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Abstract: In the downlink cloud radio access network (C-RAN), fronthaul compression has been
developed to combat the performance bottleneck caused by the capacity-limited fronthaul links.
Nevertheless, the state-of-arts focusing on fronthaul compression for spectral efficiency improvement
become questionable for energy efficiency (EE) maximization, especially for meeting its requirements
of large-scale implementation. Therefore, this paper aims to develop a low-complexity algorithm
with closed-form solution for the EE maximization problem in a downlink C-RAN with limited
fronthaul capacity. To solve such a non-trivial problem, we first derive an optimal solution using
branch-and-bound approach to provide a performance benchmark. Then, by transforming the original
problem into a parametric subtractive form, we propose a low-complexity two-layer decentralized
(TLD) algorithm. Specifically, a bisection search is involved in the outer layer, while in the inner layer
we propose an alternating direction method of multipliers algorithm to find a closed-form solution
in a parallel manner with convergence guaranteed. Simulations results demonstrate that the TLD
algorithm can achieve near optimal solution, and its EE is much higher than the spectral efficiency
maximization one. Furthermore, the optimal and TLD algorithms are also extended to counter the
channel error. The results show that the robust algorithms can provide robust performance in the
case of lacking perfect channel state information.

Keywords: C-RAN; fronthaul compression; energy efficiency; alternating direction method of
multipliers (ADMM); imperfect channel state information (CSI)

1. Introduction

To maintain the requirements of the expected scale of the increasing data traffic and mobile
terminals, the fifth generation (5G) wireless network [1] faces some challenges in terms of system
capacity, energy consumption, and so on. The cloud radio access network (C-RAN) [2,3], which has
emerged as a promising solution in reducing both the capital and operating expenditures, is expected
to be an effective approach to fulfil these requirements. In C-RAN, a central unit (CU) or baseband unit
(BBU) pool connects all the deployed low-power base stations (BSs) using the finite-capacity fronthaul
links that allows joint signal processing and transmission. Despite various attractive advantages
brought by C-RANs [4–6], such as joint beamforming, and centralized encoding and decoding,
the performance bottleneck for large-scale implementation comes with the high capacity requirements
of the fronthaul links. Therefore, in practical C-RAN, the data sharing [7–13] and fronthaul compression
designs [14–22] are recognized as two promising approaches to overcome the significant impact of
the constrained fronthaul on spectral efficiency (SE) and energy efficiency (EE) (bit-per-Joule) [23–25].
The data sharing strategy [8–13] reduces the fronthaul consumption through limiting the data transfer
among BSs (one BS serves a small number of the total MUs). For the latter one, the CU computes the
precoded signals intended to be transmitted to each BS, and then the signals are quantized and sent
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to the BSs through the capacity limited fronthaul links. The compression process is usually modeled
as a test channel [14–22], where the uncompressed and compressed signals respectively represent
the input and output, and the quantization noise are modeled as an independent additive Gaussian
random variable [13,20,21]. The authors in [13] proved that the fronthaul compression achieves a better
performance than the data sharing strategy, so that this paper considers the fronthaul compression.

In general, the fronthaul compression has been extensively studied in both the uplink [16–18]
and downlink C-RANs [13,19–22]. The majority research of the existing literature on fronthaul
compression in C-RAN is focused on the design of beamforming and quantization noises to maximize
the achievable sum rate from the information-theoretic perspective [11,13,16–21,26]. A joint adaptive
decompression and detection algorithm was proposed in [16] to improve the information-theoretic
capacity for the uplink C-RAN. In [18], the authors developed a distributed compression for the
sum rate maximization (SEmax) problem in the uplink C-RAN accounting for both perfect and
imperfect channel state information (CSI). For the downlink C-RAN, a joint precoding and multivariate
compression scheme has been studied in [19], where an iterative majorization-minimization approach
was proved to achieve a stationary point solution of the SEmax problem. In [13], a comparison between
the data sharing and fronthaul compression strategy was investigated for the power minimization
problem with finite-capacity fronthaul links in downlink C-RAN. Then, a hybrid compression and data
sharing strategy was designed in [11] for optimizing the achievable sum rate. However, maximizing
the EE in accordance with fronthaul compression [22] is technically far more challenging compared to
SRmax, and the closed-form solution remains unexplored.

This paper investigates the EEmax problem in downlink C-RANs with the consideration of
the fronthaul compression. This optimization problem is formulated as a non-convex fractional
programming problem with respective to the beamforming and quantization noises under a limited
power budget and capacity-finite fronthaul links, which is NP-hard and is difficult to solve. To deal
with the fraction objective function of the original problem, some work has been done to firstly
transform the fractional objective function into an equivalent subtractive-form optimization problem
via exploiting the fractional programming [27–30]. Although the power allocation schemes for
orthogonal frequency division multiple access (OFDMA) system [28,29] were obtained using the
dual decomposition approach, such approaches cannot be applied to solve our problem due to
the joint consideration of fronthaul compression and beamforming in our problem. Moreover,
the Lagrangian based decomposition algorithm [30] for the multicell system is still not applicable for
decentralized implementation because the considered problem is more complex and the beamformings
among BSs are coupled. The first-order Taylor expansion is adopted to linearize the non-convex
data rate and fronthaul capacity constraint [20], however, the optimal solution cannot be obtained.
By exploiting the relationship between the achievable data rate and the mean square error (MSE)
in [31], Ref. [11,12] compared the sum rate performance of the data sharing and compression
strategies, but they are limited to the SRmax problem. The authors in [22] considered a joint
design of beamforming, multivariate compression and BS-MU link selection to maximize the EE.
By using the epigraph form of the original EEmax problem, the authors [22] proposed a difference
of convex (DC) function based algorithm. However, the optimal solution of [22] is still unknown,
and the computational complexity is typically high since a series of semi-definite programming
(SDP) or second-order cone programming (SOCP) problems are solved. More importantly, since the
beamforming and quantization noises are computed centrally at the CU, the algorithms proposed
in the literature [11–13,19,20,22] can be computation intensive for large-scale C-RANs. Therefore,
in this paper, we first propose an optimal algorithm for the EEmax problem to provide a performance
benchmark, and then develop a low-complexity decentralized algorithm with closed-form solution.
For practical usage in downlink C-RANs, the impact of CSI errors on the EE performance is further
investigated. This paper not only offers an optimal solution for the EEmax problem with limited
fronthaul capacity, but also lays a sound foundation for decentralized implementation with closed-form
solutions in this field. Thus, the methods derived in this paper are significant in advancing this field.
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The main contributions of this paper are summarized as follows.
Firstly, we formulate the EEmax problem of joint beamforming and quantization noises design

under a limited power budget and capacity-limited fronthaul links as a non-convex fractional
programming problem. We first derive an optimal solution method based on branch-and-bound (BnB)
technique [32,33] to solve the EEmax problem globally. Specifically, the BnB algorithm computes
the upper and lower bounds, and deletes the regions that do not contain the optimal solution.
The algorithm terminates when the difference between the upper and lower bounds is smaller than
a predefined accuracy.

Secondly, to reduce the computational complexity of the optimal algorithm and facilitate
decentralized implementation, we propose to transform the problem into a parametric subtractive form,
and further proposed a two-layer decentralized (TLD) algorithm to solve the equivalent subtractive
problem. Specifically, an one-dimension search approach is used to find the EE in the outer layer,
and a decentralized algorithm based on alternating direction method of multipliers (ADMM) is
proposed to solve a subproblem in the inner layer. The proposed algorithm achieves closed-form
solution in parallel manner with convergence guaranteed.

Thirdly, considering the imperfection of the obtained CSI in practical C-RANs, the robust
optimal and TLD algorithms for the considered EEmax problem are also proposed to characterize
the performance degradation of the CSI errors. In particular, the robust optimal can also achieve
a performance benchmark, and the robust TLD algorithm also has closed-form solution in a parallel manner.

Finally, we validate the effectiveness of the proposed algorithms through extensive simulations.
The results demonstrate that both the optimal and TLD algorithms are convergent, and the TLD
algorithm can achieve near optimal solution which is much higher than the SEmax one. Numerical
analysis also show that the EE performance is susceptible to the channel errors, and a smaller channel
error reaches a higher EE.

The remainder of the paper is organized as follows. In Section 2, the system model and problem
formulation are presented. Section 3 describes the proposed optimal algorithm with perfect CSI.
Section 4 presents TLD algorithm with perfect CSI. For imperfect CSI case, the robust optimal and
TLD algorithms are also presented in Section 5. The simulation results are given in Section 6. Finally,
we conclude this paper in Section 7.

Notations: We use C to denote the set of complex numbers, and CM×N to denote the set of all
M× N matrices with complex entries. We use boldface capital and lower case letters are respectively
used to denote matrices and vectors. (X)−1, XH and Tr(X) represent the matrix inverse, Hermitian
transport and the trace, respectively. |x| represents the Euclidean norm. E[·] is the expectation operator,
and diag(x1, · · · , xL) represents a diagonal matrix with diagonal elements given by {x1, · · · , xL}.
For a complex number x, |x| is the mode of x. “s.t.”stands for “subject to”.

2. System Model and Problem Formulation

2.1. System Model

We consider a downlink C-RAN with L single-antenna BSs and K single-antenna MUs. The CU
connects all the BSs via fronthaul links, and each link is finitely constrained by Cl , l = 1, · · · , L. Assume
that the CU has access the global CSI. The data symbol for each MU (denoted by sk for the k-th MU)
is distributed as complex Gaussian with zero mean and unit variance. Denote by xl = ∑K

k=1 wklsk
the beamformed complex signal at the CU for BS l, where wkl is the beamforming from BS l to MU k.
To reduce the capacity requirements on the fronthaul network, the signals are compressed before
being forwarded to the corresponding BSs via the finite-capacity fronthaul links. According to [18,20],
the compression procedure is modeled as a test channel and the procedure can be expressed as
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x̃l = xl + el , ∀l, where el is the quantization noise, and xl and x̃l are the input and out of the test
channel, respectively. The received signal at MU k is given by

yk =
L

∑
l=1

hH
kl x̃l + nk, k = 1, · · · , K, (1)

where hkl ∈ C is the channel from BS l to MU k, nk is the additive Gaussian noise at MU k, with zero
mean and σ2 variance.

When employing the single user detection at each MU, the received
signal-to-interference-plus-noise-ratio (SINR) at MU k is

SINRk =
|hH

k wk|2

∑i 6=k |hH
k wi|2 + σ2 + |hkQhH

k |
, (2)

where hk = [hT
k1, · · · , hT

kL]
T and wk = [wk1, · · · , wkL]

T are the aggregated channel and beamforming
from all BSs to MU k, respectively, and

Q =

q11 · · · q1L
...

. . .
...

qL1 · · · qLL

 , (3)

is the covariance matrice of e = [e1, · · · , eL]
T , i.e., Q = eeH . It is noted that

multivariate compression is also possible and has been studied in [20], where eleH
j 6= 0,

∀l = 1, · · · , L., eleH
j = 0 when l 6= j. In this paper, we consider point to point fronthaul compression,

and let ql = qll , l = 1, · · · , L.
Considering an ideal vector quantizer, the quantization noise level ql and the fronthaul capacity

Cl for the l-th fronthaul link satisfy the following constraint [12,15]

log2(1 +
∑K

k=1 |wkl |2
ql

) ≤ Cl , ∀l. (4)

The transmission power consumed at BS l is constrained by E[|x̃l |2] ≤ Pmax
l , where Pmax

l is the
maximum transmit power of BS l. The transmit power of BS l, denoted by pl , consists of quantization
noise ql and data transmission power (denoted by pt

l), i.e., pl = pt
l + ql = ∑K

k=1 |wkl |2 + ql . It is
obviously that

pl ≤ Pmax
l , ∀l. (5)

The network power of C-RAN consists of the BS transmit power and relative fronthaul network
power. In this paper, we adopt the power consumption model of C-RAN as [4]

Ptot =
L

∑
l=1

1
ηl

pl + Pc, (6)

where Pc = ∑L
l=1 Pc

l is the total relative fronthaul link power consumption [4], Pc
l ≥ 0 is the relative

fronthaul link power consumption when switch off both the fronthaul link and the corresponding
BSs. ηl (ηl > 1) is the drain efficiency of power amplifier of BS l. In this paper, we assume that all the
BSs have the same drain efficiencies, i.e., η = ηl , ∀l. Since we do not consider the BS switch on/off
scheme in this paper, Pc is a nonnegative constant and we call it by static power for brevity for the rest
of the paper. We point out that based on the results obtained by the proposed algorithms in this paper,
it is easily extended to add BSs selection (determine the BSs to be switch off or not) into consideration
through ordering the BSs in accordance with the bisection search [4] to further improve EE. However,
this is outside the scope of this paper.
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2.2. Problem Formulation

To balance the sum rate and total power consumption, the EEmax problem is optimized in
this paper. This problem over the beamforming in the presence of fronthaul compression can be
formulated as

P0 : max
w,q

∑K
k=1 Rk

∑L
l=1

1
ηl

pl + Pc
(7a)

s.t.
K

∑
k=1
|wkl |2 + ql ≤ Pmax

l , ∀l (7b)

βl

K

∑
k=1
|wkl |2 ≤ ql , ∀l, (7c)

where w = [w1, · · · , wK] and q = [q1, · · · , qK] are the collection of beamforming vectors and
quantization noises, respectively. Rk = log2(1 + SINRk) is the achievable data rate of MU k. (7b) is
the BS transmit power constraint, and (7c) is the reformulation of the fronthaul capacity constraint (4)
and βl =

1
2Cl−1

. Due to the non-convex Rk and the fractional objective function in (7a), P0 is a NP-hard
problem, and it is challenging to find its global optimum. In the following, we first present an optimal
approach and then propose a TLD framework solution.

3. Optimal Algorithm with Perfect CSI

In this section, we will propose a global optimal algorithm, which based on Branch-and-Bound
method [32], to solve problem P0. The essential idea of the proposed algorithm is based on the
following equivalent transformation

P1 : max
wkl ,t

f (t) = tK+1

K

∑
k=1

tk (8a)

s.t. SINRk ≥ 2tk − 1, ∀k (8b)
1

1
η ∑L

l=1(∑
K
k=1 |wkl |2 + ql) + Pc

≥ tK+1 (8c)

(7b), (7c),

where t = [t1, · · · , tK+1]
T are the introduced variables, (8b) is the transformation of log2(1 + SINRk) ≥ tk.

The equivalence between problems P0 and P1 is that the constraints (8b) and (8c) hold with equality
at optimum.

Although P1 is more tractable compared to P0, it is still hard to solve due to the coupled variables
of wk and t. It is observed that if one increase each tk in the feasible set of P1, a better objective value
can be obtained. This motivates us to use the monotonic optimization in [32], i.e., the optimal BnB
algorithm, to solve problem P1.

BnB Algorithm

To solve P1, we first denote the feasible set for variables t by Ξ, i.e., Ξ = {t|constraints of P1}.
Denote t = [t1, · · · , tK+1]

T and t̄ = [t̄1, · · · , t̄K+1]
T by the aggregated lower and upper bound of tk.

The interval t ≤ t ≤ t̄ indicates that each element of t is bounded by its lower and upper bounds.
The objective function f (t) in P1 is monotonically increasing in the interval t ≤ t ≤ t̄. In particular, tk is
upper bounded by ignoring the interferences, i.e., tk ≤ log(1 + 1

σ2
k

∑L
l=1 Pm

l |h̃k|2) = t̄k, and the lower

bound of tk is tk = 0 ≤ tk for k = 1, · · · , K. Similarly, we can constrain tK+1 by tK+1 ≤ tK+1 ≤ t̄K+1,
where t̄K+1 = 1/Pc and tK+1 = 1

∑L
l=1 Pm

l /η+Pc
. It is obvious that the feasible set t in Ξ must be contained

by Φ = [t, t̄].
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For a given t ∈ Φ, problem P1 reduces to the feasibility problem given by

P2 : find w1, · · · , wK, ql (9)

s.t. (7b), (7c), (8b), (8c).

Obviously, when t = [0, 0, · · · , 1
∑L

l=1 Pm
l /η+Pc

]T, problem P2 is infeasible. That is because the sum

rate should not equal to zero with maximum transmit power. In this paper, we will customize the
BnB algorithm to solve problem P1 globally. The BnB algorithm divides the box Φ into smaller ones,
and cuts off boxes that do not contain an optimal solution. The algorithm will converge to the global
optimal solution after finite iterations.

Since P2 is non-convex due to the SINR constraint, in the following, we first recast them as convex
ones. Let γ̃k = 2tk − 1, (8b) is equivalently rewritten as [7,33]

1
γ̃k

hkwk ≥
(

∑
i 6=k
|hH

k wi|2 + σ2 +
L

∑
l=1

ql|hkl|2
)1/2

(10a)

Im(hkwk) = 0,∀k ∈ K. (10b)

In the above formulation, we note that (10a) is a second-order cone (SOC) constraint. The constraint (10b)
is without loss of generality due to the fact that a phase rotation of the beamformers does not effect the
objective of the problem [25,33].

Moreover, (8c) is easily rewritten as

1
η

L

∑
l=1

(
K

∑
k=1
|wkl|2 + ql) ≤

1
tK+1

− Pc. (11)

Then, problem P2 becomes a SOCP feasibility problem which can solved efficiently. In the
proposed BnB algorithm, the bounding function can be formally expressed as

φub(Φ) =

{
f (tmax), tmin ∈ Ξ
0, otherwise,

(12)

φlb(Φ) =

{
f (tmin), tmin ∈ Ξ
0, otherwise,

(13)

where φub(Φ) and φlb(Φ) are the upper and lower bound respectively, Φ is defined as
Φ , {t|tk,min ≤ tk ≤ tk,max,∀k} where tk,min and tk,max denote the end points of the kth edge of
Φ, tk,min = [t1,min, · · · , tK+1,min]

T and tk,max = [t1,max, · · · , tK+1,max]
T.

We denote by Vi the collection of all created boxes at iteration i. Then, the work flow of the BnB
algorithm to obtain the global optimal solution is presented in Algorithm 1.
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Algorithm 1 Proposed Optimal Algorithm.

0: Initialization: given tolerance τ > 0. Set i = 1, B1 = {Φ}, U1 = φub(Φ), L1 = φlb(Φ).
1: Check the feasibility problem P2 with given t. If it is infeasible, exit; Otherwise go to step 2.
2: repeat
3: Set Φi = Φ where Φ satisfies Ui = φub(Φ).
4: Branch Φi into two smaller boxes ΦI and ΦI I using the bisection subdivision along the longest

edge of Φi.
5: Let Bi+1 = (Bi\{Φi})∪ {ΦI , ΦI I}.
6: Update Li+1 = maxΦ∈Bi+1{φlb(Φ)}.
7: Delete boxes that do not contain an optimal solution, Vi+1 = Vi\{Φk|Li+1 > φub(Φk)} where

Φk ∈ Bi+1.
8: Update Ui+1 = maxΦ∈Vi+1{φub(Φ)}.
9: Set i = i + 1.
10: Until Ui+1 − Li+1 ≤ τ.

Remark 1 (H). According to [34], the convergence of Algorithm 1 is guaranteed due to the monotonic property
of f (t). The main step of Algorithm 1 is to delete the boxes that do not contain the optimal solution. This step is
referred to as pruning, and a smaller box that contains the optimal solution is obtained. Therefore, step 7 confirms
the convergence of Algorithm 1. The corresponding optimal EE is f (t)? = Ui, the optimal achieved data rate is
t?,∀k ∈ K, and the network power consumption is 1/t?K+1. This algorithm gives an optimal solution to problem
P1 (equivalently to problem P0) when the tolerance τ is small enough. Algorithm 1 provides a performance
benchmark for any other suboptimal algorithms. However, the computational complexity of Algorithm 1 is very
high in general. Therefore, an improved box reduction approach approach was proposed in [33,34] to reduce the
searching time, but we use the basic BnB approach in this paper for simplicity.

4. Decentralized Algorithm with Perfect CSI

In this section, we first transform the original problem into an equivalent subtractive-form using
the Dinkelbach’s method. By exploiting the equivalence between the achievable data rate and its
MSE, an ADMM algorithm is proposed to solve a QCQP subproblem with closed-form solution in
a parallel manner.

4.1. Equivalent Optimization Problem

It is noted that P0 is a nonlinear fractional programming problem and can be transformed using
the Dinkelbach’s method [27]. Defining the optimal EE of problem P0 by αopt, we have

αopt = R?/Popt
tot = max

{w,q}
R/Ptot, (14)

where Popt
tot is the optimal total power consumption, Ropt is the optimum of R, and Ropt = ∑K

k=1 Ropt
k is

the sum rate.
According to [29], the optimal EE αopt can be achieved if and only if

max
w,q

K

∑
k=1

Rk − αoptPtot = Ropt − αoptPopt
tot = 0, (15)

where (w, q) ∈ D and D = {(w, q)|(7b), (7c)} is the feasible region of problem αopt.
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Thus, based on the theoretical results in [25,30,33], problem P0 is transformed as the following
parametric programming problem

P3 : G(α) =max
w,q

K

∑
k=1

Rk − αPtot (16)

s.t. (7b), (7c),

It is noted that if problem P3 is optimally solved with G(α) = 0, problem P0 can be solved
optimally. However, if problem P3 cannot be optimally solved, we can still solve problem P0 through
solving a sequence of problem P3. Unfortunately, the optimal solution of problem P0 is not guaranteed
in this case. We will provide detailed analysis in the next subsection.

The function of G(α) is a monotonically decreasing function over α. Therefore, a bisection method,
which is demonstrated in Algorithm 2, should perform well enough to find α [25,30].

Algorithm 2 Outer Layer Algorithm.

1: Initialize the minimum and maximum α as αmin and αmax respectively, and a small threshold

value ε.
2: repeat
3: Set α = (αmax + αmin)/2, solve problem P3 with α.
4: If G(α) ≥ 0, αmin = α. Otherwise, αmax = α.
5: Until |αmax − αmin| ≤ ε or the maximum iteration number is reached.

It is important to initialize α in reducing the search time of Algorithm 2. Here, we initialize the
interval αmin ≤ α ≤ αmax that α is bounded by its lower and upper bounds. Intuitively, α is lower
bounded by αmin = 0 when the the sum rate equals to zero. For αmax, it is upper bounded by ignoring
the interference and using maximum transmit power in Rk, and ignoring the transmit power and the
quantization noises in Ptot. Specifically, Rk ≤ log2(1 + 1

σ2 ∑L
l=1 Pmax

l |hk|2) = Rk,max, and Pt,min = Pc.
Therefore, αmax = Rk,max/Pt,min, and α = [αmin, αmax] = [0, ∑K

k=1 Rk,max/Pc].

4.2. Decentralized Algorithm for Subproblem P3

The key step for finding the quantized noises and the beamformings in Algorithm 1 lies in solving
the subproblem P3. The main difficulty arises from the non-convex Rk in the objective function (16a).
Fortunately, by extending the equivalence between the SRmax problem and MMSE problem [31,35],
Rk in problem P3 can be reformulated into a tractable form.

Rk = max
{ρk,uk}

1
ln 2

(lnρk − ρkek), (17)

where ρk ∈ R is a scalar variable associated with MU k, ek ∈ R is the MSE for MU k, given by

ek = E
[
|uH

k yk − sk|2
]

= |uk|2
(

K

∑
j=1
|hkwj|2 + σ2 +

L

∑
l=1

ql|hkl|2
)

− 2Re{ukhH
k wk}+ 1. (18)

The proof of the equality in (17) is based on the first-order optimality condition [31], which is
omitted here for brevity. Then, problem P3 can be recast as
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P4 : min
w,q

min
ρ,u

1
ln 2

K

∑
k=1

(ρkek − lnρk) + αPtot (19)

s.t. (7b), (7c),

where u = [u1, · · · , uK] and ρ = [ρ1, · · · , uL].
It is worth noting that problem P4 is not jointly convex in {w, u, q, ρ}, but it is convex with respect

to {w, q} or {u, ρ} by given {u, ρ} or {w, q}, respectively. Thus, with fixed {wk} and {ql}, the optimal
weight ρk is ρk = 1/e?k where e?k is the optimal MSE for MU k. Then, the optimal receive beamforming
coefficient {uk} under fixed {wk}, {ql} and {ρk} is a MMSE receiver [31]

uk =

(
K

∑
j=1
|hH

k wj|2 + σ2 +
L

∑
l=1

ql|hkl|2
)−1

hH
k wk. (20)

With fixed {uk} and {ρk}, the optimal {wk} and {ql} can be obtained by solving the following
quadratic constraint quadratic programming (QCQP) problem.

P5 : min
w,q

f (wk) +
K

∑
k=1

ρk|uk|2
L

∑
l=1

ql|hkl|2 +
α

η̃

L

∑
l=1

pl (21)

s.t. (7b), (7c),

where f (wk) = ∑K
k=1

(
wH

k Awk −Re{bH
k wk}

)
is a quadratic objective function, and bk = 2ρkukhk and

A = ∑K
j=1 ρj|uj|2hjh

H
j , and η̃ = η ln 2. It is observed that this problem is a convex optimization problem

with respect to w and q, which can be solved centrally by standard mathematical tools, i.e., CVX [36].
It is noted that by simply replacing the constraints of the SINR and the maximum transmit power
per BS as in [20], such an alternative optimization can also be adopted to solve P0 with multivariate
compression. That because the replacement does not affect the convexity of the subproblems. However,
such an interior-point method solves P5 with high computational complexity and it does not reveal
the structure of the solution. Meanwhile, it is implementation intensive for large-scale C-RANs due
to the centralized computation of the beamformings and quantization noises at the CU. Unlike the
beamforming design problem in multicell system [30], the beamformings are coupled among BSs in
our problem, making the Lagrangian based decomposition algorithm invalid in solving P5. Towards
this end, we propose a novel approach using ADMM method to solve P5 with closed-form solution
optimally in a parallel manner.

In particular, in P5, the two constraints (7b) and (7c), respectively, provide an upper and lower
bound on q. Then, the constraint βl pt

l ≤ Pmax
l − pt

l should be satisfied. By rearranging this constraint,
we have

(1+ βl)pt
l ≤ Pmax

l ,∀l. (22)

Since the objective function of P5 is monotonically decreasing over q, we can replace the inequality
constraint (7c) with equality, i.e., ql = βl ∑K

k=1 |wkl|2. We denote a new beamforming vector for BS l
as w̃l = [w1l, · · · , wKl]

T, and then we have ql = βl|w̃l|2. As a result, problem P5 is equivalent to the
following problem in only a single set of variables w.
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P6 : min
w

f (wk) +
L

∑
l=1

µl|w̃l|2 (23a)

s.t. (1+ βl)|w̃l|2 ≤ Pmax
l ,∀l, (23b)

where µl = ∑K
k=1 ρk|uk|2βl|hkl|2 + α

η̃ (1+ βl).
The objective function in (23a) contains two parts, and they are functions of different variables,

i.e., wk and w̃l , rather than the same variable. Therefore, problem P6 is not a standard group lest
absolute shrinkage and selection operator (LASSO) problem [37]. Hence, the existing algorithms for
the group LASSO problems are not directly applicable. This fact motivates us to find new algorithm
to solve problem P6. Fortunately, it is observed that problem P6 has a special structure that can be
solved by developing the famous ADMM algorithm. To account for the difference between wk and
w̃l in problem P6, we first introduce a copy z̃l for w̃l , and define z = [z̃T

1 , · · · , z̃T
L ]

T. Problem P6 can be
equivalently expressed as

P7 : min
w,z

f (wk) +
L

∑
l=1

µl|z̃l|2 (24a)

s.t. (1+ βl)|z̃l|2 ≤ Pmax
l ,∀l (24b)

z̃l = w̃l,∀l. (24c)

The partial augmented Lagrangian function of problem P7 is

L(w, z,y) = f (wk) +
L

∑
l=1

µl|z̃l|2

+
L

∑
l=1

Re
(

ỹH
l (z̃l − w̃l)

)
+

c
2

L

∑
l=1
|z̃l − w̃l|2, (25)

where y = [ỹT
1 , · · · , ỹT

L ]
T with ỹk = [ỹT

k1, · · · , ỹT
kL]

T is the vector of Lagrangian dual variables for the
equality constraint (24c), and c > 0 is some constant.

The idea of the ADMM is to update the local variables when fixing the other variables. Specifically,
the variables updating procedure of the ADMM algorithm is detailed as follows.

By fixing w(m) and y(m) at the (m)-th iteration, z(m+1) at the (m + 1)-th iteration is updated by
solving the following convex problem

min
z

L(w(m), z, y(m)) s.t. (24b). (26)

We show that problem (26) can be solved in a parallel manner. Specifically, we first decompose
problem (26) into L subproblems

min
z̃l

µl|z̃l|2 + Re
(

ỹH
l (z̃l − w̃(m)

l )
)
+

c
2
|z̃l − w̃(m)

l |
2 s.t. (24b), (27)

that can be solved independently at the CU.
The Karush-Kuhn-Tucker (KKT) conditions of problem (27) are
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(2µl + 2θ?l + c)z̃?l − csl = 0, (28)

(1+ βl)|z̃?l |
2 ≤ Pmax

l , θ?l ≥ 0, (29)(
(1+ βl)|z̃?l |

2 − Pmax
l

)
θ?l = 0, (30)

where θ?l is the optimal Lagrangian multiplier associated with the power constraint, z̃?l is the optimum

of z̃l , and sl is defined as sl = w̃(m)
l − ỹ(m)

l .
If θ?l = 0, we have z̃?l = csl

2µl+c under the condition of (1 + βl)|z̃?l |
2 ≤ Pmax

l (equivalent to

|sl| ≤
√

Pmax
l

1+βl
(2µl/c + 1)). If θ?l > 0, (1 + βl)|z̃?l |

2 = Pmax
l . Then, z̃?l =

√
Pmax

l
1+βl

when |sl| >√
Pmax

l
1+βl

(2µl/c + 1). Specially, when |sl| = 0, z̃?l = 0. Therefore, z(m+1)
l = z̃?l is updated as

z(m+1)
l =


0, |sl| = 0

csl
2µl+c , |sl| ≤

√
Pmax

l
1+βl

(2µl/c + 1)√
Pmax

l
1+βl

, |sl| >
√

Pmax
l

1+βl
(2µl/c + 1).

(31)

To update w(m+1) with fixed {y(m)
k , z(m+1)

k }, the following problem is solved

min
w

L(w, z(m+1), y(m)). (32)

Due to the relationship between wk = [wkl, · · · , wkL]
T and w̃l = [w1l, · · · , wKl]

T,∀l, k, we have

∑L
l=1 |w̃l − z̃(m+1)

l − ỹ(m)
l /c|2 = ∑K

k=1 |wk − z(m+1)
k − y(m)

k /c|2. Problem (32) is equivalent to

min
w

f (wk) +
c
2

K

∑
k=1
|wk − z(m+1)

k − y(m)
k /c|2. (33)

Then, problem (33) can be decomposed into the following K subproblems, and can be solved in
a parallel manner with each MU.

min
wk

wH
k Awk −Re{bH

k wk}+
c
2
|wk − z(m+1)

k − y(m)
k /c|2. (34)

By differentiating (34) with respect to {wk} and set to zero, we obtain the optimal {w?
k} with

closed-form expression in the (m + 1)-th iteration, given by

w(m+1)
k = w?

k = (2Ak + cI)−1(2bk + cz(m+1)
k + y(m)

k ). (35)

Using the relationship between wk and w̃l , w̃(m+1)
l is obtained. Then, with obtained w̃(m+1)

l and

z̃(m+1)
l , the multipliers y(m+1) are updated

ỹ(m+1)
l = ỹ(m)

l + c(z̃(m+1)
l − w̃(m+1)

l ); (36)

Therefore, the decentralized algorithm for solving P3 is summarized in Algorithm 3. The convergence
of Algorithm 3 is guaranteed by Theorem 1.



Sensors 2017, 17, 1498 12 of 22

Algorithm 3 Decentralized Algorithm for Subproblem P3.

1: Initialization: choose initial value for w(0) and q(0), set iteration index n = 0, and choose the initial

value for z(0) and y(0).
2: Repeat
3: Update {u} by (20), and obtain {u(n)}.
4: Calculate {ek} according to (18) with {w(n), q(n)}.
5: Update {ρk} with ρk = 1/ek, and obtain ρ(n).
6: Let iteration index m = 0 and w(m) = w(n).
7: while εADMM ≥ 10−5 do
8: Update z(m+1) by (31);
9: Update w(m+1) by (35);
10: Update the multipliers y(m+1) by (36).
11: m = m + 1.
12: end while
13: n = n + 1.
14: Update w(n) = w(m+1).
15: Update {q(n)} by ql = βl ∑K

k=1 |wkl|2,∀l with w(n).
16: Until convergence or the maximum iteration number is reached.

Theorem 1. Algorithm 3 generates a sequence {w(n), q(n)} that converge to a stationary point of problem P3.

Proof. The proof is based on the convergence of the alternative optimization method and ADMM
algorithm. With initialized {w(0), z(0), y(0)}, the inner loop of Algorithm 3 from steps 7 to 12 converges
to an optimal solution of P5 due to the convergence of ADMM algorithm, and the proof can be found
in [38]. On the other hand, the outer loop of Algorithm 3 converges to a stationary point of subproblem
P3 due to the convergence property of block coordinate decent algorithm [31,35]. According to [25,30],
for an arbitrary α, the objective (16a) in problem P3 is shown to be non-decreasing during each iteration
of the outer loop of Algorithm 3. Therefore, Algorithm 3 is guaranteed to converge to a stationary
point of problem P3, and the proof is completed.

Denote by αopt the actually optimal solution of problem P0, and α? the obtained suboptimal
solution returned by the Algorithm 2 when using Algorithm 3 to solve problem P3. Since Algorithm 3
converges to a stationary point of problem P3, the suboptimal objective of G(α) equals to zero which
equivalently equals to G(α?) > 0. Moreover, considering the fact that G(α) is monotonically decreasing,
the actually optimal solution αopt that satisfies G(αopt) = 0 must be no smaller than α?, i.e., αopt ≥ α?.
Therefore, the obtained solution returned by Algorithm 2 when using Algorithm 3 is no larger than the
optimal solution of problem P0. Simulation results will demonstrate that the obtained solution is very
close to the optimal one that verifies the effectiveness of the proposed algorithm numerically.

Combining Algorithms 2 and 3, it is concluded that problem P0 can be solved efficiently by the
proposed TLD algorithm. Since the limits of the upper and lower bounds are updated iteratively,
the bisection procedure will stop any way. However, we may not have G(α) = 0.

4.2.1. Parallelized Implementation

Since problem (26) is decomposed into L subproblems, z(m+1) at step 8 in Algorithm 3 is updated
in a parallel manner with closed-form solution. Similarly, the beamformings w(m+1) and multipliers
y(m+1) are also updated using (35) and (36) in a parallel manner with closed-form solution. Therefore,
we derive closed-form expressions for the optimal beamformings, the optimal receiver filters and the
auxiliary variables in Algorithm 3, that provide some insights on the EEmax problem. For example,
if wl = 0 (no transmission power consumed by BS l), BS l can be switched off to save static power and
improve EE.
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4.2.2. Complexity Analysis

According to the algorithm flow, the computational complexity of Algorithm 3 contains two
parts. In Algorithms 3, the computational complexity of computing (20) arises from the matrix
inversion of the receive beamforming, i.e., O(L3). When the interior-point method is adopted to
solve P5, the computational complexity is O((LK)3.5) [39]. In this case, to serve K MUs, the overall
computational complexity is in the order of O(KL3 + (LK)3.5). On the other hand, since the ADMM
algorithm is applied to solve P5, the main computational complexity is the matrix inversion in step 9 of
Algorithm 3 where the transmit beamformings are computed by (35). Thus, the overall computational
complexity of Algorithm 3 is in the order of O(KL3 + KL3). For the outer layer algorithm, simulation
results will show that it converges rapidly (about 5 iterations). Therefore, we can deduce that the
proposed TLD algorithm is computation efficient.

4.2.3. Generalization to the Multi-Antenna System

Although a single-antenna is equipped at each BS and each MU in the above discussion, we claim
that proposed TLD algorithm can be generalized to the multi-antennas BSs and the single-antenna
MUs scenarios. This is because deployed multiple antennas (each with N antennas) at BSs, one only
needs to replace the corresponding channel coefficient hkl from BS l to MU k with hkl ∈ CN×1. Similarly,
the transmit beamforming coefficient wkl and receive beamforming coefficient uk from BS l to MU k
are replaced with vectors wkl ∈ CN×1 and uk ∈ CN×1, respectively. While el is replaced by el ∈ CN×1,
and the corresponding covariance matrice is E[eleH

l ] = diag(q11, ..., q1N). If ql = q11 = · · · = qlN ,
one only need to replace ql in (7b) and (7c) with Nql . Therefore, the proposed TLD algorithm can be
extended to solve the EEmax problem with multi-antenna BSs and single-antenna MUs but requires
additional efforts. Moreover, for the multi-antenna BSs and multi-antenna MUs C-RAN, we point out
that the weighted minimum MSE algorithm in [31] might provide some insights on how to apply the
proposed algorithm.

5. Robust Algorithms with Imperfect CSI

In practical C-RAN, due to the limited feedback [40], partial CSI [41] or estimated error,
the obtained channel is not perfect. According to [42–44], the imperfection in CSI has significantly
impact on the system performance. Therefore, we will extend the proposed algorithms in the previous
two sections to solve the robust EEmax problem in the presence of imperfect CSI.

The same system model is considered as in Section 2. Since the path-loss fading and the log-normal
fading can be estimated accurately, the imperfection usually comes from the uncertain small-scale
fading. Thus, different from the worst-case design [42,43], the Gaussian distribution in [44] is adopted
to model the channel imperfection. The real channel from BS l to MU k is expressed as

hkl = gkl(h̃kl + ∆̃kl),∀l, k, (37)

where gkl = GL(dkl)ϕkl is the channel gain consisting of the antenna gain G, the path-loss fading
L(dkl) at distance dkl in km and the log-normal random fading ϕkl . h̃kl and ∆̃kl are respectively the
estimated channel and channel uncertainty from BS l to MU k. ∆̃kl is assumed to be independent
identically distributed (i.i.d) zero mean circularly symmetrical complex Gaussian (ZMCSCG) random
variables with variance σ2

e . The channel from all the BSs to MU k is hk = gk(h̃k + ∆̃k),∀k, where
gk = diag(gkl, · · · , gkL), and h̃k and ∆̃k are the aggregated collection of h̃kl and ∆̃kl , respectively.
Let h̄k = gkh̃k, h̄kl = gkl h̃kl and Dk = diag(|gk1|2, · · · , |gkL|2). The received SINR at MU k is expressed as
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SINRk =
|h̄H

k wk|2

∑i 6=k |h̄
H
k wi|2 + σ2 + ∑L

l=1 ql(|h̄kl|2) + Υ
, (38)

where Υ = σ2
e Tr(Dk)∑K

i=1 |wi|2 + ∑L
l=1 qlσ

2
e denotes the interference caused by uncertainty part of CSI.

The first term of Υ contains the interference caused by the CSI error of the intended signal and the
signals of other MUs.

The robust EEmax problem has the same form as problem P0 by simply using the imperfect
channel, i.e., replacing hkl by (28). The details of the extended algorithms to solve the robust problem
with the consideration of imperfect CSI are given in the following two subsections, respectively.

5.1. Robust Optimal Algorithm

To apply the optimal algorithm under imperfect CSI, we only need to reformulate (8b) because
the CSI is only involved in (8b). In particular, (8b) is recast as

1
γ̃k

h̄kwk ≥
(

∑
i 6=k
|h̄H

k wi|2 + σ2 +
L

∑
l=1

ql(|h̄kl|2) + Υ

)1/2

, (39a)

Im(hkwk) = 0,∀k ∈ K. (39b)

Follow the same procedure as demonstrated in Algorithm 1, one only need to replace constraint (10a)
in problem P2 with (39a). In this case, the computational complexity is the same as Algorithm 1
(both of them are very high but provide optimal solutions).

5.2. Robust TLD Algorithm

Since the CSI is involved only in Rk, the TLD algorithm performs well to solve the robust EEmax
problem but requires some transformations. In particular, the out layer iteration of the robust TLD
algorithm follows the procedure as Algorithm 2. To solve the robust subproblem P3 in the inner layer,
Algorithm 3 cannot be applied directly. Fortunately, with the same transformations as Section 4.2,
the corresponding MMSE receiver can be expressed as

ũk =
h̄H

k wk

∑K
j=1 |h̄

H
k wi|2 + σ2 + ∑L

l=1 ql(|h̄kl|2) + Υ
, (40)

and the MSE of the k-th MU is

ẽk = E
[
|ũH

k yk − sk|2
]

= |ũk|2
K

∑
j=1

Tr
(

wj(h̄kh̄H
k )wH

j

)
+ |ũk|2σ2 + 1

− 2Re{ũkh̄H
k wk}+ |ũk|2(

L

∑
l=1

ql|h̄kl|2 + Υ). (41)

Then, with fixed {ũk} and {ρk}, the robust P5 with respect to {wk} and {ql} becomes

P8 : min
w,q

K

∑
k=1

ρk ẽk +
α

η̃

L

∑
l=1

pl (42)

s.t. (6b), (6c).
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We further reformulate problem P8 as

P9 : min
w

f̃ (wk) +
L

∑
l=1

µ̃l|w̃l|2 (43a)

s.t. (1+ βl)|w̃l|2 ≤ Pmax
l ,∀l, (43b)

where f̃ (wk) = ∑K
k=1

(
wH

k Ãwk −Re{b̃H
k wk}

)
, µ̃l = ∑K

k=1 ρk|ũk|2βl(|h̄kl|2 + σ2
e ) +

α
η̃ (1+ βl), and

Ã =
K

∑
j=1

ρj|ũj|2(h̄jh̄
H
j + σ2

e Dj), (44)

b̃k = 2ρkũkh̄k. (45)

Since problems P6 and P9 have the same form, the ADMM algorithm presented in the inner layer
of Algorithm 3 performs well in solving P9. Particularly, z is updated by (31), and {wk} is updated
using the following closed-form expression

wk = (2Ãk + cI)−1(2b̃k + czk + yk), (46)

where Ãk and b̃k are shown in (44) and (45), respectively.
The corresponding multipliers y are updated by (36). Similar to the TLD algorithm, the robust

TLD algorithm procedure is omitted here for brevity. It is easily verified that the robust TLD algorithm
is convergent, and it has the same computational complexity as the non-robust TLD algorithm, and it
achieves a suboptimal solution with closed-form expression in a parallel manner as well.

6. Simulation Results and Discussions

In this section, we evaluate the performance of the proposed algorithms via Monte-Carlo
simulation. We consider a downlink C-RAN with L = 5 single-antenna BSs and K = 4 single-antenna
MUs, where one BS locates at the circle centre, and the other four BSs are located in a circle region
at equal distances apart with radius 0.5 km, as shown in Figure 1. The four single-antenna MUs
are randomly deployed in the circle with uniform distribution. Each BS and MU are equipped with
a single antenna, and we set the maximum transmit power Pm = Pmax

l and the fronthaul capacity
C = Cl for all BSs. The convergence errors are set as ε for all the proposed algorithms. Unless specified,
other simulation parameters are listed in Table 1, and all the simulation results are averaged over
50 times independent MU locations, each with a single random channel realization. In order to verify
the effectiveness of the proposed algorithms, we consider two baseline algorithms for comparison:

SRmax algorithm: The proposed TLD algorithm is adopted to solve the SRmax problem by
simply setting α = 0.

DC algorithm: We also modify the algorithm proposed in [22] for comparison. Specifically,
to arrive at a tractable formulation, one can use the epigraph form of the original problem. Based on
the transformation, one can transform the constraints into convex ones by using the first-order Taylor
expansion. Then, the approximated problem is iteratively solved, and the solution converges to
a KKT point [22]. The computational complexity of the DC algorithm using the interior-point method
is O(ImaxL6.5K3.5N6.5) (Imax is the maximum of iteration number), which is much higher than the
TLD algorithm.
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BS 1

BS 3 BS 2

BS 4 BS 5

MU

0.5km

Figure 1. Simulation setup in a downlink C-RAN.

Table 1. Simulation parameters.

Parameter Value

Maximum transmit power Pm 1 W
Power amplifier efficiency η [4] 1/4
Transmit antenna power gain G 9 dBi
Background noise σ2 −104 dBm
Path-loss fading from BS l to MU k [4] 148.1 + 37.6log10 dkl
Log-normal shadowing ϕkl 8 dB
Static power Pc 2 W
Convergence errors ε=εADMM 10−5

Maximum iteration number 50

6.1. Non-Robust Performance

We first investigate the convergence behavior of the proposed algorithms over a typical random
channel realization for Pc = 2 W, Pm = 30 dBm, and C = 5 bits/s/Hz, which are presented in Figure 2.
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Optimal value

Figure 2. Convergence of the proposed algorithms over a typical random channel realization. (a) EE of
Algorithms 1 and 2; (b) Objective of problem P3 with α = 2.90 (at the 2nd iteration of Algorithm 2 in
Figure 2a).

It is observed that the outer layer (Algorithm 2) of TLD in Figure 2a converges to a near optimum
very fast (about 5 iterations). Meanwhile, Figure 2b illustrates that the objective function of problem (16)
of Algorithm 3 at the 2nd iteration of Algorithm 2 in Figure 2a increases and converges to a stationary
point in less than 30 iterations. Thus, the proposed TLD algorithm converges rapidly. It is also found
that the convergence rate of the optimal algorithm is much slower that the TLD algorithm. Due to
a large number of infeasible boxes being removed, the gap between upper and lower bounds of the
optimal algorithm reduces rapidly during the first iterations.
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Then, we explore the effect of fronthaul capacity on the performance in terms of EE, sum rate and
transmit power, shown in Figures 3–5, respectively.
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Figure 3. Average EE at various fronthaul capacities.
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Figure 4. Average sum rate at various fronthaul capacities.

The TLD algorithm achieves a comparable performance compared to the DC one in terms of EE.
Figure 3 shows the EE comparison among the four algorithms under different fronthaul capacities.
As an be seen from Figure 3 that the TLD and DC algorithms achieve an approximate EE performance as
the optimal one, and both of them outperform the SRmax one by about three times in the middle-high
fronthaul capacity region. Since the network power is penalized in (7a), and the sum rate and power are
jointly optimized, the EE is improved compared to SRmax. This can be explained from Figures 4 and 5
that the saved ratio of the transmit power of TLD (save for about 95% compared with SRmax) is much
higher than its sum rate reduction ratio (decrease by about 50% compared with SRmax), resulting in
a higher EE. It is also observed from Figure 3 that the EE performance increases with the growing
fronthaul capacity in the low fronthaul capacity region, and then gradually converge to a constant in
the middle to high fronthaul capacity region, and a similar trend can be found in Figure 4. According
to the expression of quantization noises (QN), i.e., ql = 1

2C−1 ∑K
k=1 |wkl |2, it reduces exponentially

with the increasing fronthaul capacity (shown in Figure 5). As a result, at low fronthaul capacity
region, the SINR is limited by the high QN, leading to a low sum rate in this region. Moreover, the
corresponding data transmit power (DTP) in Figure 5 increases very slowly from low to high fronthaul
capacity region. That because with the increase of the fronthaul capacity, more powers of DTP and QN
are consumed to improve the sum rate. However, more network power is consumed which makes the
increment of EE gradually. It should be noted that the optimal algorithm cannot provide DTP and QN
but only the total network power, as a result only the transmit power (sum of DTP and QN) of the
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optimal algorithm is given in Figure 5. In summary, Figure 3–5 illustrate that the TLD and optimal
algorithms can achieve the balance between the sum rate and power consumption, implying a much
higher EE than the SRmax one.
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Figure 5. Average power consumption at various fronthaul capacities.

Figure 6 compares the EE performance with respect to the maximum transmit power Pm for
a given fronthaul capacity C = 5 bits/s/Hz. It is observed that TLD and DC significantly outperform
the SRmax in terms of EE in the middle to high transmit power region (≥18 dBm). This is because
by jointly optimizing the sum rate and network power, the increased sum rate is slightly larger than
the increased power consumption ratio, resulting in a gradually increase of EE. While for the SRmax
algorithm, because of the interference between MUs, its sum rate gain cannot compensate for the
negative impact of the network power, making its EE worse than the TLD and DC algorithms in
the event that Pm ≥ 18 dBm. It is also observed that the optimal, and TLD and DC algorithms have
comparable EE performance as the SRmax one at low maximum transmit power (≤18 dBm), which
suggests that at this region, transmitting with the maximum transmit power provides comparable sum
rate gain for the optimal, EEmax and SRmax algorithms.
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Figure 6. Average EE versus maximum transmit power with Pc = 2 W and C = 5 bits/s/Hz.

To investigate further, we also test the impact of static power consumption on the EE performance
of the proposed algorithms, shown in Figure 7. It depicts that, at low to middle static power (Pc ≤ 6 W),
the EE of the optimal, DC and TLD algorithms decreases significantly with the growing static power Pc.
This can be explained that the static power dominates the network power at this region and the
transmit power is optimized as well, leading to a rapid decrease of EE. Whereas, since the maximum
transmit power is usually adopted by the SRmax algorithm for transmission and it accounts for a large
amount of the network power for Pc ranging from 2 to 10 W, the decrease EE of the SRmax algorithm
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becomes gentle. These facts bring a higher EE performance for the TLD algorithm than the SRmax at
different static powers.
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Figure 7. Average EE versus static power with Pm = 30 dBm and C = 5 bits/s/Hz.

The effect of MU number on the EE performance is also investigated with C = 5 bits/s/Hz,
Pm = 30 dBm and Pc = 2 W, which is shown in Figure 8. We learn from Figure 8 that, with more
MUs to be served, the EE of the TLD and DC algorithms increase significantly and exhibits obvious
advantage over the SRmax one, e.g., higher than SRmax by more than 300%. Intuitively, the data rate of
each MU decreases with the growing number of served MUs due to the increased interference between
MUs. The obtained sum rate gain is very large when the serving MU number is small, while the sum
rate increases much more slowly if the served MU number is large. It is attributed to the rapidly
increase of interference among MUs by serving large number of MUs, implying a data rate reduction
for each MU and a slightly increase on the sum rate of all MUs. Besides, more transmit power is needed
to achieve the sum rate gain when serving more MUs, which also perform negative for boosting EE
performance. It should also be noted that by further increasing the number of MUs, the EE of all the
four algorithms will firstly become stable and then show a decrease trend. This is because, due to the
increased interference caused by increasing the MU number, the decreased sum data rate of MUs is
much larger than the increased data rate brought by the newly added MUs.
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Figure 8. Average EE versus MU number with Pm = 30 dBm, C = 5 bits/s/Hz and Pc = 2 W.

6.2. Robust Performance

The EE performance of the proposed robust TLD algorithm is investigated over the channels
with different channel errors, and the results are shown in Figure 9. Similar to the non-robust design,
each point in Figure 9 is averaged over 100 channel realizations. In the simulation, σ2

e = 0 means
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perfect CSI is known at the CU. It was observed in the previous subsection that the SRmax algorithm
has a worse EE performance than that of the TLD (TLD has near optimal performance), and thus we
only plot the EE curve of robust TLD algorithm under different CSI errors. Due to the high complexity
imposed by the DC algorithm, we do not compare it with the TLD in this section.
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Figure 9. Average EE versus fronthaul capacity with different channel errors, Pm = 30 dBm, Pc = 2 W
and C = 5 bits/s/Hz.

We can see from Figure 9 that by increasing the channel errors from σ2
e = 0 to σ2

e = 10−2, the EE
performance decreases significantly especially in the middle to high fronthaul capacity. In the low
fronthaul capacity region, according to (38), the received SINR is slightly influenced by the channel
errors since the increased interference is very small. While a worse sum rate is obtained in the middle
to high fronthaul capacity due to the impairment of channel error on the received SINR, and more
amount of transmit power is consumed in order to achieve the same sum rate for a larger channel
errors. As a result, the sum rate gain cannot compensate the network power reduction that caused by
the channel error, resulting in lower EE. In summary, the EE performance is susceptible to the channel
error especially for a larger channel error.

7. Conclusions

In this paper, we have studied the EEmax problem with fronthaul compression in a downlink
C-RAN. The optimization problem is formulated as a non-convex fractional programming problem.
We have proposed an optimal algorithm based on BnB method to provide a performance benchmark.
Further, a near optimal TLD algorithm has been proposed via a bisection search procedure in
conjunction with an ADMM method. The proposed algorithms were guaranteed to be convergent,
and the solution of TLD was achieved with closed-form in a parallel manner. Simulation results
illustrated that the TLD algorithm converged to a near optimal solution very fast, and it achieved
a much higher EE than the SRmax algorithm. The results further indicated that EE could be improved
by increasing the fronthaul link capacity or optimizing the network power. Numerical analysis also
demonstrated that the robust TLD algorithm can provide robust performance in the case of lacking
perfect CSI, and its performance is susceptible to the channel error.
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