
sensors

Article

Indoor Autonomous Control of a Two-Wheeled
Inverted Pendulum Vehicle Using Ultra Wide
Band Technology

Dunzhu Xia *, Yanhong Yao and Limei Cheng

Key Laboratory of Micro-inertial Instrument and Advanced Navigation Technology, Ministry of Education,
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China;
220142708@seu.edu.cn (Y.Y.); 220152675@seu.edu.cn (L.C.)
* Correspondence: xiadz_1999@163.com; Tel./Fax: +86-25-8379-3552

Academic Editor: Stefano Mariani
Received: 6 March 2017; Accepted: 10 May 2017; Published: 15 June 2017

Abstract: In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted
pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement
unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of
the TWIP’s position. We propose a dual-loop control method to realize the simultaneous balance and
trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control
(2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain
the control laws, followed by several simulations to verify its robustness. The outer loop controller is
designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a
trifolium and a hexagon, have been designed to prove the adaptability of the control combinations.
Six different combinations of inner and outer loop control algorithms have been compared, and
the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation
results demonstrate its tracking performance and thus verify the validity of the proposed control
methods. Trajectory tracking experiments in a real indoor environment have been performed using
our experimental vehicle to further validate the feasibility of the proposed algorithm in practice.

Keywords: two-wheeled vehicle; indoor; UWB; nonlinear; second-order sliding mode control
(2-SMC); robust adaptive

1. Introduction

Two-wheeled inverted pendulum (TWIP) vehicles are a popular test platform to validate the
performance of advanced control algorithms, such as the control capacity for nonlinear, instability and
rapidity situations. The motion of a TWIP vehicle is governed by its under-actuated configuration,
which makes it difficult to control by simply applying traditional robotics approaches [1]. In recent
years, control design for the stability and robustness of TWIP vehicles has attracted great research
interest. In [2], a neural network control method was proposed for an under-actuated wheeled inverted
pendulum model with small overshoot and quick response to changes in the desired trajectories.
In [3], adaptive backstepping control for a two-wheeled autonomous robot around an operating point
was investigated. In [4], an adaptation concept was brought into neural network control, which
demonstrated the yaw angle and pitch angle convergence time was less than 0.4 s with an initial value
of 0.3 rad.

The sliding mode control (SMC) method was first proposed by Soviet scholars in the 1960s.
The SMC method has some advantages such as robustness to parameter uncertainty, insensitivity to
bounded disturbances, fast dynamic response, a remarkable computational simplicity with respect
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to other robust control approaches, and easy implementation of the controller [5,6]. However,
the chattering caused by the discontinuous sliding controller more or less limits its application in
practice [7].

The high-order sliding mode control (HOSMC) method is the further improvement of the
traditional sliding mode control, yielding less chattering and better convergence accuracy while
preserving its robustness properties [8,9]. Consequently, HOSMC methods have been actively
investigated in recent years for chattering attenuation and robust control of unknown uncertainties
and perturbations, respectively. Levant put forward the 2-SMC method based on a differentiation and
output-feedback control system in [10], and there are many different 2-SMC algorithms that have been
presented such as the ‘twisting’ and ‘super-twisting’ ones put forward by Levant, the ‘sub-optimal’
and ‘global’ ones developed by Bartolini and so on.

The objective of this paper is to sustain the self-balance and trajectory tracking of a TWIP vehicle
in a GPS denied environment. Nakano et al. have proposed an estimation/control structure in a
two-wheeled vehicle where both a camera and a target object are attached to the vehicle [11]. The major
drawback of the approach based on camera is that it may produce a heavy computational load and
lead to a low real-time performance. Accuracy and precision are the two main performance parameters
of the indoor localization system. Portable UWB radio ranging technology was introduced in [12,13].
The UWB local positioning system can be used as a standalone system or as a complementary system
where the GPS is unavailable or denied, can meet high real-time requirements and even penetrate
through objects (such as walls, obstacles, bodies, etc.) to a certain extent.

In this paper, a prototype TWIP vehicle (shown in Figure 1) was built in our lab. The TWIP
vehicle consists of two independent drive wheels on the same axle, two rotary encoders, a car body
and other auxiliary devices such as a sensor (MPU-6050) which has an embedded 3-axis MEMS
gyroscope, a 3-axis MEMS accelerometer (MEMS sensors have the advantages of miniaturization and
high-performance [14]) and a portable I-UWB locating tag.
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Figure 1. The experimental two-wheeled inverted pendulum vehicle. 

The control system configuration of our testbed is illustrated in Figure 2. The attitude data of 
the TWIP vehicle is measured via the onboard IMU, the location information of the TWIP vehicle is 
measured by an onboard UWB receiver and used to control the motion of the vehicle. In Figure 2, 
A0, A1, A2 and A3 are four UWB positioning technology anchors, T0 is a UWB receiver used as an 
onboard tag. The TWIP vehicle can communicate with both cellphones and laptops via Bluetooth 
devices. 

This paper is organized as follows: in Section 2, the nonlinear dynamic model of the TWIP 
vehicle is established using a Lagrange energy equation. In Section 3, inner and outer loop 
controllers are designed, and necessary stability considerations are discussed. Then the feasibility 
and effectiveness of the different control methods are compared by MATLAB simulation in Section 
4, followed by the conclusions in Section 5. The configuration of an experimental set-up of the TWIP 
vehicle and the results are given in Section 6. 
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Figure 1. The experimental two-wheeled inverted pendulum vehicle.

The control system configuration of our testbed is illustrated in Figure 2. The attitude data of
the TWIP vehicle is measured via the onboard IMU, the location information of the TWIP vehicle is
measured by an onboard UWB receiver and used to control the motion of the vehicle. In Figure 2, A0,
A1, A2 and A3 are four UWB positioning technology anchors, T0 is a UWB receiver used as an onboard
tag. The TWIP vehicle can communicate with both cellphones and laptops via Bluetooth devices.

This paper is organized as follows: in Section 2, the nonlinear dynamic model of the TWIP vehicle
is established using a Lagrange energy equation. In Section 3, inner and outer loop controllers are
designed, and necessary stability considerations are discussed. Then the feasibility and effectiveness
of the different control methods are compared by MATLAB simulation in Section 4, followed by the
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conclusions in Section 5. The configuration of an experimental set-up of the TWIP vehicle and the
results are given in Section 6.Sensors 2017, 17, 1401  3 of 29 
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Figure 2. System architecture. 

2. Related Work 

A second-order adaptive sliding mode control method based on STW algorithm was proposed 
for the control of an under-actuated system in [15], which performed better effectiveness and 
reduced chattering compared with conventional SMC and ordinary second-order SMC. However, 
the adaptive sliding mode control method is not very effective for a controller of multi-control 
parameters. In [16], the structure of the inner/outer loop control system has been used in 
simultaneous balancing and trajectory tracking control for two-wheeled inverted pendulum 
vehicles, and two trajectories, including a circle and a trifolium have been designed for tracking. For 
the purpose of controlling the TWIP vehicle, an inner/outer loop control structure and a 
second-order STW algorithm have been also used in this paper. We proposed a different adaptive 
control method in this paper to keep convergence of sliding mode surface under unknown 
disturbances. What’s more, three typical trajectories, including a circle, a trifolium and a hexagon, 
have been designed to prove the adaptability of our controller. 

3. System Description and Modeling 

The motion of the TWIP vehicle is described under an inertial coordinate system. The 
simplified schematic diagram and the two-dimensional plan view of the vehicle are shown in 
Figure 3.  





l

r

lx

rx

 

x

y



(a) (b)

Figure 3. The fixed coordinate system of the vehicle: (a) A simplified schematic diagram; (b) Motion 
of the vehicle on the x-y plane. 

  

Figure 2. System architecture.

2. Related Work

A second-order adaptive sliding mode control method based on STW algorithm was proposed
for the control of an under-actuated system in [15], which performed better effectiveness and reduced
chattering compared with conventional SMC and ordinary second-order SMC. However, the adaptive
sliding mode control method is not very effective for a controller of multi-control parameters. In [16],
the structure of the inner/outer loop control system has been used in simultaneous balancing and
trajectory tracking control for two-wheeled inverted pendulum vehicles, and two trajectories, including
a circle and a trifolium have been designed for tracking. For the purpose of controlling the TWIP
vehicle, an inner/outer loop control structure and a second-order STW algorithm have been also used
in this paper. We proposed a different adaptive control method in this paper to keep convergence of
sliding mode surface under unknown disturbances. What’s more, three typical trajectories, including
a circle, a trifolium and a hexagon, have been designed to prove the adaptability of our controller.

3. System Description and Modeling

The motion of the TWIP vehicle is described under an inertial coordinate system. The simplified
schematic diagram and the two-dimensional plan view of the vehicle are shown in Figure 3.
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The origin O of the fixed coordinate system OXY is the center of the axle, the positive direction
of OX-axis is the forward motion of TWIP, OY-axis is coincident with the axle, the positive direction
of OZ-axis is vertically upward. The parameters and variables of the system are shown in Table 1.
During the motion process of our two-wheeled vehicle, since there are only two points contacting
with the ground, and the body has a motion similar to inverted pendulum motion, we can make a few
assumptions in order to build dynamic model for the system:

(1) There exists sufficient friction between the wheels and the ground, which makes the system subject
to non-holonomic constraints, i.e., the assumption of no sliding and skidding holds throughout.

(2) Take the TWIP vehicle as a perfectly rigid body, the distance from the center of mass of the body
to the axle is l;

(3) The influence caused by the dynamic characteristics of DC motors is ignored;
(4) Ignore the effects caused by friction and damping force of bearings and revolute pairs to the

motion state of the system.

Table 1. The parameters and variables of two-wheeled inverted pendulum vehicle system.

Parameter and Variable Name Symbol Value (Unit)

Acceleration due to gravity g 9.8 (m/s2)
Mass of the wheel MW 0.03 (kg)
Mass of the body m 2 (kg)

Radius of the wheel r 0.04 (m)
Length between the wheel axle and the center of gravity of the body l 0.1 (m)

Rotational inertia of the wheel JW 3.17 × 10−5 (kg·m2)
Rotational inertia of the body about the Y-axis Jθ 0.003 (kg·m2)
Rotational inertia of the body about the Z-axis Jδ 0.002 (kg·m2)

Distance between the two wheels along the axle center D 0.17 (m)
Tilt angle of the vehicle body θ (rad)

The angle wheels turned θr, θl (rad)
Heading angle of the vehicle δ (rad)

Output torques of left and right wheel DC motors τr, τl (Nm)
Longitudinal displacement along the movement direction XV (m)

Longitudinal velocity of the vehicle v (m/s)
Rotational velocity of the vehicle ω (rad/s)

In the paper, we adopt the Lagrange energy equation to build the kinematic model of the
two-wheeled car. In order to eliminate the effect caused by the non-holonomic constraint, we choose
q = [θl θr θ]

T as the generalized coordinates system, then the kinematic model of the two-wheeled
car can be written in the following form:

M(q)
..
q + V

(
q,

.
q
) .
q + G(q) = B(q)u (1)

where, M(q) ∈ R3×3 denotes the inertia matrix, V
(
q,

.
q
)
∈ R3×3 is the vector of coriolis and

centrifugal forces G(q) ∈ R3 is the vector of gravitational forces, B(q) ∈ R3×2 denotes the matrix of
control coefficients, u ∈ R2 is the vector of control inputs.

Defining a new velocity vector
.
ξ = [

.
δ

.
xv]

T
= [ω v]T, then the relationship between a new

coordinate vector
.
z = [

.
ξ

.
θ]

T
= [ω v

.
θ]

T
and the generalized coordinate vector q = [θl θr θ]

T can be
written as follows:

.
q = H

.
z =

 − D
2r

1
r 0

D
2r

1
r 0

0 0 1

 .
z (2)
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Then the dynamics of the system can be formulated as follows:

M(z)
.
z + V

(
z,

.
z
)
z + G(z) = B(z)u (3)

where:

M(z) =

 α + ml2 sin2 θ 0 0
0 Qr mlr cos θ

0 mlr cos θ P

,V
(
z,

.
z
)
=

 −ml2 sin 2θ
.
θ 0 0

0 0 −mlr sin θ
.
θ

− 1
2 ml2 sin 2θ

.
δ 0 0

,

G(z) =

 0
0

−mgl sin θ

, B(z) =

 −D
r

D
r

r
2

r
2

−1 −1

, u =

[
τl
τr

]
,

P = ml2 + Jθ , Q = 2Mw +
2Jw

r2 + m,

α = D2
(

2Mw +
Jw

r2

)
+ Jδ, β = PQ−m2l2 cos2 θ

In order to simplify the controller design, the state-space equations can be derived from (3):

.
ω = f1(x) + g1(x)τω (4)

.
v = f2(x) + g2(x)τv (5)
..
θ = f3(x) + g3(x)τv (6)

where:

f1(x) = −
ml2 sin 2θ

.
θ

.
δ

α + ml2 sin2 θ
, g1(x) =

D
r
(
α + ml2 sin2 θ

) ,

f2(x) =
1

2β
(−m2gl2 sin 2θ −m2l3 sin 2θ cos θ

.
δ

2
+ 2Pml sin θ

.
θ

2
), g2(x) =

P + mlr cos θ

βr
,

f3(x) =
1

2β
(−m2l2 sin 2θ

.
θ

2
+ Qml2 sin 2θ

.
δ

2
+ 2Qmgl sin θ), g3(x) = −

Qr + ml cos θ

βr
,

x =
(

δ ω xv v θ
.
θ
)T

is known as the system state. u = (τω τv)
T is the system control input, and

τω = τr − τl , τv = τr + τl .

4. Design of the Controller

An inner/outer loop controller needs to be designed to make the vehicle achieve trajectory
tracking on the ground while maintaining its own balance. The structure of the designed inner/outer
loop control system is shown in Figure 4. The inner loop control consists of two control subsystems:
the rotational velocity control subsystem and the longitudinal velocity and balance control subsystem.
vd, ωv are defined as the desired value of the longitudinal velocity v and the rotational velocity
ω respectively. And the tracking errors of v and ω are introduced as ev = v− vd, eω = ω−ωd.
A reference trajectory is known in prior as xr(t), yr(t), δr(t), and the control laws of vd and ωd are
given by the outer loop controller.
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4.1. Inner Loop Controller Design

Considering the desired inclination angle θd = 0, a set of error state-space equations can be
obtained as follows:

.
eω = f1(x) + g1(x)τω −

.
ωd (7)

.
ev = f2(x) + g2(x)τv −

.
vd (8)

..
θ = f3(x) + g3(x)τv (9)

4.1.1. The Rotational Velocity Control

It is well known that the classical discontinuous sliding mode control provides finite-time
convergence for a system of relative degree one. As the rotational velocity control subsystem (7)
has a relative degree equal to two, a sliding surface is needed when using STW algorithm.

The tracking error of δ is introduced as eδ = δr − δ. And the equilibrium point of system (7) can
be defined as Xe1 = [eδ eω ]

T = [0 0]T . Defining a traditional linear sliding surface s1 as:

s1 = c1eδ + eω (10)

where, c1 is a positive constant. Differentiating (10) with respect to time, it follows that:

.
s1 = c1

.
eδ +

.
eω = c1eω + f1(x) + g1(x)τω −

.
ωd = ϕ1(x) + g1(x)τω (11)

where, ϕ1(x) = c1eω + f1(x)− .
ωd.

The continuous control law τw is constituted by two terms. The first is defined by means of
its discontinuous time derivative, while the other is a continuous function of the available sliding
surface s1.

Assume that there exists a bounded time-variable disturbance signal d1(t) in the system (7), which
satisfies

∣∣∣ .
d1(t)

∣∣∣ ≤ L, L is a Lipschitz constant. According to the STW algorithm [10], the control law of
τω can be obtained as follows:

τω = (−ϕ1(x)− k1|s1|
1
2 sign(s1) + v1)/g1(x)

.
v1 = −k2sign(s1) +

.
d1

(12)

Theorem 1. According to the convergent method proposed in [17], when k1 > 2, k2 >
k3

1+(4k1−8)L2

k1(4k1−8) , the states

of system (7) can reach s1 =
.
s1 = 0 in finite time, and converge to origin.
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4.1.2. The Longitudinal Velocity and Balance Control

We define xvd, vd as the expected values of longitudinal displacement xv and longitudinal velocity
v respectively and consider the tracking errors of xvd, vd as exv = xv− xvd, ev = v− vd. The equilibrium

point of systems (8) and (9) can be defined as Xe2 = [exv ev θ
.
θ]

T
= [0 0 0 0]T . The control law of τv is

designed to make the vehicle accomplish the ultimate objective, that is, when t→ ∞, limθ = 0 as well
as limv = vd.

Due to its ingenious design, simple algorithm structure and good control effect, hierarchical sliding
mode control theory is widely used in complex under-actuated systems control [18–20]. Therefore, we
adopt the hierarchical sliding mode surface to design the control law of τv.

In order to design control strategy, two traditional linear sliding mode surfaces with known
positive constants c2 and c3 are defined as:{

s2 = c2exv + ev

s3 = c3θ +
.
θ

(13)

Differentiating s2 and s3 with respect to time, we can obtain:{ .
s2 = c2ev +

.
ev

.
s3 = c3

.
θ +

..
θ

(14)

A control law based on piecewise linear hierarchical sliding mode control method needs to
be changed occasionally, bringing in severe oscillation during the control process. In view of the
decoupled sliding-mode control method introduced in [21], a hierarchical sliding mode control method
based on model analysis is proposed.

The first layer sliding mode surface s2 and s3 is used to construct the second layer sliding mode
surface S. Define the second layer sliding mode surface S as:

S = αs2 + s3 with α > 0 (15)

Differentiating (15) with respect to time and then:

.
S = αc2ev + c3

.
θ + α f2(x) + f3(x)− .

vd + (αg2(x) + g3(x))τv

= ϕ2(x) + ψ(x)τv
(16)

where ϕ2(x) = αc2ev + c3
.
θ + α f2(x) + f3(x)− .

vd and ψ(x) = αg2(x) + g3(x) are Lipschitz continuous.
Assume that there exists a bounded time-variable disturbance signal d2(t) in the

systems (8) and (9), which satisfies
∣∣∣ .
d2(t)

∣∣∣ ≤ L2, L2 is a Lipschitz constant. Similar to the analysis
of rotational angle control, the 2-SMC control law for the longitudinal velocity and balance control
subsystems (8) and (9) can be deduced as follows:

τv = (−ϕ2(x)− k3|S|
1
2 sign(S) + v2)/ψ(x)

.
v2 = −k4sign(S) +

.
d2

(17)

where, S is the sliding mode surface of the control subsystem.

Theorem 2. According to Theorem 1, when k3 > 2, k4 >
k3

3+(4k3−8)L2
2

k3(4k3−8) , the states of subsystems (8) and (9)

can reach S =
.
S = 0 and converge to origin in finite time with the control law (17).

Proof. The process to prove the subsystems (8) and (9) can reach S =
.
S = 0 is similar to Theorem

1’s, so for simplicity, the proof is omitted here. Suppose that s2 > 0 at a moment before the system
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return back to the equilibrium position. A negative control input τv is given to push s2 to zero, that
is,

.
s2 < 0. At this moment, under the same negative control input, s3 < 0 and

.
s3 > 0. Since α is

chosen as a positive constant, when S converges to 0, s2 and s3 can always satisfy the condition that
s2 > 0, s3 < 0, and gradually converge to 0 and vice versa. It can be concluded that subsystems (8)
and (9) will converge to exv = ev = θ =

.
θ = 0 in exponential form. �

4.1.3. Robust Adaptive 2-SMC (2-RASMC)

Considering the rotational velocity control subsystem (7), when f1(x), g1(x) are unknown
functions, defining a new coordinate vector z = s1, the system model can be written as the
following form:

.
z = f1(x)− .

ωd + c1eω + g1(x)τω = ϕ(x) + g1(x)τω

= ϕ(x) + (g1(x)− 1)τω + τω = ψ(x) + τω
(18)

where g1(x) is assumed strict positivity without loss of generality, ϕ(x) = f 1(x) − .
ωd + c1eω and

g1(x) are bounded unknown functions, and satisfying the following inequalities with positive constants
C ≥ 0, Γm > 0, ΓM > 0:

|ϕ(x)| ≤ C (19)

0 < Γm < g1(x) < ΓM (20)

As the system model contains uncertain part, the control input τw can be designed as two parts:

τω = τωnom + τωcom (21)

where, τwnom is the nominal part of τw, and τwcom is the compensation control part of τw.
The nominal system model (ψ(x) = 0) can be obtained as:

.
z = τwnom (22)

According to Theorem 2, the control system (22) is asymptotically stable and reach z =
.
z = 0

within finite time with the following control law of τwnom (23):{
τwnom = −k1|z|

1
2 sign(z) + v3

.
v3 = −k2sign(z)

k1 > 0, k2 > 0, (23)

In view of an adaptive sliding mode control method introduced in [19], an adaptive sliding mode
control law of τwcom is proposed, with which the system perturbation can be compensated. Firstly, an
auxiliary variable zaux ∈ R is introduced and satisfying

.
zaux = −τωcom, then define a sliding mode

variable σ(z) ∈ R as:
σ(z) = z + zaux (24)

Differentiating (24) with respect to time, it is easily obtained that:

.
σ(z) =

.
z +

.
zaux = ϕ(x) + g1(x)τω − τωnom

= ϕ(x) + (g1(x)− 1)τω + τωnom = a(x, τω) + τωcom
(25)

where, a(x, τ ω) = ϕ(x) + (g 1(x) − 1)τω is the total uncertainty of the system, and satisfying
|a(x, τω)| < r1, where r1 is an unknown positive constant. Let us consider r̂1 as the estimation of
true value r1, and consequently an estimated error can be governed by r̃1 = r̂1 − r1. In addition,
considering the fact that a(x, τ ω) is exhibiting slow time-varying behaviors, then, it holds that

.
r̃1 ≈ r̂1.
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The compensation control law for the subsystem can be given by:

τωcom = −r̂1sgn(σ) (26)

with the adaptive law as follows:
.
r̂1 =

1
γ1
|σ|, γ1 > 0 (27)

Theorem 3. Consider the given dynamic sliding mode (24) with the nominal controller (23) and the
compensation controller(26), the sliding mode variable σ = 0 can be guaranteed in finite time.

Proof. Consider a positive Lyapunov candidate as:

V =
1
2

σ2 +
1
2

γ1r̃2
1 (28)

By differentiating V with respect to time and considering
.
r̃1 ≈

.
r̂1, it holds that:

.
V = σ

.
σ + γ1(r̂1 − r1)

.
r̂1 = σ(a(x, τw)− r̂1sgn(σ)) + (r̂1 − r1)|σ|

≤ −r1|σ|+ |σ||a(x, τw)| ≤ −|σ|(r1 − |a(x, τw)|)
(29)

It can be seen that
.

V ≤ 0 for ∀t ∈ (0,+∞). By LaSalle's invariance principle [22,23] and the
Lyapunov stability criterion [24], the theorem is proved.

Similar to the above analysis, we can deduce the robust adaptive 2-SMC control law for the
longitudinal velocity and balance control subsystems (8) and (9) as follows:

τv = τvnom + τvcom (30)
τvnom = −k3|S|

1
2 sign(S) + v4

.
v4 = −k4sign(S)
σ2 = S + zaux2 with

.
zaux2 = −τvnom

τvcom = −r̂2sgn(σ2) with
.
r̂2 = 1

γ2
|σ2|

, k3 > 0, k4 > 0, γ2 > 0 (31)

where, S is the sliding mode surface (15) of the control subsystem. �

Theorem 4. According to Theorems 2 and 3, when k3 > 0, k4 > 0, γ2 > 0, the state of systems (8) and (9)
can reach S =

.
S = 0 with the control law (31), and converge to origin in finite time. The proof process is

similar with above and is omitted here.

4.1.4. Comparative Simulations for the Robust Performance

In this section, a comparative simulation has been done to verify the robustness of the modified
2-RASMC control method. Since the 2-RASMC controller is based on the 2-SMC controller, they share
the same control parameters, except two additional parameters γ1 and γ2. We have done a lot of
simulations to find the appropriate control parameters of the designed controller.

Set ωd = 0.5 rad/s, vd = 0.5 m/s as the control target for the 2-RASMC controller. Then the

initial state variables are supposed as [δ(0) ω(0) xv(0) v(0) θ(0)
.
θ(0)]

T
= [0 0 0 0 0.1 0]T .

Figure 5 depicts the control performance of our controller for tracking the descried ωd and vd
with six different sets of designed parameters as Table 2 shows. Figure 5 shows the control performance
of case1~case6 without system uncertainty. It can be concluded that the controllers have the same
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control performance when the control parameters of the nominal controllers are the same. It can be
easily obtained that case 1 and case 2 have the best control performance.
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Figure 5. Comparison results of the controller with different control parameters. (a) v tracking error; 
(b) ω tracking error; (c) Tilt angle of the TWIP vehicle; (d) The longitudinal control input v  and 
the rotational control input  . 
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Figure 5. Comparison results of the controller with different control parameters. (a) v tracking error;
(b)ω tracking error; (c) Tilt angle of the TWIP vehicle; (d) The longitudinal control input τv and the
rotational control input τω .

Table 2. The designed parameters of the 2-RASMC controller.

Control Parameter c1 c2 c3 ff k1 k2 k3 k4 fl1 fl2

Case1 5 0.4 4 4 5 12 10 15 3 3
Case2 5 0.4 4 4 5 12 10 15 1/8 1/3
Case3 5 0.5 3 3 3 5 10 15 3 3
Case4 5 0.5 3 3 3 5 10 15 1/8 1/3
Case5 0.5 0.5 3 3 3 5 3 5 3 3
Case6 0.5 0.5 3 3 3 5 3 5 1/8 1/3
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During the process of tuning the control parameters, we have found the effects of the controller
parameters on control performance. The increases of c1, α, k1, k2, k3 and k4 contribute to the faster
convergence speed, and make overshoot volume increase. However, the increase of c2 contributes
to bigger overshoot volume and longer settling time of θ, and bigger overshoot volume and shorter
settling time of v. The increase of c3 makes overshoot volume of θ decrease, overshoot volume of v
increase, and slows down the convergence speed of θ and v.

Then we will consider the control performance of case1 and case2 with system uncertainty.
We assumed that the mass of the body is considered as a variable value in the simulation:

m =

{
2, t ≤ 10 s
5, t > 10 s

Figure 6 shows the simulation results of case1 and case2.
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Figure 6. The control performances of case1 and case2 with system uncertainty. (a) v tracking error;
(b)ω tracking error; (c) Tilt angle of the TWIP vehicle; (d) The longitudinal control input τv; (e) The
rotational control input τω ; (f) r1 of case1; (g) r1 of case2; (h) r2 of case1 and case2.

It can be seen that case2 has better robustness than case1, so we choose the same control parameters
as case2. The designed parameters of the inner loop controller are shown in Table 3.

Table 3. The designed parameters of the inner loop controller.

Control Parameter c1 c2 c3 ff k1 k2 k3 k4 fl1 fl2

2-SMC 5 0.4 4 4 5 12 10 15 – –
2-RASMC 5 0.4 4 4 5 12 10 15 1/8 1/3

Setωd = 0.5 rad/s, vd = 0.5 m/s as the control target for our inner loop controller. Then the

initial state variables are supposed as [δ(0) ω(0) xv(0) v(0) θ(0)
.
θ(0)]

T
= [0 0 0 0 0.1 0]T . In order to

verify the robustness of the two controllers, the mass of the body is considered as a variable value in
the simulation:

m =

{
2, t ≤ 10 s
3, t > 10 s

Figure 7 shows the simulation results.
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Figure 7. Comparison results of the two controllers with system uncertainty. (a) Tilt angle of the 
TWIP vehicle; (b) v tracking; (c) ω tracking ; (d) The adaptive value of 2-RASMC; (e) The 
longitudinal control input v ; (f) The rotational control input  . 
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Figure 7. Comparison results of the two controllers with system uncertainty. (a) Tilt angle of the TWIP
vehicle; (b) v tracking; (c)ω tracking ; (d) The adaptive value of 2-RASMC; (e) The longitudinal control
input τv; (f) The rotational control input τω .

Comparing Figure 7a,b,e with Figure 7c,f, it can be concluded that the robust performance of the
control law ofω is much better than that of the control law of v in the 2-SMC controller. Considering
Figure 7a,b,e, it can be easily seen that the state variables of the subsystems (8) and (9) in the 2-SMC
controller oscillates near the equilibrium point after t > 10 s, while the control performance of the
2-RASMC controller is almost unaffected.

By increasing the value of m, the comparison of the robust performance of the two controllers

will be more obvious. Set the value of m as m =

{
2, t ≤ 10 s
5, t > 10 s

, then the simulation result is shown as

Figure 8.
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Figure 8. Comparison results of the two controllers with system uncertainty. (a) Tilt angle of the 
TWIP vehicle; (b) v tracking; (c) ω tracking ; (d) The adaptive value of 2-RASMC; (e) The 
longitudinal control input v ; (f) The rotational control input  . 

From Figure 8, we can see the control performance of the 2-SMC controller becomes terrible 
after t > 10 s, while the 2-RASMC controller still maintains good control performance although the 
degree of system uncertainty is exacerbated. Combining Figures 7 and 8, it can be observed that the  
2-RASMC controller has better robustness. 

4.2. Outer Loop Controller Design 

The motion states of the TWIP vehicle on x-y plane are described by the center position of its 
wheel axis O (x, y) and the heading angle δ	as shown in Figure 9. Defining    Tx y p ,  Tv q , 

the kinematic equations of the vehicle can be obtained as:	
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Defining xr, yr	and δr as the reference trajectory in the earth fixed coordinate system, then the 
reference longitudinal vr and rotational velocities ωr can be calculated in prior respectively. The 
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Figure 8. Comparison results of the two controllers with system uncertainty. (a) Tilt angle of the TWIP
vehicle; (b) v tracking; (c)ω tracking ; (d) The adaptive value of 2-RASMC; (e) The longitudinal control
input τv; (f) The rotational control input τω .

From Figure 8, we can see the control performance of the 2-SMC controller becomes terrible after
t > 10 s, while the 2-RASMC controller still maintains good control performance although the degree
of system uncertainty is exacerbated. Combining Figures 7 and 8, it can be observed that the 2-RASMC
controller has better robustness.

4.2. Outer Loop Controller Design

The motion states of the TWIP vehicle on x-y plane are described by the center position of its
wheel axis O (x, y) and the heading angle δ as shown in Figure 9. Defining p = [x y δ]T , q = [v ω]T ,
the kinematic equations of the vehicle can be obtained as:

.
p =


.
x
.
y
.
δ

 =

 cos δ 0
sin δ 0

0 1

q (32)

Defining xr, yr and δr as the reference trajectory in the earth fixed coordinate system, then
the reference longitudinal vr and rotational velocities ωr can be calculated in prior respectively.
The position and orientation errors are defined as: xe

ye

δe

 =

 cos δ sin δ 0
− sin δ cos δ 0

0 0 1


 xr − x

yr − y
δr − δ

 (33)
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Differentiating (33) with respect to time, the tracking error dynamics can be obtained as:
.
xe
.
ye.
δe

 =

 yeω− v + vr cos δe

−xeω + vr sin δe

ωr −ω

 (34)

Backstepping control method is often used to deal with underactuated stabilization. Backstepping
has good tracking performance, fast response time without overshoot and is suitable for online control.
Therefore, we design the outer-loop controller using the idea of backstepping.

Take xe as a virtual control variable, the new error variable is defined as:

xe = xe − λ1tanh(ω)ye (35)

When xe → 0 and δe → 0 , according to Equation (35):

.
ye = −xeω = −λ1ωtanh(ω)ye, λ1 > 0 (36)
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where, λ1, λ2, λ3 and λ4 are the designed positive constants. 
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Lemma 1. For all x ∈ R, and the absolute value of x is bounded, there is φ(x) = xtanh(x) ≥ 0, if and only
if x = 0 the equality holds.

So, when t→ ∞, ye exponentially converges to zero, thus xe→0.
Adopting backstepping control method, the control law is deduced as follows:

wd = wr + 2λ3vrye cos δe
2 + λ4 sin δe

2
vd = vr cos δe + λ1tanh(ω)ωxe − λ1tanh(ω)(vr sin δe + λ2ye)

+λ2xe − λ1

(
1− tanh2(ω)

) .
ωye

(37)

where, λ1, λ2, λ3 and λ4 are the designed positive constants.

Theorem 5. The control system (34) is stable, and the posture errors are asymptotically stable with the
backstepping control law (37).

Proof. First, define a Lyapunov candidate as:

V =
1
2

xe
2 +

1
2

ye
2 +

2
λ3

(
1− cos

δe

2

)
(38)
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Differentiating Equation (38) with respect to time:

.
V = xe

.
xe + ye

.
ye +

1
λ3

sin δe
2

.
δe

= xe[vr cos δe − v− λ1

(
1− tanh2(ω)

) .
ωye − λ1tanh(ω)(vr sin δe − xeω)]

−λ1ωtanh(ω)ye
2 + 1

λ3
sin δe

2 [ωr −ω + 2λ3yevr cos δe
2 ]

(39)

Substituting the control law equations ofω and v (37) into Equation (39), then:

.
V = −λ2xe

2 − λ1ωtanh(ω)ye
2 − λ4

λ3
sin2

(
δe

2

)
≤ 0 (40)

By LaSalle’s invariance principle [22,23] and the Lyapunov stability criterion [24], the stability of
the outer-loop controller is proved. �

5. Simulation and Discussion

In this section, a lot of comparative simulations have been done to verify the validity of the
proposed control methods. We have done a lot of simulations and found the appropriate control
parameters of the designed outer loop controller as shown in Table 4. Table 5 exhibits several different
algorithmic approaches combined by diverse control methods of inner and outer loop controllers. The
simulation framework for 2S-B controller is shown in Figure A1 of the Appendix A.

Table 4. The design parameters of the outer loop controller.

Design Parameters λ1 λ2 λ3 λ4

Value 1 1 20 5

Table 5. Several algorithmic approaches of the inner/outer loop control system.

Inner Loop Controller

Outer Loop Controller Direct Method of
Lyapunov Function

(DMLF) [16]
Backstepping

PID P-D controller P-B controller
SMC [19] S-D controller S-B controller
2-RASMC 2S-D controller 2S-B controller

The control parameters of the PID controller used for comparison in this paper are settled by the
Ziegler-Nichols method and shown in Table 6.

Table 6. Control parameters of the PID controller.

Control Parameter kpω kiω kdω kpv kiv kdv kpθ kiθ kdθ

Value 0.6 0.6 0.3 1.5 0 1.5 3 0 0.5

First, a reference circular trajectory with ωr = 0.5 rad/s, vr = 0.5 m/s is given
and the radius of the desired trajectory r is 1 m. Furthermore, we assume that the vehicle
start point is [x(0) y(0) δ(0)]T = [1.3 − 0.3 2π/3]T , and the initial state variables are supposed as

[δ(0) ω(0) xv(0) v(0) θ(0)
.
θ(0)]

T
= [0 0 0 0 0.1 0]T . Figure 10 shows the practical tracking for the circle

mentioned above with six different control combinations.
From Figure 10a, it is clearly shown that the 2S-B controller has the shortest settling time of the tilt

angle (about 1.55 s), while the worst settling time of the tilt angle is about 7.06 s in the P-D controller.
The tracking error of x decreases to zero after t = 0.95 s by the 2S-B controller. When it comes to the
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P-D controller, the tracking error of x has the longest settling time of 4.44 s (Figure 10d). Moreover, the
overshoots of θ and ex in the 2S-B controller are smallest among them. Figure 10d indicates that the
DMLF method has better response about the tracking error of δ, but worse performances of ex and ey

than the backstepping method. Considering these simulation results, the 2S-B controller is the most
effective control combination strategy.

To further verify the effectiveness of the proposed controllers, a more sophisticated trifolium
trajectory is used as a reference trajectory.

A trifolium trajectory can be designed as xr(t) = ρ cos(3ωct) cos(ωct),
yr(t) = ρ cos(3ωct) sin(ωct). Here, the desired length of each leaf ρ is chosen as ρ = 5, ωc = 0.05.

Then, the reference longitudinal velocity vr(t) =

∣∣∣∣√ .
xr

2
(t) +

.
yr

2
(t)
∣∣∣∣ and the reference rotational

velocity ωr(t) can be calculated in prior. Furthermore, we assume that the vehicle start point is
[x(0) y(0) δ(0)]T = [5.3 − 0.3 0.6π]T , and the initial state variables are the same as that of tracking
a circle.

The system states are divergent for tracking a trifolium trajectory using the P-D controller and
P-B controller. The reason why it diverges is the error of the longitudinal velocity ev converges more
slowly than the acceleration of the reference longitudinal velocity vr. Moreover, the simulation results
are shown in the Appendix A.
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Figure 10. Comparison results of control combinations. (a) Tilt angle of the TWIP vehicle; (b) v 
tracking; (c) ω tracking ; (d) Tracking errors of x, y and δ; (e) Longitudinal control input τv and 
rotational control input τw; (f) Tracking of the circle trajectory. 
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Figure 10. Comparison results of control combinations. (a) Tilt angle of the TWIP vehicle; (b) v tracking;
(c)ω tracking ; (d) Tracking errors of x, y and δ; (e) Longitudinal control input τv and rotational control
input τw; (f) Tracking of the circle trajectory.

Figure 11 shows the comparison information of the four remaining control combinations, S-D
controller, 2S-D controller, S-B controller and 2S-B controller.

It is clearly shown in Figure 11a that the S-D controller has the shortest settling time of the tilt
angle (about 2.3 s), while the longest settling time of the tilt angle is about 4.37 s in the S-B controller.
In Figure 11e, S-D and 2S-D have high rotational control torque τw up to around 20 Nm, while the
rotational control torque τw in S-B controller is smaller than 2 Nm. The tracking errors of x and y
are much smaller in the S-B controller and 2S-B controller than those of the S-D controller and 2S-D
controller (Figure 11d). Moreover, the overshoots of ex and ey in the 2S-B controller are smallest
among them.

Finally, a hexagon trajectory, which contains an abrupt variation of longitudinal velocity
and rotational velocity, is more difficult to track than the trifolium one. The hexagon trajectory
we adopt is described by piecewise linear functions. Furthermore, assume that the vehicle
start point is [x(0) y(0) δ(0)]T = [3.7 − 0.3 3π/4]T , and the initial state variables are set as

[δ(0) ω(0) xv(0) v(0) θ(0)
.
θ(0)]

T
= [0 0 0 0 0.1 0]T .
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Figure 11. Comparison results of control combinations. (a) Tilt angle of the TWIP vehicle; (b) v 
tracking; (c) ω tracking ; (d) Tracking errors of x, y and δ; (e) Longitudinal control input τv and 
rotational control input τw; (f) Tracking of the trifolium trajectory. 
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Figure 11. Comparison results of control combinations. (a) Tilt angle of the TWIP vehicle; (b) v tracking;
(c)ω tracking ; (d) Tracking errors of x, y and δ; (e) Longitudinal control input τv and rotational control
input τw; (f) Tracking of the trifolium trajectory.
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Similarly, the system states are divergent for tracking a hexagon using P-D controller and P-B
controller. Moreover, the simulation results are shown in the Appendix A. Figure 12 shows the practical
tracking performances for the hexagon mentioned above with four different control combinations.
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Figure 12. Comparison results of control combinations. (a) v tracking; (b) ω tracking ; (c) Tilt angle 
of the TWIP vehicle; (d) Tracking errors of x, y and δ; (e) Longitudinal control input τv and 
rotational control input τw; (f) Tracking of the hexagon trajectory. 
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Figure 12. Comparison results of control combinations. (a) v tracking; (b) ω tracking ; (c) Tilt angle
of the TWIP vehicle; (d) Tracking errors of x, y and δ; (e) Longitudinal control input τv and rotational
control input τw; (f) Tracking of the hexagon trajectory.
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Figure 12c shows that the 2S-B controller has the shortest settling time of the tilt angle (about 2.3 s),
while the longest settling time of the tilt angle is about 3.3 s in the S-D controller. The tracking errors of
x and y decrease most quickly to zero in the 2S-B controller. When it comes to the S-D controller and
2S-D controller, the settling time of ex and ey is up to about 7 s (Figure 12d). Moreover, the overshoots
of ex, ey and eδ in the 2S-B controller are the smallest.

Although the hexagon trajectory seems to be tracked effectively, the torque performance is actually
terrible due to the abrupt variation of the trajectory of longitudinal velocity and rotational velocity,
and this situation is undesirable in practice.

Table 7 shows the different control effects of the six control combinations, such as the overshoot
and the settling time of θ, ex, ey, eδ, and a coincidence factor indicator (CFI) which illustrates the
trajectory tracking performance.

Table 7. The key performance indicators of three different control combinations.

Trajectory Key Performance Indicators DMLF Backstepping

PID SMC 2-SMC PID SMC 2-SMC

Circle

θ
Overshoot σ (%) 63.67 58.95 77.08 58.70 57.02 54.44

Settling time ts (s) 7.06 3.40 3.81 4.01 3.22 1.55

ex
Overshoot σ (%) 11.75 6.03 5.75 4.52 4.08 0.96

Settling time ts (s) 4.44 2.90 2.64 2.77 3.58 0.95

ey
Overshoot σ (%) 41.10 42.84 42.92 39.77 40.70 40.53

Settling time ts (s) 5.23 1.45 1.87 2.57 1.44 1.34

eδ
Overshoot σ (%) 0.19 2.38 0.95 7.23 11.21 8.96

Settling time ts (s) 2.43 1.58 1.72 3.96 4.09 2.05
CFI (%) 97.22 95.80 97.54 97.83 96.64 98.39

Trifolium

θ
Overshoot σ (%) – 37.52 49.43 – 59.45 54.20

Settling time ts (s) – 2.30 2.63 – 4.37 3.02

ex
Overshoot σ (%) – 17.96 19.90 – 9.01 4.80

Settling time ts (s) – – – – 3.79 2.13

ey
Overshoot σ (%) – 12.35 10.80 – 8.50 2.22

Settling time ts (s) – 24.59 25.87 – 2.38 0.82

eδ
Overshoot σ (%) – 0.00 0.00 – 11.32 7.65

Settling time ts (s) – 0.43 0.30 – 3.25 2.30
CFI (%) – 88.51 86.13 – 94.88 95.65

Hexagon

θ
Overshoot σ (%) – 23.19 39.63 – 25.24 29.19

Settling time ts (s) – 3.27 3.30 – 2.63 2.33

ex
Overshoot σ (%) – 21.93 20.90 – 11.97 11.48

Settling time ts (s) – 8.34 8.63 – 4.18 4.15

ey
Overshoot σ (%) – 0.00 0.00 – 4.15 2.41

Settling time ts (s) – 6.98 7.47 – 4.29 1.95

eδ
Overshoot σ (%) – 15.31 13.39 – 26.85 22.57

Settling time ts (s) – 9.33 9.63 – 4.83 4.97
CFI (%) – 89.08 87.31 – 95.41 96.12

We define a coincidence factor indicator (CFI) to describe the tracking performance. The CFI is
obtained as follows: (√

exi
2 + eyi

2
)∗

=

√
exi

2+eyi
2−min

max−min

CFI =

1−

N
∑

i=1
(
√

exi
2+eyi

2)
∗

N

× 100%
(41)

where, ()* means the normalization of expressions in brackets, min is the minimum of
√

exi
2 + eyi

2

from i = 1 to i = N, max is the maximum of
√

exi
2 + eyi

2 from i = 1 to i = N, N = T/0.05 is the number
of samples, and T is the total time of simulation.
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Different control effects of the six control combinations are clearly shown in Table 7, where we can
see that the P-D and the P-B controller have poor adaptability to different trajectories. The convergence
rates of ex, ey and eδ are much faster by using the backstepping method than using the DMLF method.
It can be clearly seen that 2S-B method has the best CFI as well as shortest settling time of the tilt
angle for all three trajectories, so it can be concluded that among the six control combinations, 2S-B
controller has the best control performance for its fast convergence speed, small overshoot and best
trajectory coincidence.

6. Experimental Results

Since the sensor (MPU-6050) has an embedded 3-axis MEMS gyroscope and a 3-axis MEMS
accelerometer, we need to utilize an information fusion algorithm to obtain relatively accurate
information. Figure 13 shows the frame of the complementary filter for information fusion.
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The attitude data of the TWIP vehicle is measured via the onboard IMU, the velocity data is
measured by two rotary encoders, and the location information of the TWIP vehicle is measured by the
UWB positioning technology just as shown in Figure 2. The placement of anchors in space is shown in
Figure 14.
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The position of the Tag can be expressed as follows:

X = dis12−dis22+X2
2

2×X2

Y = dis02−dis12+Y1
2

2×Y1

(42)
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To verify the tracking performance of the proposed design, an indoor tracking test was
implemented. The desired trajectory was set to be a circle with ωr = 0.5 rad/s, vr = 0.5 m/s.
The radius of the desired trajectory r was 1 m. Considering the existence of mismatch between the
real-time system model and the mathematical model, the feedback gains obtained from simulations
may not function well on the real-time platform, thus the control design parameters need to be
adjusted through experiments on the prototype. In practice, we use the control design parameters as
c1 = 5, c2 = 0.4, c3 = 4, α = 4, k1 = 5, k2 = 12, k3 = 10, k4 = 15, γ1 = 1/3, γ2 = 1/3,
λ1 = 0.8, λ2 = 0.8, λ3 = 20, λ4 = 5. Figure 15 shows the indoor experimental results using the 2S-B
controller for tracking the circle.
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Figure 15. Experimental results of tracking for a circle. (a) Tilt angle of the TWIP vehicle; (b,c) v and ω
tracking; (d)ω tracking error; (e) δ tracking; (f–h) Tracking errors of δ, x, y respectively; (i,j) Histograms
of tracking errors of x, y respectively; (k) Practical tracking trajectory.

After the battery is fully charged, the TWIP vehicle can run continuously for about 30 min. The test
of tracking a circle lasts about 30 s, and the TWIP vehicle finished the trajectory tracking for more
than two rounds. Figure 15a shows the tilt angle of the TWIP vehicle. Figure 15g,h shows the position
tracking errors. Because there is a cm-level measure error in the position measurement by UWB
technology, the position tracking errors cannot converge to zero. The maximum position tracking
error is about ±0.27 m for x-direction and about ±0.23 m for y-direction, but more than 80% of the all
recorded horizontal points remain in a circle with a radius of 0.1 m. The RMS value of the position
error is 0.1036 m in x-direction, and 0.0841 m in y-direction. The settling time of the tilt angle is about
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3.5 s. Td the tilt angle is controlled within ±1.5◦. This demonstrates the good tracking performance
achieved in the indoor environment.

7. Conclusions

In this paper, an inner/outer loop control is proposed for the trajectory control of a TWIP vehicle.
Several control methods have been utilized in the inner or outer loop controller and then different
control combinations of inner and outer loop control methods have been proposed. A lot of simulations
have been conducted to compare the control performance of different control combinations. Then,
the simulation results illustrate that the 2S-B combination has the most effective control performance
and highly adaptability to different trajectories. Finally experiments have been carried out to verify
the effectivity of the 2S-B combination. In our future work, the Kalman filter and its variants will
be considered to obtain the state estimation such that the effects of sensor noises can be attenuated.
Further investigation will be conducted on path-planning arithmetic for environment exploration.
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Appendix A

Figure A2a–d illustrate that the system states are divergent for tracking a trifolium trajectory
using the P-D controller and P-B controller. Compared with the circle trajectory, the trifolium trajectory
is more sophisticated and the tracking velocity vd changes rapidly at the beginning.

Figure A3a–d illustrate that the system states are divergent for tracking a hexagon using the P-D
controller and P-B controller. Comparing with the circle trajectory, the hexagon trajectory is more
sophisticated and the tracking velocity vd and wd changes rapidly at the beginning.
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Figure A2. Control peformance of PID&Backstepping controller and PID&DMLF controller for 
tracking a trifolium, (a) Tracking trajectories; (b) Tilt angle of the TWIP vehicle; (c,d) Control torques 
τv and τw. 
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Figure A3. Control peformance of PID&Backstepping controller for tracking a hexagon, (a) Tracking 
trajectories; (b) Tilt angle of the TWIP vehicle; (c,d) Control torques τv and τw. 

  

4.9 5 5.1 5.2 5.3 5.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

x(m)

y(
m

)

 

 

ideal trajectory
P-D
P-B

0 0.1 0.2 0.3 0.4 0.5 0.6
-2

-1.5

-1

-0.5

0

0.5

Time(s)

T
ilt

 a
ng

le
(r

ad
)

 

 

P-D
P-B

0 0.1 0.2 0.3 0.4 0.5 0.6
-50

-30

-10

10

30

50

Time(s)

T
or

qu
e 

T
v(

N
m

)

 

 

P-D
P-B

0 0.1 0.2 0.3 0.4 0.5 0.6
-10

-8

-6

-4

-2

0
x 10

5

Time(s)

T
or

qu
e 

T
w

(N
m

)
 

 

P-D
P-B

3.4 3.5 3.6 3.7 3.8
-0.4

-0.3

-0.2

-0.1

0

0.1

x(m)

y(
m

)

 

 

ideal trajectory
P-D
P-B

0 0.1 0.2 0.3 0.4 0.5 0.6
-2

-1.5

-1

-0.5

0

0.5

Time(s)

T
ilt

 a
ng

le
(r

ad
)

 

 

P-D
P-B

0 0.1 0.2 0.3 0.4 0.5 0.6
-40

-20

0

20

40

Time(s)

T
or

qu
e 

T
v(

N
m

)

 

 

P-D
P-B

0 0.1 0.2 0.3 0.4 0.5 0.6
-3

-2

-1

0

1
x 10

5

Time(s)

 T
or

qu
e 

T
w

(N
m

)

 

 

P-D
P-B

Figure A2. Control peformance of PID&Backstepping controller and PID&DMLF controller for tracking
a trifolium, (a) Tracking trajectories; (b) Tilt angle of the TWIP vehicle; (c,d) Control torques τv and τw.
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Figure A3. Control peformance of PID&Backstepping controller for tracking a hexagon, (a) Tracking
trajectories; (b) Tilt angle of the TWIP vehicle; (c,d) Control torques τv and τw.
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