditions, 
in which the radius is 1.5 m and the sampling frequency is 25 kHz. The sea depth of the experimental 
point is 2000 m, and the UCA is deployed in a depth of 300 m. The launch device is a fish lip 
transducer that is deployed in a depth of 50 m. The horizontal distance between the launch devices 
with the UCA is 600 m.  
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6. Experimental Results

An experimental 16-hydrophone UCA is used in the South China Sea with two sea conditions,
in which the radius is 1.5 m and the sampling frequency is 25 kHz. The sea depth of the experimental
point is 2000 m, and the UCA is deployed in a depth of 300 m. The launch device is a fish lip transducer
that is deployed in a depth of 50 m. The horizontal distance between the launch devices with the UCA
is 600 m.

The emission signal is a chirp signal with a center frequency of 950 Hz and bandwidth of 500 Hz,
the time length of the chirp signal is 1.5 s and the cycle is 2 s. Figure 9 shows the direction spectra of the
DAS, IDAS, SVE-RCMDAS, and CP-RCMDAS methods when the data with 2 s is used. We can find
that there exist the up-down ambiguity, because the directive map of the DAS method for the UCA
exists the up-down ambiguity. The output of the DAS method is presented in Figure 9a and that of the
IDAS method is exhibited in Figure 9b. The elevation angles of the direct wave and the surface-bounce
wave are close to each other and the multi-target resolution of the DAS method is restricted by Rayleigh
limit, therefore, we cannot distinguish the direct wave and the surface-bounce wave from the Figure 9a.
When (a) is compared with (b), the output of the DAS method in the direction of the actual target is
larger than that of the IDAS method. Furthermore, the output of the IDAS method in the direction
of the false target is approximately equal to that of the actual target, and the difference between the
azimuth angles of the actual target and the false target is approximately equal to 180◦. As a result, the
azimuth angle of the actual target is difficult to distinguish. Apart from the directions of the actual and
false targets, the outputs in the other directions are considered the approximation of the output noise
intensity. Notably, the approximate output noise intensity of the IDAS method is less than that of the
DAS method by more than 6.4 dB. The output of the SVE-RCMDAS method is presented in Figure 9c.
When (c) is compared with (b), the false target is almost eliminated and the output in the direction
of the actual target increases. When (c) is compared with (a), the approximate output noise intensity
of the SVE-RCMDAS method is less than that of the DAS method, and the output of the RCMDAS
method in the direction of the actual target is approximately equal to that of the DAS method, which
reveals that the noise is removed and the signal is distortionless. The output of the CP-RCMDAS
method is presented in Figure 9d. When (d) is compared with (c), the CP-RCMDAS method exhibits
all advantages of the SVE-RCMDAS method. Moreover, the false target is eliminated more thoroughly
by using the CP-RCMDAS method.
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The output SNR is calculated by using the approximation method. First, the sums of the output
noise intensity and output signal intensity are obtained from the data with signal. Second, with the
use of the weighted vector of the previous step, the output noises of the DAS and IDAS methods
are calculated from the data without signal, and the output noises of the two RCMDAS methods are
assumed to be the same as those of the IDAS method. Finally, the output SNR is listed in Table 1.

Table 1. Output SNR.

Method Output SNR (dB)

DAS 2.837
IDAS 4.987

SVE-RCMDAS 8.501
CP-RCMDAS 8.768

From Table 1, the following preliminary conclusions are drawn: (1) The output SNR of the IDAS
method is larger than that of the DAS method by 2.15 dB, which is a comprehensive result of the
signal loss and noise removal. (2) The output SNR of the IDAS method is smaller than that of the
SVE-RCMDAS and CP-RCMDAS methods by 3.514 and 3.781 dB, respectively, which is the result of
the addition of the reconstructed real part of signal covariance matrix.

The data with 40 s is used in the DAS, IDAS, SVE-RCMDAS, and CP-RCMDAS methods.
The corresponding bearing time record (BTR) figures, when the elevation angle is equal to 68◦ according
to Figure 9, are shown in Figure 10a–d.

The normalized side lobe level of BTR (BSLL) is defined as:
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BSLL = 10lg
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∑
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∑
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P(ti, θj)

)
, (53)

where ti and θj denote the discrete time and azimuth angle, respectively; NT and Nθ represent the
sampling number of time and azimuth angle, respectively; and P(ti, θj) denotes the normalized output.
Figure 10a presents the BTR figure of the DAS method. A target whose azimuth angle is 185◦ and
BSLL is −5.02 dB can be detected. Figure 10b presents the BTR figure of the IDAS method. The false
target appears and the BSLL, which is equal to −7.84 dB, is smaller than that of the DAS method.
Figure 10c,d present the BTR figures of the SVE-RCMDAS and CP-RCMDAS methods, respectively.
The false target is eliminated, and the BSLL of the CP-RCMDAS method, which is equal to −10.18 dB,
is smaller than that of the SVE-RCMDAS method, which is equal to −9.31 dB.
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In summary, the SVE-RCMDAS method performs worse than the CP-RCMDAS method in terms
of the output SNR and the BSLL. However, the SVE-RCMDAS method performs better than the
CP-RCMDAS method in terms of computing time, as shown in Table 2.

Table 2. Computing time (unit: seconds).

Method Computing Time

SVE-RCMDAS 13.70
CP-RCMDAS 357.70

7. Conclusions

The array signal processing method is applied under underwater ambient noise. The received
noises of two arbitrary array elements are correlated, as a consequence, the noise removal capacity
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may be deteriorated. A noise removal method is proposed to solve the previously presented problem.
The preliminary conclusions are summarized as follows:

(1) The noise covariance matrix can be decomposed into symmetrical and asymmetrical components,
and the symmetrical component can affect only the real part of the covariance matrix. The real part
of the covariance matrix is eliminated, and the imaginary part is used in array signal processing.
Thus, the symmetrical noise is removed.

(2) For a UCA, the signal loss by using the IDAS method is analyzed, which provides a basis for the
UCA design and the working frequency selection.

(3) The IDAS method performs better than the DAS method, the noise is removed, and the output
SNR increases.

(4) The IDAS method produces a false target. The difference between the azimuth angles of the
actual and false targets is equal to 180◦; thus, the azimuth angle of the actual target cannot
be distinguished.

(5) Two methods for the reconstruction of the signal covariance matrix are presented to eliminate the
false target: SVE-RCMDAS and CP-RCMDAS. The performance of SVE-RCMDAS method is bad
when the input SNR is low. By contrast, the performance of CP-RCMDAS method is better than
that of the SVE-RCMDAS method.

(6) The theoretical analysis and experimental results show that the IDAS method is easy to implement
and improves the noise removal capacity of array signal processing.

(7) The experimental results show that the output SNR of the IDAS method increases by
2.15 dB, and those of the SVE-RCMDAS and CP-RCMDAS methods increase by 5.664 and
5.931 dB, respectively.
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