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Abstract: Public-key cryptography is too slow for general purpose encryption, with most applications
limiting its use as much as possible. Some secure protocols, especially those that enable forward
secrecy, make a much heavier use of public-key cryptography, increasing the demand for lightweight
cryptosystems that can be implemented in low powered or mobile devices. This performance
requirements are even more significant in critical infrastructure and emergency scenarios where
peer-to-peer networks are deployed for increased availability and resiliency. We benchmark several
public-key key-exchange algorithms, determining those that are better for the requirements of
critical infrastructure and emergency applications and propose a security framework based on these
algorithms and study its application to decentralized node or sensor networks.

Keywords: public-key; key exchange; lightweight cryptography; elliptic curve; security; privacy;
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1. Introduction

Public-key cryptography is very demanding in terms of computing power but unavoidable in
most modern secure applications, even those intended for low power or mobile devices. For this
reason, public-key cryptography has been considered too slow for general purpose encryption, with
applications employing public-key cryptography exclusively to securely share keys for the much
faster standard symmetric-key cryptography (see [1,2]); limiting, in this way, the use of public-key
cryptography as much as possible.

With the recent aim of perfect forward secrecy in many protocols, however, this model is no
longer possible since these algorithms generate new key pairs and exchange secret keys per session
and sometimes even per message (see [3–5]); therefore increasing the demand for lighter public-key
cryptography, especially for peer-to-peer applications involving mobile wireless devices.

Moreover, secure communication protocols based on peer-to-peer and other types of ad-hoc
networking are especially useful in critical infrastructure and emergency situations since they can
enable improved coverage, resiliency, connectivity, security, anonymity and data privacy in these
challenging applications.

The main contributions of this paper are:

• Performance analysis of several state-of-the-art public-key key-exchange cryptographic algorithms
(see [6]) in order to find those that are most suitable for critical infrastructure and emergency
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applications, embedded and low power computing platforms or sensor networks. These
primitives can be implemented successfully on most modern platforms with sufficient computing
power such as standard ARM system on a chip (SoC) or similar environments, mobile devices
and other computing nodes that can support wired or wireless communications.

• The design of a security framework employing the analyzed primitives, with the aim of adding
security to a previously published peer-to-peer audio conferencing protocol over a hypercube
topology (see [7]). This framework employs an authentication system inspired by traditional
Public Key Infrastructure systems since it is meant for tightly controlled sensor or node networks
and is based primarily on the recent FourQ elliptic curve [8,9] and well-known AES cryptosystems
due to performance reasons, but other authentication methods and cryptographic primitives are
also discussed.

The rest of the paper is organized as follows: Section 2 contains the state of the art analysis as
well as performance results and insight of alternative key exchange protocols that could be used in
certain scenarios, Section 3 presents our proposal for a security framework and Section 4 concludes the
paper with some remarks and future research possibilities.

2. State of the Art Analysis

We describe in the following some public-key protocols that are commonly used for symmetric
key agreement, with a special focus on performance.

2.1. RSA

Extremely popular, RSA is one of the first practical public-key cryptosystems (first published
in 1977 by Ron Rivest, Adi Shamir and Leonard Adleman) and bases it security on the difficulty of
factoring the product of two large prime numbers. Whether breaking RSA is as hard as the factoring
problem is still an open question; although, if the public key is large enough, only someone with the
knowledge of these two prime numbers can decode the message in a feasible way.

Unlike the other algorithms considered in this paper, RSA is a full public-key cryptosystem capable
of directly supporting data encryption/decryption, key exchange and digital signature. As other
public-key cryptosystems, RSA is too slow for general purpose data encryption, so it is mainly used to
securely exchange symmetric keys and other small values. For more information see [2,10].

2.2. Diffie-Hellman

The Diffie-Hellman (DH) key exchange protocol was originally conceptualized by Ralph Merkle
and designed by Whitfield Diffie and Martin Hellman in 1975. Its security is based on the discrete
logarithm problem, which is considered unfeasible for groups of large enough order; unlike RSA,
the DH key exchange protocol is not a full public-key cryptosystem and only enables for the exchange
of a secret value that can be used for symmetric keys or other purposes, but does not support data
encryption/decryption or digital signature directly.

The shared value is dependent on the asymmetric key pairs of both ends of the conversation,
so new keys must be generated if a new secret is required. Protocols that achieve forward secrecy
(see [3,4]) generate new key pairs for each session, discarding the old ones for each new session; the DH
key exchange protocol is a common choice for these protocols since key pair generation is very fast.
See [2] for additional information.

2.3. Elliptic Curve Diffie-Hellman

As in Section 2.2, the elliptic curve Diffie-Hellman (ECDH) key exchange protocol allows both
ends of a conversation to establish a shared secret. It is an adaptation of the DH key exchange protocol
but employing elliptic curve cryptography, which has some advantages in terms of key length and
overall performance.
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The ECDH protocol requires that both parties agree, prior to secure communication, on domain
parameters and each party must generate a suitable key pair consisting of a private key d (a randomly
selected integer in a certain interval) and a public key Q (a point in the curve). These public keys
can either be static (and trusted via certificate) or ephemeral (usually referred to as ECDHE) that are
temporary and not authenticated.

The National Institute for Standards and Technology (NIST) standardized some elliptic curves
suitable for cryptography (see [11]) in different security levels. Elliptic curve cryptography is a vast
and complex field, for more information see [12,13].

2.3.1. Curve25519

Also referred to as X25519, Curve25519 is an ECDH key exchange protocol targeting the 128-bit
security level and offering vastly improved performance compared to the traditional NIST elliptic
curves. It was released by Daniel J. Bernstein in 2005 and constructed in such a way that it avoids
many common problems in its implementation; eliminating, by default, many side channel attacks
and issues with poor-quality random-number generators.

Besides pure performance, some suspicious aspects of the NIST P curves constants (there have
been some concerns regarding their origin) have increased the popularity of Curve25519, making it
the default for modern protocols like WhatsApp [5] and Signal [4], among others. For more detailed
information regarding Curve25519, see [14–16].

2.3.2. FourQ

FourQ is a high-performance elliptic curve that also targets the 128-bit security level. It is a fairly
recent state-of-the-art design, being released by Microsoft Research in 2015 (see [8,9]); therefore, it is
not used yet in standard or well-known protocols.

Its high performance stems from a four-dimensional decomposition minimizing the total number
of elliptic curve group operations, extended twisted Edwards coordinates enabling the fastest
known elliptic curve addition formulas, and extremely fast arithmetic modulo the Mersenne prime
p = 2127 − 1. With this optimizations, FourQ is claimed to be between 4 to 5 times faster than NIST
P-256 curve and 2 to 3 times faster than Curve25519.

2.4. Performance Analysis

In this section, we analyze the performance of several public-key algorithms in terms of key
pair generation and secret exchange (key agreement). These two operations form the basis of most
secure protocols that involve communication over insecure channels and are a suitable performance
benchmark for such cases.

All benchmarks have been performed employing optimized implementations on an Intel Core
i7-5930k CPU with 32 GB of RAM running Windows 10 Enterprise 64-bit, with all measurements
computed as the average over 100 cycles of each specific operation and take into account a single
side of the conversation (a single key pair generation and the calculation of a single party of the
secret exchange).

In the case of RSA, the exchanged secret was 32 bytes (256 bit) long, and the exchange was
performed by simple encryption with the recipient’s public key; in the rest of the algorithms,
the exchanged secret was the expected length as per the algorithm’s design and parametrization.

We describe in Table 1 the key lengths required to achieve an equivalent security level with
different algorithms (see [17]). We have targeted the 128-bit symmetric-equivalent security level, taking
the following key lengths for each algorithm:
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• RSA (3072 bit),
• Diffie-Hellman (3072 bit),
• Elliptic curve Diffie-Hellman (NIST P-256, which has a 256 bit key length),
• Curve25519 (key length is fixed at 256 bit),
• FourQ (key length is fixed at 256 bit).

Table 1. Required key length in bits for equivalent security.

Symmetric RSA/DH ECDH

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15,360 512

2.4.1. Key Pair Generation

We can see in Figure 1 that RSA is severely impacted by the long bit length required to maintain
the security level target. Standard Diffie-Hellman is a bit slower than the elliptic curve variants,
which all seem to be equivalent at this scale, but it is much quicker than RSA.

If we only take into account the elliptic curve Diffie-Hellman based algorithms, shown in Figure 2,
we can see that the standard NIST P-256 curve is several times slower than Curve25519, and that
FourQ is almost 2 times faster than Curve25519.

Figure 1. Time required (in seconds) for the generation of a single key pair.
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Figure 2. Time required (in seconds) for the generation of a single key pair (elliptic curve algorithms only).

2.4.2. Secret Key Exchange

In the case of the secret value exchange operation, the situation is reversed from the previous
section with standard Diffie-Hellman being much slower than the rest of the algorithms and RSA
being a bit slower than the elliptic curve variants (see Figure 3). It should be remarked that the overall
times required for secret exchange are much less than the times required for key pair generation.

Moreover, focusing exclusively on the elliptic curve Diffie-Hellman variants (Figure 4), we find
again that there are very tangible performance benefits with the Curve25519 and, especially, FourQ
ECDH schemes.

Figure 3. Time required (in seconds) for the exchange of a secret key on a single side of the communication.
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Figure 4. Time required (in seconds) for the exchange of a secret key on a single side of the
communication (elliptic curve algorithms only).

2.5. Key Exchange Protocols

The direct application of key exchange algorithms based on asymmetric cryptography is
vulnerable to Man-In-The-Middle (MITM) attacks; these can be prevented employing an authentication
mechanism involving shared secret information with well-known techniques such as Certification
Authorities (CA) and Public Key Infrastructure (PKI). This approach can be valid for friend-to-friend
or previously registered node networks since the authorization phase is done as an offline initialization
process, but can lead to performance and scalability issues in open peer-to-peer networks where there
are no previous relationships between nodes. These situations require alternative side channels like
ZRTP [18], where peers read aloud a short authentication string or a combination of authentication
methods such as the 3AKEP protocol (see [19]).

3. Security Framework

In this section, we describe a security model based on the algorithms studied earlier in Section 2.
This framework has been designed to add security to a decentralized or peer-to-peer network of low
power autonomous computing nodes (such as smart phones) based on a hypercube topology with
multiple applications in real-time streaming, like multi-party audio conferencing (see [7]), but it can
also be adapted to other types of network topologies and node characteristics, since the security model
described in the following is flexible enough to be suitable for a wide range of applications (see [20,21]).

All figures in this section follow a uniform notation representing the cryptographic methods
and concepts employed in graphical form. In this way, public keys are shown as a green key icon,
while private keys are shown in red and session keys in purple. Encrypted communications are
represented as a continuous arrow line using the involved key color, while discontinuous arrow lines
indicate secondary channels. Identification data together with a public key (certificates) are shown
together as a paper to be signed; digital signatures are indicated as a red stamp.

3.1. Node Types

Regarding permissions or roles, we can distinguish four types of nodes: root, registered, registrar,
and unregistered nodes; these are described in the following.
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3.1.1. Root Node

The root node, Nroot, would correspond to the CA on a conventional PKI setup (as shown
in Figure 5); being in charge of legitimatizing the relationship between a public key and a node
identifier. Initially, it is also the only Registration Authority (RA); although it is possible to delegate
this responsibility to other registered nodes, registering new nodes that have been approved by other
registered nodes. It is the first node in the network and acts as the network administrator.

The root node is convenient in applications where there is a set of previously registered nodes
such as friend-to-friend networks or in tightly controlled sensor networks where authentication is
performed in the initialization stage. In the case of open peer-to-peer networks, where a CA approach
might not be adequate in terms of scalability or performance, the trust-adaptive approaches described
in [22] are a further possibility, being a valuable option in scenarios where decentralization is critical.

Figure 5. Node type relationship with traditional PKI roles.

3.1.2. Registered Node

A registered node is a node that has been accepted and is a member of the network. In this scheme,
in order to communicate and verify the identity of the rest of registered nodes, every registered node
must have a public key that has been signed by Nroot and its associated private key, the public key of
Nroot, and an updated copy of the revocation list.

3.1.3. Registrar Nodes

In a conventional PKI setup, registrar nodes would correspond to the Registration Authority.
They take part in the node registration process, verifying the relationship between an unregistered
node and its public key, as well as forwarding the public key to the root node so that it can be signed
and accepted by the rest of the network.

Every registered node in the network can be, potentially, a registrar node, but only those chosen
by Nroot will have this role in the network. This kind of node is optional and only applicable to those
applications where delegated registration is required or makes sense.
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3.1.4. Unregistered Nodes

Any node that does not pertain to the network for any reason (expelled, not yet registered, etc.) is
considered an unregistered node.

3.2. Network Setup

The initial setup of the network comes from a node initiating the process of establishing itself as
the root node. After this process, there will be a network with a single node, that will grow after the
registration of other nodes in the network.

This process consists of the generation of a public-private key pair and self-signing its public key
and initializing the required repository to store the public key and the data associated to the nodes
that will be added to the network.

3.2.1. Node Addition

As seen in Figure 6, a node (Ni) can request access to the network either by contacting the root
node to be authenticated or contacting a node with RA permissions (NRA).

Figure 6. Network setup diagram.

In the case of requesting access directly to the root node, Nroot must check the identity of Ni using
an authentication method that provides an adequate security level for the network. In this process,
Nroot verifies the relationship between the real identity and the public key of Ni, which has been
self-generated. Then, Nroot signs the public key and returns it securely to Ni together with its own
public key. The exact mechanism for identity verification is application specific, so this framework is
open-ended in this regard.

The channel used to perform this key exchange also depends on the security level required by
the network but, for a medium-high security level, could consist of Near Field Communication (NFC)
and/or Quick Response (QR) codes.
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If the addition process is performed by a NRA then, after verifying the relationship between
the real identity and the public key of Ni, it must transmit the registration request securely to Nroot.
This transmission can be instantaneous if both NRA and Nroot are online, or delayed until both nodes are
available. In this case, NRA must store the registration request until it can be transmitted and, therefore,
Ni will not have complete access until Nroot successfully registers Ni and propagates its credentials
through the network. When Nroot receives the registration request, it can accept it automatically if
it comes from a trusted registrar node or follow other protocol depending on the specific needs or
characteristics of the network.

Regardless if the registration has been performed directly against Nroot or with a trusted NRA,
the root node must:

• Sign the public key of Ni.
• Assign Ni an identifier in the network.
• Add the signed public key of Ni to the repository.
• Propagate the new repository to all members of the network as they become available.

Once the new credentials are available to the network, then Ni is accepted as a new member by
the rest since they can check its signed public key against the repository. Propagation of the repository
is performed via system messages within the underlying hypercube topology described in [7].

3.2.2. Registration Delegation

As described previously, the root node can decide to automatically register any node that has been
registered by other registrar nodes. This can be implemented simply by adding the identifiers of these
NRA nodes to a list of trusted registrar nodes. This framework is open-ended regarding registrar trust
implementation since it can be entirely application specific: in some cases it might be convenient to
utilize real life relationships, node operator judgment or algorithmic methods such as trust scores, etc.

3.2.3. Node Exclusion

In order to exclude a node from the network, the root node must add its identifier to the revocation
repository and make sure this updated list is propagated correctly through the rest of the network.
In this way, the nodes excluded via the revocation list will be ignored in future propagation of the
network credentials repository.

3.3. Service Setup

In the hypercube protocol described in [7], a service corresponds to a real-time audio stream
involving a set of nodes (speakers and listeners) in the network. In order to support multiple
simultaneous conversations, the protocol allows for multiple concurrent services to be taking place
at any one time. Services can support other data streams such as video, geopositioning, file
transmission, etc.

As shown in Figure 7, when a node Ni decides to initiate a service S, it will need to generate a
session key and send it, together with the parameters describing the type of service, to the rest of
nodes that will be added to that service. This communication will be performed via a network control
message through the secure channel that is available to all network members.

From this moment onwards, node Ni is considered an administrator node within S and will await
the response of all the nodes invited to service S. Although most nodes will be added to S during the
initialization phase, it is possible for Ni to add new nodes at a later stage.

In Figure 8, we can see a chronogram representing the creation of two services between four
nodes of a five node network (N0, N1, N2, N3, N4). Both, N2 and N4 initiate a service; N2 transmits the
session key of its created service (S1) to N1 and N3; conversely, N4 is doing the same with N3 and its
service (S2). After the message exchange regarding admission and information of each service, it can
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be observed that two services have been created: S1 = N2, N3 and S2 = N3, N4. Node N1 has not been
able to accept its invitation to service S1, since it is offline.

Figure 7. Services (in purple) within a network (in green).

Figure 8. Service initialization chronogram.
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3.3.1. Node Addition

When a node Ni is invited by an administrator node to participate in a communication service S,
it can accept that invitation within the lifetime of the session key by sending a service control message
encrypted with the received session key. Then, the administrator will add Ni to the repository of nodes
pertaining to the service and will propagate this information among all nodes already pertaining to S.

3.3.2. Service Topology Management

With the updated local copy of the repository of nodes pertaining to S, each node is capable of
determining its own representation of the service topology and transmitting the required information
accordingly. When a node detects that another node has disconnected or is malfunctioning,
whether intentional or due to network conditions, it will send a service control message to the
administrator node so that it can consider the exclusion of the malfunctioning node from S.

Another important aspect to be considered in the management of a service is that session keys are
changed when their lifetime expires. This not only increases cryptanalysis difficulty but also allows to
automatically expire unanswered invitations to S.

3.3.3. Node Exclusion

A service administrator node can decide, either automatically (depending on configuration
parameters) or manually, to exclude a node from the service according to the service control messages
that have been received and its own acquired information. In order to do this, the administrator node
will delete the excluded node from the repository of nodes pertaining to the service, generate a new
session key and propagate it to the remaining nodes in the service. As soon as these nodes receive this
information, they will recalculate their topology with the new parameters and act accordingly.

3.4. Data Encryption

All packets sent from node Ni to a different node Nj are encrypted in transit. In order for the
data to be decrypted correctly, packets need to have additional unencrypted fields indicating the type
of packet and the node identifier which will correspond to the root node for a network message and
the service administrator node for a service message; also allowing to choose the correct decryption
method depending on the type of message (network or service).

In the implementation described in [7], the type field allows for 24 = 16 different types,
with 0 indicating a network message and 1 to 15 indicating a specific service, limiting the total
number of simultaneous services to 15. This is adequate for most applications but can be adjusted if a
different range is needed.

3.4.1. Authentication

Authentication can be performed employing the Elliptic Curve Digital Signature Algorithm
(ECDSA, see [23]) with the FourQ elliptic curve for performance reasons. In this way, every node will
have a non-ephemeral key pair with the public key signed by the root node for authentication purposes.

3.4.2. Network Level Encryption

Network packets are always node-to-node communications. Data can be encrypted with a session
key that is securely shared via an ECDH based on the FourQ elliptic curve, again for performance
reasons. Each node has a set of encryption public/private key pairs for ECDH that is different than the
authentication keys. If forward secrecy is desired, these keys can be ephemeral and implementing a
double ratcheting algorithm, as described in the Signal protocol (see [3–5]). For symmetric encryption,
the Advanced Encryption Standard (AES) in Galois/Counter Mode (GCM, see [24]) is an excellent
option than can provide data integrity together with encryption. A 128-bit symmetric key is advised
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(see Table 1) since it is of equivalent security level to the FourQ elliptic curve public key cryptography
discussed in this section.

3.4.3. Service Level Encryption

Service packets are encrypted using symmetric encryption with the active session key that has
been previously transmitted to those nodes pertaining to the service. This receiving nodes can decrypt
the service packets with their stored copy of the active session key for that service. This session key
is changed on node exclusion to guarantee that an excluded node will not have access to the active
session key and, therefore, will not be able to decrypt any service packet after the exclusion takes place.
This is guaranteed even in the case the excluded node (or an attacker) manages to capture the network
traffic associated to the service.

The session key is generated by the service initiator and propagated through the service nodes
by the means of network level messages. Once this key has been distributed to all service nodes then
symmetric data encryption (AES) is used for all service packets.

Forward secrecy can be enabled by forcing a periodic session key change, so that service nodes
replace their ephemeral network level key pairs, a new session key is propagated through ECDH and
the service is restored.

4. Conclusions

In this paper we have analyzed several commonly used and state-of-the-art public-key
key-exchange protocols with the aim of establishing the best algorithms for lightweight cryptography
in critical infrastructure and emergency scenarios.

With the results obtained, it is very clear that elliptic curve algorithms not only present a certain
advantage in terms of key length but, also, a very tangible improvement in overall performance.

These performance improvements are even more significant in critical infrastructure and
emergency scenarios where peer-to-peer networks of small wireless devices might be deployed to
increase coverage and resiliency to power, cable communication or other standard infrastructure
disruptions. In this way, these systems can provide valuable information, communication,
and coordination tools like secure messaging, positioning, voice or video conferencing, etc.
Therefore, lighter weight cryptography means more efficient use of computing power and battery,
which might be a deciding factor.

In those cases where communication protocols implement forward secrecy, it is paramount that
key generation is as fast as possible since ephemeral ECDH key pairs are generated per message.

It should also be remarked that, although it is very slow compared to ECDH algorithms, RSA has
an advantage for some applications where key pairs are not generated frequently but short values (like
secret keys, beacons or other types of granular data) must be encrypted with public-key cryptography.

In most applications, however, FourQ ECDH key exchange would be optimal, especially since
the authors have already performed an optimized implementation for ARM processors, which are
used by most current mobile device manufacturers. Unfortunately, due to its novelty, it has not been
incorporated into common secure protocols yet.

We have also proposed a framework intended to provide security to a previously published
real-time audio conferencing protocol based on a peer-to-peer network of nodes in a hypercube
topology. This framework builds on the analyzed public-key primitives, including usage of the FourQ
ECDH key exchange and ECDSA digital signature algorithms, as well as AES in GCM mode to provide
symmetric encryption and data integrity. The proposed framework is, nevertheless, flexible enough to
support a wide range of applications.

Detailed implementation and performance analysis of the proposed framework and its adaptation
to different applications is planned to be performed in the future. Further analysis of registrar trust
and real identity verification schemes for specific applications would also be very interesting.
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