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Abstract: Long-term electrocardiogram (ECG) monitoring, as a representative application
of cyber-physical systems, facilitates the early detection of arrhythmia. A considerable number
of previous studies has explored monitoring techniques and the automated analysis of sensing
data. However, ensuring patient privacy or confidentiality has not been a primary concern in ECG
monitoring. First, we propose an intelligent heart monitoring system, which involves a patient-worn
ECG sensor (e.g., a smartphone) and a remote monitoring station, as well as a decision support
server that interconnects these components. The decision support server analyzes the heart activity,
using the Pan-Tompkins algorithm to detect heartbeats and a decision tree to classify them. Our
system protects sensing data and user privacy, which is an essential attribute of dependability,
by adopting signal scrambling and anonymous identity schemes. We also employ a public key
cryptosystem to enable secure communication between the entities. Simulations using data from
the MIT-BIH arrhythmia database demonstrate that our system achieves a 95.74% success rate in
heartbeat detection and almost a 96.63% accuracy in heartbeat classification, while successfully
preserving privacy and securing communications among the involved entities.

Keywords: body sensor networks; biomedical computing; electrocardiography; arrhythmia detection;
communication system security; privacy of patients

1. Introduction

Cyber physical systems have emerged as a promising paradigm for enriching the interactions
between physical and cybernetic components. Recent advances in sensing technology and smart
devices, which are the most important devices facilitating cyber-physical systems, have drastically
altered the shape of the current healthcare environment, while presenting numerous opportunities
and challenges in patient monitoring and assistance. This novel paradigm enables patients to monitor
their physical conditions using smart devices [1], which has been particularly useful for chronic
diseases that can become life threatening, such as high blood pressure, hypernatremia and various
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heart diseases that are common globally [2]. By monitoring a chronic disease, a patient can deal with
this transformation at an early stage. In particular, monitoring arrhythmias is of high importance,
because they are an extremely common initial symptom of cardiac arrest or myocardial infarction.

Arrhythmia can be detected by analyzing an electrocardiogram (ECG), which measures the rate
and regularity of heartbeats and is characterized by five peaks and valleys labeled P, Q, R, Sand T
(see Figure 1). The amplitude and duration of the P-Q-R-5-T wave provides information regarding the
heart disease. The position and distance of the PR interval and segment, the ST interval and segment
and the QT interval and QRS complex can be used in a diagnosis [3].
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Figure 1. Structure of ECG.

Several successful ECG monitoring systems have been developed [2-6]. These systems possess
many advantages, such as allowing for ambulatory patient care, resulting in safer and more affordable
healthcare. However, ECGs are primarily interpreted by medical experts, and most patients themselves
cannot obtain the information firsthand. Thus, considerable attention has recently been devoted to the
computerized automatic analysis of heart activity, which includes both the detection of the heartbeat
in an electrocardiogram and the classification of its type. Recent advances in portable devices, such
as smartphones and tablet PCs, also make it possible for users to more easily self-monitor their ECG
status and classification results [4].

In order to exploit this potential, we propose a novel and intelligent ECG monitoring system
(I-ECG,) that analyzes and interprets heart activity by automatically detecting and classifying heartbeats
based on the Pan-Tompkins [7] and C4.5 algorithms [8-10]. Although this was developed to be
effective, simple to use, sustainable and reliable, it cannot be directly applied in real-world applications,
owing to the following security and privacy problems. First, individuals close to the patients can
illegally obtain the ECG signal during the communication between the sensors and the smartphone.
Second, a decision support server (DSS) can manipulate collected ECG signals, as well as the status
of a particular user. The health information that can be obtained through these security flaws is
sensitive personal data, and thus, it could be abused for monetary purposes. In addition, the privacy
of patients could be invaded by the abuse of this information.

It should be noted that many articles treat the privacy of patients as a primary concern in the usage
of personal healthcare systems [11-13], and some of these assert that patient privacy should be
preserved at all times by law [12]. Therefore, healthcare systems must be designed with consideration
given to the security, in order to provide justifiably trusted services. Simultaneously, the system should
be designed to safeguard the privacy of patients.

Contributions: The main objective of this study is to develop a privacy-preserving I-ECG that
detects arrhythmia in the early stage. The contributions can be summarized as follows:

e  We outline the guidelines for an intelligent ECG monitoring system and service model,
and propose an algorithm for automatic detection and classification of arrhythmia, which realize
intelligent monitoring as a decision support system.



Sensors 2017, 17, 1360 3of 21

e Additional computations performed by the body sensors to enable encryption of ECG data to
protect it from attackers generate heat on the sensors, which can result in discomfort for the patient.
To address this problem, we have developed an efficient and effective solution for encryption
of ECG data in the body sensors. This solution selects the cipher with minimal overhead among
the ciphers considered as candidates for our environment. In addition, our solution protects the
patients’ privacy against attackers, including protection of data at the DSS, as well as monitoring
stations by adopting changeable pseudonyms.

o  We simulated our detection and classification algorithm for decision support using the MIT-BIH
arrhythmia database [14], and the simulation results demonstrate that the DSS achieved an overall
accuracy of 95.74%, with a sensitivity of 97.21% and a specificity of 94.26% for heartbeat detection.
The DSS also achieved an overall accuracy of 96.63%, with a sensitivity of 95.44% and a specificity
of 97.82% for heartbeat classification including privacy preservation measures.

e We demonstrate that our scheme exhibits a high efficiency compared with conventional
cryptographic algorithms and an enhanced robustness against inside attackers who have access
to the DSS, as well as against outside attackers who have the ability to eavesdrop on data from
wireless communications.

The remainder of this paper is organized as follows. In Section 2, we briefly review related
work regarding ECG monitoring systems and applications, with the focus on security and privacy.
In Section 3, we describe the system models, threat models and security objectives. We describe
our primary contribution, which is the privacy-preserving ECG monitoring system, in Section 4.
In Section 5, we outline our system implementation. In Section 6, we evaluate and simulate our
proposed system. Finally, we provide our conclusions in Section 7.

2. Related Work

Since the 1970s, researchers worldwide have been developing diagnostic systems that enable
patients to make ECG recordings at home and transfer data to a cardiologist [2-6]. Research regarding
remote ECG monitoring systems continues today, with smartphones being employed. Essentially,
remote ECG monitoring systems [5,15,16] require only a simple architecture between the sensor device
and a smartphone. The system extracts ECG signals through a lead cable, transmits the signal data
via Bluetooth and then processes and displays the ECG waveform on a personal computer [15] or
smartphone [5,16]. The system displays the ECG waveform on the device for remote monitoring.
However, it does not transmit the ECG waveform to a medical expert. Therefore, the patient effectively
receives no real-time medical service.

Systems on a healthcare server expand the fundamental remote monitoring system by offering
an option to store and access ECG data. With the increasing popularity of Internet access through
mobile phones, these systems provide an ideal platform between remote monitoring systems and
patients. To display the ECG, many studies have employed a web component through a PC [17,18],
single-chip microcomputer [19] or smartphone [2,18,20].

One proposed design for a remote monitoring “tele-medicine” system and web server consists
of the client side, a general packet radio service (GPRS) modem and the server side [18]. The client
side could be interpreted as the combination of the ECG, collection equipment, user interface
and microprocessor. The GPRS modem, which is used to transmit the ECG signals, provides a large
geographical mobility coverage range. The server side is divided into the back and front ends.
The server front end is used to display the ECG signal on the web for patients and doctors, and the back
end is designed to receive data from the GPRS modem and store it in a database. However, such
designs are inadequate for medical experts, because they do not provide the information required to
analyze the ECG signals.

In the recent past, many studies have applied QRS detection algorithms to healthcare servers.
Such systems can record ECG signals on a web server and facilitate their analysis. One prototype uses
a mobile phone as a gateway for transmitting measured ECG data back to the medical cloud using
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3G mobile telecommunications or WiFi [6]. The system can also calculate the beats of the heart as RR
intervals, which is the time between consecutive R-waves, on the mobile phone. Another system offers
not only QRS detection, but also a priority-based alarm messaging service [4].

Although these approaches facilitate the convenient measurement and analysis of body status,
they still encounter problems with security and privacy. As a number of healthcare applications deal
with physical information, which constitutes sensitive personal information, data leakage and invasions
of privacy in health monitoring systems are significant issues [11-13]. In 2012, Ma et al. proposed
a simple, but effective security solution for ECG signals based on an ECG compression algorithm [21].
Regarding security and privacy challenges in mobile healthcare, Lu proposed an efficient user-centric
privacy access scheme based on attribute-based access control and a novel privacy-preserving scalar
product computation [22]. This scheme employs a body sensor node that can monitor various types
of health information, and it has sufficient resources to apply a widely-employed symmetric encryption
scheme such as AES. On the other hand, in this work, we focus on a body sensing device that only
monitors an ECG, and thus, a smaller sensing device can be employed, which is more comfortable
for patients. Because patients wear the sensing device for the entire day, it is an advantage to use
a smaller device. Regarding this aspect, the scheme described above based on a symmetric key
and hash functions requires more circuits and larger devices to handle the required cryptographic
functions. Therefore, it remains a challenge to design a secure and privacy-preserving scheme for
resource-constrained remote healthcare monitoring systems that utilize body sensors of a reduced size.

More recently, there have been attempts to deal with the use of ECG for identity recognition
and biometric authentication [23,24]. For instance, Peter et al. [23] described the design and
implementation steps required to realize an ECG-based authentication system in body area sensor
networks and utilized ECG features for this purpose. Tan et al. [24] focused rather on enhancing
the effectiveness and robustness of a biometric recognition system using a combination of random
forest and wavelet distance measure classifiers. The ECG application investigated in this study
is slightly different and has different design objectives. It is more oriented towards the secure
transmission of ECG data to remote servers for analysis and to the application of machine learning to
arrhythmia recognition. Enhancing the extent to which arrhythmia can be accurately detected is one
of the eventual objectives of our study, and the energy is not our primary concern, because decisions
are made on a remote server. Regarding networks, we are considerably interested in secure delivery
over wide-area networks, rather than data transmission over body-area networks.

3. System Models, Threat Models and Security Objectives

This section describes the system models, threat models and security objectives of our system.

3.1. System Model

We are particularly interested in recording and accumulating ECG data for each patient over a long
period of time, performing supervised learning based on the key ECG features and intelligent heartbeat
classification for early and automatic detection of arrhythmia (we used a classifier based on a decision
tree, which is constructed using the C4.5 learning algorithm). The crucial design consideration is the
level of accuracy with which arrhythmia can be recognized. To achieve the desired accuracy; it is
imperative that all of the acquired ECG data should be stored in the permanent storage of the DSS (i.e.,
database) and not on mobile devices with limited storage space.

Our system comprises four components: a revocation authority, an ECG sensing entity, a decision
support server (DSS) and a monitoring station, as depicted in Figure 2. The patient is able to lead
a normal life while the sensor continuously acquires ECG data and sends them to a Bluetooth-enabled
smartphone. The smartphone relays the data to the DSS, which associates incoming data with
the records for the patient in a database and analyzes them. The heartbeat is detected using
the Pan-Tompkins algorithm, which has been shown to be an effective QRS detection scheme [25], and
then classified using a decision tree. If the system identifies congestive heart failure or an irregular
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heartbeat, then an alarm is sent over the Internet connection to a monitoring station, where medical
personnel can carry out appropriate actions.
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Figure 2. Overview of the proposed system architecture. AID, anonymous ID.

3.1.1. Revocation Authority

We assume the existence of a revocation authority (RA) to hide a user’s identity, while being
able to make it available during an emergency. The RA has three roles in the proposed scheme.
First, it manages each user’s identity using a related anonymous ID (AID). Second, it reveals a user’s
identity and contact information in an emergency, following a request by the monitoring station. Third,
it issues certification for each entity’s public key. As the RA plays an important role in user identity
management and public key confirmation, we treat the RA as a trusted third party. A government
agency could set up and manage the RA for public welfare purposes.

3.1.2. ECG Sensing Entity

The smartphone of a patient collects ECG signals every day. Figure 3 illustrates the process
of signal measurement and delivery. A sensor node is attached to the patient’s body. The signal from
the sensor node is converted to a digital value using an analog-to-digital (ADC) converter and then
sent to a microcontroller unit (MCU) through a serial peripheral interface, which is used primarily to
communicate between chips. The signal at the MCU is sent to a Bluetooth module using a universal
asynchronous receiver and transmitter. Subjects can view their ECG through a graphical interface
designed for their mobile device. Although it is possible to perform self-monitoring, the ECG signal
should also be transmitted to a DSS, because a typical layman cannot independently interpret the signal.
Accordingly, the signal on the smart device is transmitted over a wireless network.

Micro- Bluetooth
Sensor node controller
- Antenna
SPI unit UART

Figure 3. ECG signal measurement and delivery.
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3.1.3. Decision Support Server

The DSS analyzes multiple aspects of the ECG. As a convenience for medical experts, it acts
as a monitoring station for decision support by detecting and classifying the heartbeat. Heartbeat
detection in an ECG primarily depends on the QRS complex. However, QRS detection by itself is
not sufficient for heartbeat detection, which must precede the recognition of features for detecting
arrhythmia. One of the significant contributions of this study is the method of detecting the P-wave
using the QRS complex, which is in turn detected by the Pan-Tompkins algorithm [7] (consisting
of a band-pass filter, a differentiator and an integrator over a moving window). Eventually, the use
of the P-wave with the QRS complex leads to the accurate detection of heartbeats related to arrhythmia.

3.1.4. Monitoring Station

The monitoring station (MS) provides a graphical user interface. Therefore, both the patient and
the expert operators can remotely check the signal. The patient, experts and a few others who have
access rights can view the ECG, heart rate and patient profile through the web or a mobile device
application. Moreover, experts using the MS can also view and determine the signal conditions of many
patients through the web application. If an expert identifies a dangerous condition, then the MS
immediately contacts medical services.

3.2. Threat Model

In the scope of this work, we consider normal users, including servers, as potential adversaries.
Adversaries have limited capabilities, in that they can only access publicly-available information,
including information from wireless communications. This is no more information than can be
accessed by normal users of the ECG monitoring system. Thus, we consider that adversaries do not
have the ability to distinguish the originator of data eavesdropped from a wireless communication.
In the case of servers, we assume an honest-but-curious model that accurately follows a provided
protocol, but may attempt to obtain information from the communication session or stored data.
In addition, we do not consider that the adversaries can easily compromise other entities in order to
obtain the identity of users or other valuable information. Based on these conditions, the following
attacks can be carried out by adversaries.

e Eavesdropping: Essentially, we assume that an attacker has the ability of eavesdropping on
data during transmissions. Wireless communications, including Bluetooth, which is used to
transmit the sensing data, are vulnerable, because the transmitted data can be leaked by the major
function hooking scheme of the windows kernel driver [26,27]. Thus, an attacker close to the
sensing system can eavesdrop on the sensing data and the identity of a user via the weak point of
our system.

e Leaking: We treat the DSS and service provider as potential attackers. The ECG analysis results
and identity of an individual user could be leaked by the service providers or system managers
of the DSS and MS, respectively. We only focus on cases where health information is leaked along
with the identity of the relevant user.

e Tracking: After obtaining data (raw ECG data or an ECG analysis) by eavesdropping or
leaking, an attacker could attempt to determine the relation between the data and the user.
In addition, the attacker could attempt to trace a particular user by determining the relations
between pseudonyms.

The collected sensing data for detecting arrhythmias is personal information for the user, and it
could be used by an attacker in various ways. One possible scenario is selling the collected data for
profit. Pharmaceutical companies or clinics could use such data for targeted marketing. In addition,
the patient may not want his/her illness to be known to others. Such types of attacks are only possible
if the attacker could obtain both the health information and the identity of the user.
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3.3. Security Objectives
Depending on the system and threat models described earlier, we define two security objectives.

e Communication security: An attacker close to a user cannot obtain sensing signals from
the wireless communication between the MCU and the smart device, nor between the smart
device and the DSS.

e  Privacy preservation: An attacker cannot establish a link between a particular user and their
sensing signal or analysis results from the DSS. In the case of an emergency, the personal
information of a user can be disclosed. During this step, an attacker can obtain only a limited
amount of data from the server. In other words, from a collection of personal information provided
and a pseudonym, the attacker cannot distinguish the ECG information of a particular user.

A simple method of preserving user privacy is to employ a pseudonym as an anonymous identity
for communication, because this can easily hide the relation between data and a user’s identity.
However, an attacker can easily obtain the identity of a certain user through long-term observation.
Many previous schemes have mentioned the traceability of a single pseudonym [28-31]. In our
system model, the attacker can obtain contact information for the pseudonym in an emergency.
All of the patient’s information from before and after the emergency will be leaked if a single
pseudonym-based approach is applied, and thus, the security model has to deal with forward and
backward privacy. To deal with an emergency, a user’s identity should be revealed to receive medical
service. Otherwise, an inside attacker can determine the relation between the user’s identity and
the sensing signal. The forward privacy indicates that the attacker cannot determine a relation between
sensing signals after an emergency. The backward privacy indicates that the attacker cannot determine
a relation between sensing signals before the emergency.

4. System Architecture for Privacy-Preserving Intelligent ECG Monitoring

In this section, we propose an intelligent ECG monitoring system incorporating privacy
preservation. The proposed scheme comprises two stages. First, we design a secure sensing
signal encryption scheme using a conventional public key cryptosystem, to protect the sensing data
transferred from the sensor to the MS via a smart device. Second, we present an AID scheme to preserve
the user privacy during the arrhythmia recognition process. This also hides the user information from
experts at the MS, but this can be revealed in an emergency. Before describing the proposed scheme,
we present the notations used in this paper in Table 1.

Table 1. Notations.

Notation Description
k A symmetric session key
(pk, sk) Public, private key pair
Pe A pseudonym
PS A set of pseudonyms, PS = {p1,pa, ..., pe}
ap An anonymous ID
Aip A set of anonymous IDs, Ajp = {4 }1<j</
H() A cryptographic hash function
PRG(-) A pseudo-random number generator
Ex{} An encryption function using key k
Se{} A signature function using key k
KS A key stream
ES An encrypted ECG signal using key k

4.1. Setup

Each user generates and uses a key and a pseudonym for each session to ensure privacy.
One session is the duration of a pseudonym and the corresponding key. By changing these frequently,
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the system can provide stronger privacy protection. The length of each session is flexible. If a user
wants a higher level of privacy, he/she can adjust to make the duration shorter. The user also can
adjust to make the duration longer in the case that they require efficient operation.

When a user first establishes a connection between the MCU of a body sensor network and a smart
device, the MCU and the smart device share a symmetric session key {ks} to deal with the limited
storage of the MCU.

The RA, DSS, MS and the smart device of a user use a public key cryptosystem to
establish secure communications. The public/private key pairs for the entities are (pkra,skra),

(pkpss, skpss), (Pkms, skms) and (pky, skyr), respectively.

4.2. Revocation Authority

Each user has a unique ID, and the user registers this along with his/her contact information to
deal with emergencies. To generate an AID, the user encrypts their ID using a public key of the RA
and sends this to the RA. At this point, we employ a set of session pseudonyms such that each user
uses one pseudonym for only one session, to deal with forward and backward privacy in the single
pseudonym approach [31].

The RA generates a set of unique pseudonyms PS = {py, pa, ..., ps}, and computes the AID
Aip = {a;}1<j<¢ with its signature as:

aj = Epku{H(ID||pj)}fSSkRA{a/}’1 <j<t

where / is a natural number greater than one, which is defined by the user. To address the trade-off
between privacy and efficiency, where the privacy is enhanced by changing the pseudonyms more
frequently, we allow the user to define the frequency and ¢ while using the application. However,
each session should be longer than 30 minutes to ensure an accurate analysis result.

The RA stores (ID, Arp) pairs, encrypts these using the user’s public key and then sends them to
the user’s smart device. At this point, our system only uses the public key to encrypt the (ID, Ajp)
pairs. Therefore, an attacker cannot obtain the Ajp used for an actual communication between the user
and the DSS. Thus, using the user’s public key does not affect the privacy of the system. Finally,
the user sends sensing signals to the DSS, preserving privacy by using one of the AIDs. As the user
cannot receive services when an incorrect AID is used, a legal AID that is generated by the RA should
be entered. After receiving the Ajp, the user generates a set of keys {k;},<;</.

In case of an emergency, the MS sends the AID to the RA. The RA then determines the patient
information from the AID list and performs the step of connecting the patient with a doctor. Our scheme
employs the RA as an additional entity to decentralize secret information and increase the effectiveness
of privacy preservation.

4.3. ECG Sensing

To transfer the sensing signal securely, we use a stream cipher that consists of a pseudo-random
generator (PRG) and a bitwise exclusive OR operator [32]. A sensor installed on the human body
typically consists of a resource-constrained and battery-powered device. Moreover, considerable
computations result in the production of more heat, which can be problematic in terms of patient
safety. Furthermore, a body sensor requires a powerful processor and a large capacity battery to
apply cryptography to its various functions, which would increase the size of the body sensing system
and interfere with its day-to-day usage. Accordingly, we propose a simple and secure method that
minimizes the encryption overhead and protects sensing data during transfer.

The MCU of the user generates the keystream KS; using the PRG such that KS; = PRG(ks).
Then, it computes the exclusive OR operation for the ECG signal SS; as ESs = KS; @ SS;, where ES;
denotes the encrypted ECG signal. After receiving this, the smart device of the user performs the same
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operation as the MCU to decrypt the ECG signal, and the user can monitor their own ECG on selected
smart devices.

To send the sensing signal safely, the user generates a key stream KS; using the PRG such that
KS; = PRG(k;) and encrypts SS; using KS; as ES; = KS; & SS;. Subsequently, the user selects an ;
randomly and sends the received signal stream to the DSS to detect arrhythmias using the ECG.

The first time the user employs a choice of a;, they send a;, S, , {a;} and E {k;} for validity.

skra pkpss

Subsequently, the user sends the signal stream to the DSS as 4;||ES;.

For privacy reasons, we use a set of pseudonyms and a set of keys. If a user only uses a single
pseudonym or key, then the DSS can easily trace that user. When a user’s identity is revealed in
an emergency, the DSS can obtain all of the stored ECG signals and analysis results, as well as future
information for the user. Therefore, users should periodically change their pseudonyms and keys to
minimize leaked data after an emergency. After a received pseudonym is exhausted, the user requests
a novel set of pseudonyms from the RA.

The DSS detects arrhythmias using continuous ECG streaming from users, and the pseudonyms
transform that stream into a discontinuous signal. Thus, we should consider the effect of pseudonyms
on the detection process. Consequently, we describe the simulation results of our scheme in Section 6,
based on 30-minute of ECG signals, and show that we can ensure 96.63% accuracy if the pseudonym
changing period is longer than half an hour.

4.4. Analysis of an ECG for Arrhythmia Detection

The DSS should first decrypt the signal stream to analyze the ECG. To achieve this, the DSS
decrypts the key signal using its private key and obtains k;. By obtaining k;, the DSS can generate
the same KS; as the MCU and decrypt the ECG signal as SS; = KS; @ ES;. Using SS;, the DSS analyzes
the multiple aspects of the ECG.

4.4.1. Heartbeat Detection and Feature Extraction

First, heartbeats are detected using the determined QRS complexes and P-waves. Figure 4 depicts
the process of the Pan-Tompkins algorithm, and Figure 5 [25] illustrates the results of feature extraction,
with the step-by-step output of the algorithm performed on Record 200 in the MIT-BIH arrhythmia
database. Figure 5a shows the original ECG signal. The original signal is normalized by the mean value,
as shown in Figure 5b. The band-pass filter is created by combining a low-pass filter with a high-pass
filter. This reduces noise such as muscle noise, 60-Hz interference, baseline wander and T-wave
interference in the ECG signal. The differential equation for the low-pass filter is:

y(nTs) = 2y(nTs —Ts) —y(nTs — 2Ts) + x(nTs)
—x(nTs — 6T;) + x(nTs — 12Ts), 1)

where T; denotes the sampling period, x is the amplitude of the n-th ECG sample and y is the amplitude
after filtering. The difference equation for the high-pass filter is:

y(nTs) = 32x(nTs —16T)
— [y(nTs — T.) + x(nTs) — x(nTs — 327T4)]. @)
Band-pass Moving-
filter —>{ Derivative [—> Squaring [ Window
integration

Figure 4. Process of the Pan-Tompkins algorithm.
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Figure 5. Results of feature extraction with step-by-step output of the Pan-Tompkins algorithm.

The DSS sets the low-pass filter with a cutoff frequency of 11 Hz and the high-pass filter with
a cutoff frequency of 5 Hz, as shown in Figure 5c,d. After being filtered, the ECG signal is differentiated
to provide slope information using the following differential equation:

1
y(nTy) = 8—T[—x(nTS —2Ts) — 2x(nTs — Ty)
+2x(nTs + Ts) + x(nTs + 27T)], (3)

Equation (3) approximates the ideal derivative of frequencies up to 30 Hz, and Figure 5e presents
the results of the derivative. This is then squared point by point, making all of the data points
in the processed signal positive and emphasizing the higher frequencies, as shown in Figure 5f.
The differential equation for this squaring is:

y(nT) = [x(nTs)]z. (4)

Integrating the moving window provides waveform feature information, which is added to
the slope of the R-wave. This is achieved using the following differential equation:

YOT) = ST~ (N - 1))

S

+x(nTs — (Ns —2)Ts) + - - - + x(nTs)], (5)
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where Nj is the number of samples. This produces “re-echo mountaintops”, as depicted in Figure 5g,
where each of the peaks corresponds to a heartbeat. The DSS finds the QRS complex in the heartbeat,
where Q is the starting point, S is the ending point and R is the peak. The DSS then determines the
P-wave using the QRS complex. This is observed between the S point of the current heartbeat and the
Q point of the next heartbeat. The DSS divides this range into two, and uses the peak in the second
subrange as the point P. Figure 5h depicts the sample results for the QRS complex and P-wave detection
from Record 200 in the MIT-BIH arrhythmia database. The QRS complex and P-waves observed are all
used for extracting the features from the heartbeats, and descriptions of these features are provided in
Table 2.

Table 2. Description of the features used for heartbeat classification.

Feature Description

P-position Position of P point
Q-position  Position of Q point
R-position Position of R point

S-position Position of S point

P-value Value of P point (amplitude)
Q-value Value of Q point (amplitude)
R-value Value of R point (amplitude)
S-value Value of S point (amplitude)

PR-distance  Distance between P point and R point
RR-interval  Distance between consecutive R-waves
MHR Maximum heart rate

BHR Resting heart rate

The RR interval is used for assessing the ventricular rate. The DSS calculates the heart rate using
the RR interval value. This is typically calculated using one of two algorithms, either the Fox and
Haskell formula [33] or the mathematical formula described in [34]. The heart rate provides an easy
cardiovascular measurement, particularly in comparison with invasive and noninvasive procedures
used to estimate the stroke volume and cardiac output. To provide accurate health information,
we display the maximum and resting heart rates. The maximum heart rate is the highest heart rate
achieved during maximal exercise and is calculated as follows:

MHR = 220 — age. 6)

There are many methods for calculating the predicted maximum heart rate, including those
of Tanaka et al. Fox and Haskell, Robergs and Landwehr, Gulati and Lund. We use Fox and Haskell’s
formula, because this is widely adopted for the heart rate (max). The basal or resting heart rate is
measured as follows:

BHR = 60/ RRinterval, (7)

when the patients are relaxed, but awake in a naturally temperate environment, and should have
neither recently exerted themselves nor been subject to stress or a surprise. The DSS applies this basal
heart rate formula.

4.4.2. Learning Different Types of Heartbeats Using a C4.5 Algorithm

The DSS classifies the individual heartbeats in the ECG based on decision tree learning, which is
one of the most widely-employed classification techniques. Its classification accuracy is competitive
with other learning methods, and it is considerably efficient. The learned classification model
is represented as a tree, called a decision tree. We trained the decision tree based on the C4.5
algorithm from Quinlan [8], which can provide prominent results, readability, flexibility and efficiency.



Sensors 2017, 17, 1360 12 of 21

The Iterative Dichotomiser 3 (ID3) [35] algorithm is mostly used for training the decision tree.
This makes statistical-based decisions and is therefore less sensitive to errors in individual training
examples. Although the ID3 algorithm is used in various domains, it is not applied to our server,
because the discrete-valued target function domain cannot be applied to the ID3 algorithm. Therefore,
our server uses the C4.5 algorithm, which is an extension of the basic ID3 algorithm. The pseudocode
of this learning algorithm is presented in Algorithm 1.

Algorithm 1 C4.5 algorithm for arrhythmia learning.

1: function DecisionTree(D, A, T) > D: training dataset, A: feature set, T: decision tree
2 if D contains only training examples of the same heartbeat type c; € C then
3: Make T a leaf node labeled with heartbeat type c;; > C: heartbeat types
4 else if A = @ then
5 Make T a leaf node labeled with heartbeat type c;, which is the most frequent heartbeat type
in D;

else > D contains examples belonging to a mixture of heartbeat types

pi=impurityEval-1(D); > We select a single feature to partition D into subsets so that each

subset purer

N

8: for Each feature A; € A(= {A1, Ay, ..., A¢}) do
9: pi=impurityEval-2(A;, D);
10: end for
11: Select Ay € {Ay, Ay, ..., Ay} that provides the biggest impurity reduction, computed using
po = pis
12: if (po — pg) < threshold then > Ag does not significantly reduce impurity pg
13: Make T a leaf node labeled with c;, the most frequent heartbeat type in D;
14: else > Ayg is able to reduce impurity pg
15: Make T a decision node on Ag;
16: Let the possible values of Ag be v1,0y,...,0y. Partition D into m disjoint subsets
Dy, D,, ..., Dy based on the m values of Ag;
17: for Each D; € D(= {D1,Dy,...,Dn}) do
18: if D; # @ then
19: Create a branch (edge) node T; for v; as a child node of T;
20: DecisionTree(Dj, A—{Aq}, T]),
21: end if
22: end for
23: end if
24: end if

25: end function

In particular, a decision tree T simply partitions the training dataset D into disjoint subsets, so
that each subset is as pure as possible (of the same heartbeat type), by considering a feature set A.
The learning of a tree is typically performed using the divide-and-conquer strategy, which recursively
partitions the data to produce the tree. Initially, all of the examples are at the root. As the tree grows,
the examples are subdivided recursively. In this study, we assume that every feature in D takes
discrete values.

The stopping criteria of the recursion are presented in Lines 1-4 in Algorithm 1. The algorithm
stops when all of the training examples in the current data are of the same heartbeat type, or when
every feature is used along the current tree path. In tree learning, each successive recursion selects
the best feature to partition the data at the current node according to the values of the feature. The best
feature is selected based on a function that aims to minimize the impurity after the partitioning
(Lines 7-11). In other words, it maximizes the purity. The key in decision tree learning is thus
the choice of the impurity function, which is employed in Lines 7, 9 and 11 in Algorithm 1. The
recursive recall of the algorithm is given in Line 20, which takes the subset of the training examples at
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the node for further partitioning to extend the tree. This is a greedy algorithm, with no backtracking.
The process of node creation is irreversible; no modification is possible once a node is created.

The most popular impurity functions used for decision tree learning are information gain and
information gain ratio, which are used in C4.5 as two portions. Let us first discuss information gain,
which can be extended slightly to produce information gain ratio. The information gain measure is
based on the entropy function from information theory:

€| =1

Entropy(D) = — ) Pr(cj)log,Pr(c;), where Y Pr(c)) =1]. 8)
j=1 IC|

C={c1,c2,...,¢|c|} is aset of |C| heartbeat types and Pr(c;) is the probability of heartbeat type c; to
occur in the dataset D. This is given by the number of examples of heartbeat type ¢; in D divided by
the total number of examples in D.

4.4.3. Heartbeat Classification for Arrhythmia Detection Using a Decision Tree

The DSS classifies the individual heartbeats in the ECG using a decision tree learned by the C4.5
algorithm, as mentioned above, and then sends the AID and analysis results to the MS. Each of the ECG
records from the MIT-BIH arrhythmia database can contain a maximum of 11 heartbeat types,
consisting of a normal beat (N) and 10 abnormal beats: left bundle branch block beat (L), right
bundle branch block beat (R), atrial premature beat (A), aberrated atrial premature beat (a), premature
ventricular contraction beat (V), fusion of ventricular and normal beat (F), ventricular flutter wave
beat (!), atrial escape beat (e), ventricular escape beat (E) and paced beat (P). Table 3 summarizes
the 10 different types of ventricular and atrial heartbeat that we are targeting to classify for arrhythmia
detection, which are all annotated for signal quality and rhythm changes.

Table 3. Description of heartbeat types.

Arrhythmia The Rest
Type Description Type Description
L Left bundle branch block beat N Normal beat
R Right bundle branch block beat ? Beat not classified during learning
A Atrial premature beat * Change in signal quality
a Aberrated atrial premature beat | Isolated QRS-like artifact
\% Premature ventricular contraction beat + Rhythm change
F Fusion of ventricular and normal beat
! Ventricular flutter wave beat
e Atrial escape beat
E Ventricular escape beat
P Paced beat

5. Implementation

5.1. Mobile System

We designed an actual system for the simulation. As our scheme includes a real-time streaming
signal with a feature extraction and classification process performed by a server, it is important to
prove that our scheme can operate in real applications. Therefore, our implementation focused on
two concerns. First, as mentioned earlier, we implemented our scheme to show that it is applicable
to the remote monitoring setting. Second, our implementation shows that it can detect and classify
heartbeats with a high accuracy.

The system software consisted of a mobile system and a DSS. The mobile system was implemented
in Java, using the Android SDK 2.3.3 (Google, Mountain View, CA, USA). We selected the Android
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platform because it is open source. Moreover, it has a large developer community that writes
applications for it and provides code portability. We selected Apache 2.0 (Apache Software Foundation,
Wakefield, MA, USA) to host the web application, which links to MySQL. Figure 6 illustrates the
implementation of the mobile system.

} $ 0 il @ 217
Mobile ECG Monitoring System

¥ "0 b 21 ¥ +
Mobile ECG Monitoring System Mobile ECG Monitoring System

Mobile ECG M
I 8r03/3sT1Go3hmsA

AID

8r03/3sT1Go3hmsA
fwwUr0ZN105023R)
482bHRPI6OIVIBEK

Password

Number
rh15uql3ew796s5
eR0O50/9e76/9xZKt

Sex

61p/321ZNWs7w35Z
Blood Type

Height (Cm)  [irkl

Weight (Kg) 67

(a) AID list (b) Start up (¢) Monitoring
Figure 6. Results of mobile device implementation.

5.2. DSS Specification

The DSS connects with an individual database and analyzes the heartbeat based on the QRS
complexity algorithm. It displays graphical ECG waveforms through a web application. Figure 7
depicts the results from the web application. We employed several frameworks for the implementation
of the DSS, including PHP 5.1.4 (Zend Technologies Ltd. Louisville, CO, USA), pChart 2.1.3 and
MySQL 5.0.51a (Oracle Corporation, Santa Clara, CA, USA). We used PHP as the primary framework,
owing to its operational speed and cross-platform compatibility. As a PHP class, pChart is an oriented
framework designed for creating aliased charts. We used a MySQL database to maintain records for
the patients and experts affiliated with the health monitoring program.

@ httpy//166.104.246.70/sendEcg.php - Windows Internet Explorer

& () = |&] http//166.104.246.70/sendcg "Jj"

[
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Figure 7. Results of web application implementation.
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6. Evaluation and Results

In this section, we evaluate our scheme based on the three criteria of security, efficiency
and accuracy.

6.1. Security

Concerning the security and privacy of the ECG monitoring system, we adopted a PRG-based
stream cipher to protect the ECG signal, and we conceal the identity of the user from the DSS
using a pseudonym system. To verify that our system is secure, we verify that our scheme satisfies
the security objectives.

We define the indistinguishability of encryptions from the perspective of communication security,
which is the first security objective.

Definition 1 (Indistinguishability of encryptions [36]). An encryption scheme, (G, E, D), which consists
of a key generator G, encryption E and decryption D, exhibits indistinguishable encryptions. For every
polynomial-size circuit family {C,}, every positive polynomial p, all sufficiently large n and every x,y €
{0,137 Gie, |x| = ly)),

1
p(n)

The probability in these terms is taken over the internal coin tosses of the algorithms G and E.

[Pr{Ca(Egny(x)) = 1] = Pr[Ca(Eganm (y)) = 1]| <

A symmetric key encryption is semantically secure if and only if it exhibits indistinguishable
encryption [36]. Thus, we prove that our encryption scheme has indistinguishability.

Claim 1. Suppose that there exist PRGs that exhibit robustness against polynomial-size circuits, and our
scheme adopts one of these. Then, the encryption scheme based on the PRG satisfies Definition 1.

Proof. First, we formally explain our encryption scheme. The key for the security parameter # is
a uniformly-distributed 7 bit-long string, denoted by k;. To encrypt a sensing stream SS;, the encryption
algorithm uses the key k; as a seed for a PRG, denoted by g, which stretches seeds of length n into
sequences of length |SS;|. The ciphertext is obtained by a bit-by-bit exclusive OR of SS; and g(k;).
Decryption is performed in the same manner.

We show that this encryption scheme satisfies Definition 1. Intuitively, this follows from
the hypothesis that g is a PRG and the fact that SS; © U|gg,| is uniformly distributed over {0, 1}/58il,
In particular, in order to obtain a contradiction, suppose that for some polynomial-size circuit family
{Cyx}, a polynomial p and infinitely many n’s, it holds that:

|Pr[Cu(SS; @ 8(Un)) = 1] — Pr[Ca(SS; @ g(Un)) = 1]| >

p(n)’
where Uy, is uniformly distributed over {0,1}" and [SS;| = [SS;| = m = poly(n). On the other hand,
Pr[Cy(SS; ® g(Un)) = 1] = Pr[Cy(SS; ® g(Un)) = 1].
Thus, without loss of generality:

1
2-p(n)

By incorporating SS; into the circuit C,, we obtain a circuit that distinguishes U,, from g(U,),
in contradiction of our hypothesis regarding the pseudorandomness of g. [J

|Pr[Ca(SS; & g(Uy)) = 1] — Pr[Cy(SS; & Up)) =1]| >
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Therefore, the stream cipher derived from the PRG is semantically secure [36]. The only problem
regarding the security of our system is the key. If the key stored in the MCU and smart device is
leaked, then a third party could obtain the ECG signal and the relationship between the signal and
the user. To store the key securely, tamper-resistant memory can be attached to the MCU. In addition,
key leakage resulting from weaknesses in the smart device system, such as malware infections,
constitutes a security issue for the device itself. The treatment of this is beyond the scope of this study.

Next, we verify that our scheme can preserve user privacy. This privacy preservation is the second
security objective.

Definition 2 (Polynomial-time indistinguishability of pseudonym [37]). Suppose that there exist PRGs
that exhibit robustness against polynomial-size circuits. Then, a pseudonym generated using such a PRG
exhibits polynomial-time indistinguishability.

Two pseudonyms X L {Xu}peny and Y “f {Yu}nen that are uniformly distributed over {0,1}" by
the PRG are indistinguishable in polynomial time if for every probabilistic polynomial-time algorithm D, every
positive polynomial p() and all sufficiently large n’s, it holds that:

1
p(n)

Our system only provides the information required to detect arrhythmia, such as age. The AIDs
used for privacy preservation are generated by the PRG, and thus, the AIDs exhibit polynomial-time
indistinguishability according to Definition 2. Therefore, our scheme is secure against tracking
attacks, as well as data leakage resulting from the DSS. However, the DSS and MS will be able
to obtain a user’s identity from the RA when an instance of arrhythmia is detected. In this case,
they can obtain the real identity of a user and their ECG signals that are stored in the server. In terms
of privacy, changing pseudonyms is useful for minimizing the data leakage, because only the ECG
data stored under the current pseudonym will be leaked in an emergency. If an expert requires further
information regarding the user, the expert can request additional pseudonyms from the RA. In addition,
another security issue is the manipulation of ciphertexts. An attacker could manipulate the service by

|PF[D(X, 1) = 1] — Pr[D(Y,,1") = 1]| <

transferring ciphertexts in order to disrupt a smooth use of services. This problem can occur not only
under the XORing circumstance, but also under other encryption circumstances, as this is a problem
of the networks. Therefore, we do not consider this problem in this paper. Such integrity issues could
easily be addressed by periodically applying a message authentication code (MAC).

6.2. Efficiency

To evaluate the efficiency of our scheme, we simulated it against other well-known encryption
schemes. We implemented our experiment on an Intel (R) core (TM) 2 Quad processor, running at
2.66 GHz, 4.00 GB of RAM and an HDD Serial ATA 3.0 Gbit/s drive with an 8 MB buffer. All algorithms
are implemented using Python 2.7.9 on Linux Ubuntu 12.04 LTS 32 bit (Canonical Ltd., London, UK),
and we used the PyCrypto library version 2.6.1 for the ciphers (AES, DES and RC4). We used a 128-bit
key with cipher feedback (CFB) mode for AES and a 64-bit key with CFB mode for DES. For the PRG,
we used “os.urandom()”, which is the basic library of Python that is suitable for cryptographic usage.
We measured the encryption and decryption time for 300 s of an ECG signal. The volume of this ECG
signal is approximately 4 Mbyte. However, this could vary in accordance with the attached sensors.
All experimental results represent the average over 10 trials.

Table 4 shows the comparison of the encryption and decryption times between ciphers. The results
show that our scheme is considerably efficient compared with most of the other cryptography schemes,
although RC4, which consists of a key scheduling algorithm and bit-wise exclusive OR, exhibits
a similar efficiency to our scheme. However, RC4 is known to be insecure, owing to a weakness
of the key scheduling algorithm [38]. Therefore, it is better to use a cryptographic PRG as a key
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expanding algorithm. In this case, a developer can select a PRG algorithm based on the condition
of an MCU.

Table 4. Simulation results (ms).

AES DES RC4 Ours

Encryption 1220.54 1366.30 47.09 46.80
Decryption 122232 1362.98 48.86 45.64

In addition, we only used RSA with a 1024-bit key to encrypt the set of pseudonyms for mobile
devices, not for body sensors. This requires 1.416 ms of computational overhead for encryption and
17.97 ms for decryption. As the pseudonym communication is rarely used, we can say that this
overhead is reasonable for privacy preservation.

6.3. Accuracy of Arrhythmia Classification

6.3.1. ECG data

To evaluate our classifier in terms of accuracy, we used the MIT-BIH arrhythmia database [14],
which contains 48 30-minute excerpts of two-channel ambulatory ECG recordings, obtained from
47 patients studied at the BIH Arrhythmia Laboratory between 1975 and 1979. Twenty-three
recordings were selected at random from a set of 4000 24-hour ambulatory ECG recordings, collected
from a mixed population of inpatients (approximately 60%) and outpatients (approximately 40%)
at Boston’s Beth Israel Hospital. The remaining 25 recordings were selected from the same set,
to include less common, but clinically-significant arrhythmias (such as complex ventricular, junctional
and supraventricular arrhythmias and conduction abnormalities) that would not be represented well
in a small random sample.

The recordings were digitized at 360 samples per second per channel, with 11 bit resolution, over
a 10-mV range. Two or more cardiologists independently annotated each record, and disagreements
were resolved to obtain computer-readable reference annotations for each beat (approximately 110,000
annotations in all) included in the database. We considered nine records from the database, numbered
as 106, 107, 109, 115, 122, 207, 212, 221 and 233. Table 5 provides a statistical overview of these heartbeat
types for the nine records. The column headed @ contains totals for the following events: beat not
classified during learning (?), change in signal quality (*), isolated QRS-like artifact (1) and rhythm
change (+).

Table 5. Characteristics of each record selected from the MIT-BIH arrhythmia database.

Record Number N L R A a A F ! e E P @
106 1507 - - - - 520 - - - - - 71
107 - - - - - 59 - - - - 2078 3
109 - 2492 - - - 38 2 - - - - 3
115 1953 - - - - - - - - - - 9
122 2476 - - - - - - - - - - 3
207 - 1457 86 107 - 105 - 472 - 105 - 53
212 923 - 1825 - - - - - - - - 15
221 2031 - - - - 3% - - - - - 35

223 2029 - - 72 1 473 14 - 16 - - 38
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6.3.2. Evaluation

We used the three standard metrics of sensitivity (Se.), specificity (Sp.) and accuracy (Acc.) to
quantify the server performance. Sensitivity refers to the ability of a test to correctly identify the results
of a classified heartbeat with a positive result and is defined as follows:

Se. = Nrp/(Nrp + Npn), ©)

where Nrp represents the number of true positives and Ny represents the number of false negatives.
Specificity refers to the ability of a test to correctly identify the results of a classified type without
a positive result and is given by:

Sp. = Nrn/(Nrn + Nep), (10)

where N1y represents the number of true negatives and Nrp represents the number of false positives.
Accuracy refers to the ability of a test to correctly identify the results of a classified type both with and
without positive results. It reflects both the sensitivity and specificity and is expressed as:

Acc. = (Ntp + N7n)/(N1p + NrN + Npn + Nip). (11)

We evaluated the performance of the server in two aspects for the analysis of the heartbeat.
The first aspect of the evaluation related to heartbeat detection, which affects the classification
performance. The 11 types of heartbeat listed in Table 3 were considered for evaluation, and Table 6
illustrates the performance for each of the nine records. For the nine records we considered from
the MIT-BIH arrhythmia database, the server achieved an overall accuracy of 95.74%, with a sensitivity
of 97.21% and a specificity of 94.26%. It is noted that Record 107 exhibits many abnormal
beats, with an unusually large, typically peaked P-wave, which resulted in a particularly low rate
of specificity of 50.05%. This result could be enhanced by a deeper analysis of the P-wave. However,
this is beyond the scope of the present study.

The second aspect of the evaluation concerned heartbeat classification for arrhythmia detection.
We used a 10-fold cross-validation method to test the classification [39]. The classification performance
is summarized in Table 6. The server achieved an overall accuracy of 96.63%, with a sensitivity
of 95.44% and a specificity of 97.81%. If we consider an ECG recorded for a longer period of time, the
analysis for the diagnosis could be more accurate.

Table 6. Results of heartbeat detection and classification for arrhythmia recognition (sensitivity (Se.),
specificity (Sp.) and accuracy (Acc.)).

Heartbeat Detection Arrhythmia Detection
Rec. Se. (%) Sp. (%) Acc. (%) | Se. (%) Sp. (%) Acc. (%)
106 93.99 99.80 96.90 95.80 98.00 96.90
107 99.86 50.05 74.96 93.00 98.30 95.65
109 99.64 99.84 99.74 93.30 94.40 93.85
115 99.59 100.00 99.80 97.80 100.00 98.90
122 99.96 100.00 99.98 99.90 100.00 99.95
207 86.83 99.90 93.37 92.60 98.80 95.70
212 99.53 99.85 99.69 94.20 97.80 96.00
221 98.21 99.67 98.94 94.20 95.70 94.95
233 97.30 99.22 98.26 98.20 97.30 97.75
Average 97.21 94.26 95.74 95.44 97.81 96.63

7. Conclusions

In this paper, we have proposed a privacy-preserving intelligent ECG monitoring system for
early arrhythmia detection and described its implementation. The major steps required for accurate
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recognition of arrhythmia are (1) the accurate detection of heartbeats and (2) defining the significant
features of those heartbeats and extracting them to recognize various types of heartbeats, which
involves leveraging the effectiveness of a machine learning algorithm and employing it for decision
making. The steps we invoked to achieve the required accuracy are as follows. First, we proposed
and applied a scheme for P-wave detection, along with the well-known Pan-Tompkins algorithm,
to enhance the accuracy of heartbeat detection at the first step. Second, this enhanced accuracy
in the heartbeat detection naturally has a positive influence on the subsequent feature extraction
process. Third, we introduced a classifier based on a decision tree and trained it using a C4.5
algorithm, which resulted in several enhancements to the former ID3 algorithm, by considering
various combinations of ECG features. We rigorously investigated the effects of these combinations
on the accuracy of the decision making using a decision tree and determined one of the feature sets
featuring the best compromises by using a brute force search in the third step. As a result, we achieved
an average accuracy of 96.63% in recognizing arrhythmia for nine example records from the MIT-BIH
arrhythmia database that we considered for our experiments, which is superior to the results (95.8%)
achieved in our preliminary studies.

In addition, we designed a simple and effective sensing data scrambling scheme to ensure
the security of streamed sensing data and adopted AIDs to preserve user privacy. Using our proposed
system, medical experts can capture the intermittent ECG waveforms that may reveal or lead to a more
serious problem. An accurate diagnosis of arrhythmia based on a heartbeat detection and classification
algorithm can be achieved in real time, which is beneficial for remote medical care. This system
represents a low-cost solution, which could be affordable across medical environments.

It is clear that no scheme of this sort is fully proven until it has been tried in practice. However,
the implementation and testing of medical systems is especially fraught with difficulties, from patient
confidentiality to legal concerns, and cannot reasonably be undertaken until there is as much confidence
as possible in the techniques and associated parameters being deployed. It is this confidence that we
aim to build in this paper, through simulations based on offline data.
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