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Abstract: Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed,
which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high
sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels
in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed
so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image,
which is then again converted into the final color image by using conventional demosaicing methods,
i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on
a totally different color interpolation technique, the colorization algorithm. The colorization algorithm
was initially proposed for colorizing a gray image into a color image using a small number of color
seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter
array can be designed with a very large number of W pixels to make the most of the highly sensitive
characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large
proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the
array. The colorization algorithm makes it possible to reconstruct the colors from such a small number
of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR
value, especially higher than those of conventional CFAs in low light condition. Experimental results
show that many important information which are not perceived in color images reconstructed with
conventional CFAs are perceived in the images reconstructed with the proposed method.

Keywords: RGB-White; color interpolation; colorization; low light conditions; randomly sampled
pattern; color filter array

1. Introduction

Up to the present, most digital imaging systems obtain a full color image using a single sensor
to reduce the cost and size of the system. The surface of the sensor is covered by a patterned color
filter, called the color filter array (CFA), where each pixel in the pattern passes through only a certain
color corresponding to a particular spectral band. The most widely used CFA pattern is the Bayer CFA
pattern [1], where each pixel passes through only one of the primary colors (Red, Green and Blue),
and the ratio of the numbers of the R, G, and B pixels is 1:2:1. Since each pixel captures only one of the
primary colors, the other missing colors have to be obtained by interpolating neighboring colors. A lot
of research has been done to find a good interpolation technique that reconstructs the missing colors
as good as possible with respect to the given color filter array [2–11].

In order to use spectral information other than the RGB channel spectrum, a lot of study have been
done on multispectral filter arrays [12–16]. By utilizing the additional spectral information obtained
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by the multispectral filter array, it is possible to reduce color artifacts [12,13], discriminate objects more
precisely [14], and obtain invisible information such as that of NIR [15,16]. Simultaneously with these
researches, demosaicing methods for various patterns have been also developed [17–21].

Recently, new CFA patterns [22–25] and demosaicing methods [18–21] have been proposed
which also contain panchromatic “white” (W) pixels in the pattern. The W pixel has a much wider
spectral band than the R, G, and B pixels as shown in Figure 1, and therefore can absorb more photons
than other color pixels, making it more robust against the image noise. There are many causes of
image noise, which is produced by the sensors and circuitry of a digital imager [26,27]. The fact that
the W pixels are more robust against the noise is due to the fact that the signal to noise ratio (SNR)
increases as the number of captured photons increases. This is especially true in low light condition,
since in low light condition, the energies of the signal and the noise are similar and increasing the
energy of the signal has a great effect in the SNR value. With conventional methods, the conversion
from the acquired RGBW pattern to the color image is usually done in two steps: first, the conversion
of the RGBW pattern to the widely used Bayer CFA pattern, and second, the conversion of the Bayer
CFA pattern to the color image. The reason that the RGBW pattern is first converted to the Bayer
CFA pattern is that this conversion is relatively easy and that numerous demosaicing and denoising
algorithms [2–11,28,29] exist for the Bayer CFA pattern. Furthermore, conventional Bayer-oriented
imaging signal processors(ISP) can be utilized with this approach. However, the reconstructed color
image is degraded by this two-step conversion, since both steps introduce aliasing artifact and color
distortion, which aggravates when combined together.

(a) (b) (c)

Figure 1. (a) W channel and (b) RGB channel images in the low light condition(1lux); and (c) the
transmission graph of the R, G, B, and W color filters in the visible spectrum band.

In this paper, we propose a new RGBW CFA pattern that has a large ratio of W pixels in the
pattern and also propose the corresponding demosaicing method for this pattern. Due to the large
ratio of W pixels in the CFA pattern, a large amount of light can be absorbed by the CFA pattern,
resulting in a reconstructed color image with a high SNR value. Therefore, the proposed RGBW CFA
pattern shows a great advantage over conventional ones in low light condition, since in low light
condition, the quality of the reconstructed color image depends critically on the energy of the light
absorbed by the CFA. The proposed demosaicing method for the proposed CFA pattern is based on
the colorization technique which was initially proposed for automatic colorization of a gray image by
the computer graphic society. The proposed demosaicing method is capable of recovering the RGB
color channels from a small set of color pixels, which is the main reason that the proposed CFA pattern
can have a relatively small set of RGB pixels while leaving a large space left for W pixels. Furthermore,
the demosaicing method directly converts the proposed RGBW CFA pattern image to the color image,
and therefore, the aliasing artifact introduced by the two step conversion in conventional RGBW CFA
methods is reduced.

2. Preliminaries

To understand the proposed method, the following preliminaries have to be understood.
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2.1. RGB-White CFA

A conventional Bayer CFA pattern contains twice as many G pixels as the R and B pixels as shown
in Figure 2a. This is due to the fact that the spectral band of the G channel lies between the R and
B channels, and therefore, has a relatively high spectral correlation with those channels. Furthermore,
the G channel is highly related with the luminance channel of the image, and therefore, has a large
influence on the perceptual quality of the color image, thus, it is advantageous that the G channel
possesses a large portion of the CFA pattern.

(a) (b) (c) (d) (e) (f)

Figure 2. Various CFA patterns: (a) Bayer [1]; (b) Sony RGBW [22]; (c) Yamagami [23]; (d) Gindele [24];
(e) Compton [25]; and (f) Proposed RGBW.

However, as can be seen in Figure 1, compared to the G channel, the W channel has a much wider
spectral band and also a larger overlapping region with the R and B spectral bands. Due to the wide
spectral band, the W channel absorbs more light than other channels, and therefore, has a larger SNR
value than other channels, which is especially true in low light condition. Furthermore, the W channel
can be regarded as the luminance channel, and contains by itself most of the perceptual information in
the image. Due to those facts, recently, it has been considered to use the W channel as the major channel
in the CFA pattern, and many different RGBW CFAs have been proposed. For example, Figure 2b
shows the RGBW CFA proposed in [22].

Compared with other RGBW CFAs [22,23,25] where the W pixels occupy about 50% of the CFA
pattern, the proportion of the W channel in the proposed CFA pattern is much higher. This is possible
because we use a color interpolation method based on the colorization technique, which can recover
the colors in the large proportion of white pixels.

(a) (b) (c)

Figure 3. Comparison of (a) the original image; (b) the gray image with few number of color seeds;
and (c) the colorized result of (b).

2.2. Levin’s Colorization

The color interpolation method for the proposed CFA is based on the colorization method [30].
In this method, a color image is estimated from a monochrome image with a small number of color
seeds which contain the chrominance information as shown in Figure 3. In [30], Levin et al. propose
how to formulate the colorization process as an optimization problem. Let M denote the number of
pixels in the color image, r be the pixel position index in raster-scan order (1 ≤ r ≤ M), y be an M× 1
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vector denoting the luminance channel, u, an M× 1 vector denoting the chrominance channel (U or V)
to be solved, and x, an M× 1 sparse vector containing the chrominance values only in certain positions
(called as the representative pixels) and zeros in all other positions. Furthermore, let Ψ be the set of all
r where x(r) 6= 0, and N(r) be the set of the 8-neighborhood pixels of the r-th. The colorization process
is performed by minimizing the following energy function:

J(u) = ∑
p∈Ψ
{x(p)− u(p)}2 + ∑

r/∈Ψ
{u(r)− ∑

s∈N(r)
ωrsu(s)}2. (1)

Here, ωrs is a weighting value defined by

ωrs ∝ e(y(r)−y(s))2/2σ2
r . (2)

Define the weighting matrix W of size M×M as follows

W(r, s) =

{
ωrs if r /∈ Ψ and s ∈ N(r)
0 otherwise,

(3)

and define A = I−W, where I is an M×M identity matrix. Then, (1) can be expressed as

J(u) = ‖x−Au‖2. (4)

The minimizer u of J(u) is the color channel constructed from the small number of color seeds,
i.e., from x. The colorization technique brought about the idea that the R, G, and B channels can be
reconstructed by a few number of sensed color pixels which contain the true color information, and the
full-resolution white channel.

3. Proposed Method

3.1. Proposed Randomly Sampled RGBW CFA Pattern

The proposed RGBW CFA pattern differs from other RGBW patterns in two aspects: it has a larger
ratio of W pixels, and the positions of the R, G, and B pixels are random. Figure 4 shows the proposed
randomly sampled RGBW pattern. pattern is 75%, and thus receives more light energy than other
RGBW CFA patterns. This makes it stronger against the noise. Furthermore, since the W channel
corresponds to the luminance channel which determines the resolution of the color image, a high
resolution image can be obtained with the proposed CFA. The remaining 25% area of the CFA is
composed of RGB pixels, which are randomly distributed over the pattern. The reason that we use
a random RGB pixel pattern rather than a periodic one is that the aliasing artifact in the color channels
can be reduced. In other RGBW CFAs, the periodic RGBW pattern is converted into the color image by
directional interpolation. In this case, some pixels with certain directions cannot be included in the
interpolation process, which results in the aliasing artifact.

Figure 5a shows the case of estimating the G channel value at an R pixel in a RGBW pattern which
has same proportion of R, G, B, and W pixels, but whose R, G, and B pixels are periodically distributed
over the pattern. Here, no G pixels are in the lower-left to upper-right diagonal direction. Therefore,
the true G values in this direction cannot be referenced. As a result, aliasing artifact occurs if high
frequency components of the G channel exist in this direction. Figure 5c shows the color interpolation
result of the RGBW pattern in 5a, where the aliasing artifact can be observed in the upper right and
lower left areas. In comparison, the proposed random RGBW pattern has G pixels in all directions,
and therefore, the R pixel in Figure 5b can refer to those pixels in estimating the G channel value.
Furthermore, the method in referring to those pixels is non-directional, i.e., based on a diffusion
method as will be explained later. As a result, the aliasing artifact in the upper-right and lower-left
areas is reduced as compared to the periodically sampled RGBW CFA, as can be seen in Figure 5d.
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(a) (b) (c)

Figure 4. (a) Original image; (b) randomly sampled RGBW CFA pattern; (c) sampled image using the
pattern in (b) pattern on (a).

(a) (b) (c) (d)

Figure 5. The G pixel estimation at the position of an R pixel with (a) a periodic RGBW CFA; and (b)
a random patterned RGBW CFA; (c) Color interpolation result with pattern shown in (a); (d) Color
interpolation result with pattern shown in (b).

3.2. W Channel Interpolation

Most of the demosaicing methods for the Bayer CFA pattern first interpolate the G channel, since
it contains most of the spatial information. The information of the interpolated G channel is then used
in the subsequent R and B channel interpolation by referring to the inter-channel spectral correlations.
Meanwhile, with conventional RGBW CFAs, the RGBW pattern is first converted to the RGB Bayer
pattern, and then to the color image. Therefore, the demosaicing method is similar to the one with
Bayer CFA pattern, including only an extra process of converting the RGBW pattern to the RGB pattern.

In comparison, with the proposed method, we reconstruct all the W pixels first, and then recover
the colors by the colorization-based interpolation. This is due to the fact that the W channel has
a higher spectral correlation with the R and B channels than the G channel, and therefore, is more
suitable as a reference channel for recovering the color information. Furthermore, only 25% of the
W channel has to be recovered with the proposed RGBW pattern, thus the recovery becomes highly
reliable. Figure 6 shows a 3 × 3 local region of the RGBW CFA pattern where the W value of the
central pixel has to be estimated. Here, w denotes the W channel, and c denotes one of the primary
color channels, i.e., c ∈ {r, g, b}. With the Bayer CFA pattern, only four pixels, i.e., the pixels in the
horizontal and vertical directions, can be referred to interpolate the missing G value. In comparison,
the 8-neighborhood pixels can be used to estimate the missing W pixel values (ŵ) with the proposed
RGBW CFA pattern. Let {i, j} denote the coordinates of the missing W pixel, N (i, j) represent the
set of the 8 neighborhood of {i, j}, and {u, v} be the coordinates of the pixels belonging to N (i, j).
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We define a weighting function αu,v which determines how much the white pixel value in position
{u, v}, i.e., wu,v, should contribute to the reconstruction of the missing value at {i, j}, i.e., wi,j as follows:

αu,v =
1

βi,j∆inter
u,v + ∆intra

u,v
, ∀u, v ∈ N (i, j). (5)

Here, αu,v consists of two terms, the inter-channel term ∆inter
u,v and the intra-channel term ∆intra

u,v ,
where βi,j acts as a balance between these two terms. Then, reconstruction of ŵ is performed by
the following equation:

ŵi,j =
∑u,v∈N (i,j) αu,vwu,v

∑u,v∈N (i,j) αu,v
. (6)

Equation (6) is a weighted interpolation, where the weights are αu,v. As will be seen later, the term βi,j
in (5) is designed to have a large value in achromatic regions, and a small value in colorful regions.
If the difference between wu,v and wi,j is large, this means that the pixels {u, v} and {i, j} belong to
different regions in the image, and therefore, the value wu,v should not contribute to the reconstruction
of wi,j. Therefore, the weight αu,v should be inversely proportional to the difference between wu,v

and wi,j.

(a) (b)

Figure 6. 3 × 3 windows of (a) Bayer CFA pattern and (b) the proposed RGBW CFA pattern.

In achromatic regions, the color value at {i, j} itself is similar to the missing value wi,j, and thus,
the difference between wi,j and wu,v can be approximately measured by the difference between ci,j and
wu,v, where ci,j refers to one of the primary color values at {i, j}. Therefore, the inter-channel term is
defined as

∆inter
u,v = |ci,j − wu,v|, ∀u, v ∈ N (i, j). (7)

On the contrary, in colorful regions, ci,j is not similar to wi,j, and therefore, the difference
between wu,v and wi,j should be measured by the differences of adjacent pixels. For example, if
{u, v} = {i− 1, j− 1}, the difference between wi,j and wu,v is measured by the average of |wi,j−1 −
wi+1,j| and |wi−1,j − wi,j+1| as illustrated in the top left image in Figure 7.

The intra-channel terms ∆intra
u,v for different positions of {u, v} in N (i, j) are defined respectively as

∆intra
u=i−1,v=j−1 = (|wi−1,j − wi,j+1|+ |wi,j−1 − wi+1,j|)/2, ∆intra

u=i,v=j−1 = (|wi−1,j−1 − wi−1,j|+ |wi+1,j−1 − wi+1,j|)/2,
∆intra

u=i−1,v=j+1 = (|wi−1,j − wi,j−1|+ |wi,j+1 − wi+1,j|)/2, ∆intra
u=i,v=j+1 = (|wi−1,j+1 − wi−1,j|+ |wi+1,j+1 − wi+1,j|)/2,

∆intra
u=i+1,v=j−1 = (|wi−1,j − wi,j−1|+ |wi,j+1 − wi+1,j|)/2, ∆intra

u=i−1,v=j = (|wi−1,j−1 − wi,j−1|+ |wi−1,j+1 − wi,j+1|)/2,
∆intra

u=i+1,v=j+1 = (|wi−1,j − wi,j+1|+ |wi,j−1 − wi+1,j|)/2, ∆intra
u=i+1,v=j = (|wi+1,j−1 − wi,j−1|+ |wi+1,j+1 − wi,j+1|)/2.

(8)
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The value βi,j which determines whether the pixel {i, j} belongs to an achromatic region or
a colorful region is defined as

βi,j =


0.5 if minter

i,j ≤ mintra
i,j

2 if minter
i,j ≥ 2mintra

i,j
1.5(minter

i,j −mintra
i,j )

mintra
i,j

+ 0.5 otherwise,
(9)

and has a large value in achromatic regions and a small value in colorful regions. Here, minter
i,j and

mintra
i,j are the minimum values related with ∆inter

u,v and ∆intra
u,v , and are defined as

minter
i,j = min(∆inter

i−1,j−1 + ∆inter
i+1,j+1, ∆inter

i−1,j+1 + ∆inter
i+1,j−1, ∆inter

i,j−1 + ∆inter
i,j+1, ∆inter

i−1,j + ∆inter
i+1,j)

mintra
i,j = min(∆intra

i−1,j−1 + ∆intra
i+1,j+1, ∆intra

i−1,j+1 + ∆intra
i+1,j−1, ∆intra

i,j−1 + ∆intra
i,j+1, ∆intra

i−1,j + ∆intra
i+1,j).

(10)

Figure 7. Showing the pixels involved in the calculation of the inter-channel and the intra-channel
terms for the 8-neighborhood directions. Red arrows: differences considered in the inter-channel terms
∆inter

u,v . Black arrows: differences considered in the intra-channel terms ∆intra
u,v .

3.3. Primary Color Channel Interpolation

As described in Section 3.1, the number of color seeds, i.e., pixels which are sensing the primary
colors, is very small, and their positions are randomly distributed. After the W channel is fully
interpolated with the aforementioned method, the primary color channels can be obtained with
a colorization scheme. However, in low light conditions, the primary color channels are more degraded
by the noise than the W channel. Therefore, in this work, we design a colorization matrix which
simultaneously diffuse the original color seeds to other pixels and remove the noise in the original
color seeds.

Let w and c represent the lexicographically ordered vectors corresponding to the 2-dimensional
images w and c, i.e.,

w = [w1,1, w2,1, · · · , wNr ,1, w1,2, · · · , w1,Nc , · · · , wNr ,Nc ]
T , (11)
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and
c = [c1,1, c2,1, · · · , cNr ,1, c1,2, · · · , c1,Nc , · · · , cNr ,Nc ]

T , (12)

where Nr and Nc denote the height and the width of the image. Here, c represents the color channel
which we want to recover from the sensed RGBW pattern image.

While other sophisticated residual images such as that proposed in [11] can also be used, we use
a simple color difference channel. The color difference channel uc between the primary color channel
c ∈ {r, g, b} and the W channel is defined as:

uc = c−w. (13)

Only 25% of the components in the uc vector are sensed by the proposed RGBW CFA, and the
problem of the primary color channel reconstruction, i.e., the color channel interpolation, is to recover
the true uc vector with proper color components at every position. We define by xc the vector which
contains the uc values only at the positions where the corresponding c value is sensed by the proposed
RGBW CFA and has zero values at all other positions, i.e.,

xc(m) =

{
c(m)− ŵ(m) if m ∈ Ψc

0 otherwise,
(14)

where ŵ is the full W channel reconstructed by the method in Section 3.2, m is the position index of
the pixel in the lexicographically ordered vector xc, and Ψc represents the set of the pixel positions
where the channel c value is sensed by the RGBW CFA. In accordance with [30], we call the pixels in
the set Ψc the representative pixels or the color seeds.

(a) (b)

Figure 8. (a) The diffusion and (b) the noise suppression process of the colorization matrix in the edge
region of the RGBW sampled image. The contribution of the pixels in a region different from that in
which the pixel under consideration lies is weak as visualized by the faint colored arrows.

The proposed colorization-based color interpolation solves the interpolation problem by
minimizing the following functional with respect to uc given xc and ŵ:

J(uc) = D(uc) + F(uc). (15)

The functional J(uc) consists of two energy terms: the diffusion term D(uc) and the noise-suppressing
fidelity term F(uc). Let r denote the position index of the pixels not belonging to Ψc, and N (r) the
neighborhood pixels of r. The diffusion term is defined as

D(uc) = ∑
r/∈Ψc

{uc(r)− ∑
s∈N (r)

εrsuc(s)}2. (16)
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The minimization of D(uc) can be seen as weighted diffusion shown in Figure 8a, where the amount
of diffusion between r and s is determined by the weight εrs. The weight εrs is controlled by an edge
directional ellipsoidal kernel as will be explained later. Let p denote the position index of the pixels
belonging to Ψc, and N (p) the neighborhood pixels of p. The noise-suppressing fidelity term F(uc) is
defined as

F(uc) = ∑
p∈Ψc

[uc(p)− x(p) + γ{uc(p)− ∑
q∈N (p)

εpquc(q)}]2. (17)

It tries to not only make uc similar to xc, but also subtract the weighted Laplacian of uc,
i.e., γ{∑q∈N (p) εpquc(q) − uc(p)} from uc at the seed pixel. It is different from the classical cost
function defined as follow:

Jold(uc) = ∑
p∈Ψc

[uc(p)− xc(p)]2 + γ ∑
p
[{uc(p)− ∑

q∈N (p)
εpquc(q)}]2. (18)

Minimizing (18), the neighborhood pixels tend to follow the noisy seed pixels and result in low
frequency noise.

The first term in (17) preserves the fidelity of uc(p) to the sensed value at p, i.e., xc(p), while
the second term tries to smooth it as a weighted average of the values of the neighborhood pixels as
shown in Figure 8b, where the weights εpq are obtained in the same manner as εrs as will be explained
later. The second term is necessary because, unlike the original colorization problem, the color seeds
in the proposed method are degraded by the noise, especially in low light condition. This leads to
spotted color noise after applying the colorization-based interpolation process. The value γ controls
the balance between the two terms, thus controlling the degree of diffusion. When γ is large, the values
of uc at the position of the color seeds are influenced much by the nearby color values, whereas if
γ = 0, they are not influenced at all by the nearby values. Here, γ is proportional to the noise variance.
Let σ2

n denote the noise variance and τ represent a control constant, γ is defined as

γ = τσ2
n . (19)

The noise variance σ2
n can be estimated by calculating the variance of the flat region in the image.

In [30], the weight parameters were determined based on the differences of the luminance values
between adjacent pixels, so that the color seeds were easily spread out in flat regions, while not in
edge regions. In low light conditions, however, the difference between adjacent pixel values could not
be estimated correctly due to the noise. As some edge regions were weakened by the noise, the color
diffused across the edge region which results in the wash-out of the colors in edge regions. As the
edge could not be determined exactly using the derivative at the current position only, the derivatives
in a neighborhood region should be considered together to determine the edge direction.

The weight parameter is designed to take into account the directional tendency of adjacent
pixels [31,32]. In order to estimate the tendency of the edge direction, the covariance matrix C is
determined in a small region R(m) centered at m

C =

[
∑n∈R(m) ŵv(n)ŵv(n) ∑n∈R(m) ŵv(n)ŵh(n)
∑n∈R(m) ŵv(n)ŵh(n) ∑n∈R(m) ŵh(n)ŵh(n)

]
, (20)

where ŵv and ŵh represent the derivatives of ŵ in the vertical and the horizontal directions,
respectively. Let dmn = [vmn, hmn]T be a pointing vector, where vmn and hmn are the vertical and
the horizontal distances between m, the current pixel position, and n, a neighborhood pixel of m.
The weight value at n is calculated as

ε′mn = exp{−λdT
mnCdmn}. (21)
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It is derived from an ellipsoidal kernel function (Figure 9) which has a large value if n lies at the
center of the kernel and a small value if n is far from the center. Here, λ represents a parameter which
controls the smoothness of the kernel. Furthermore, ε′mn is large if n lies in a direction orthogonal to the
edge, and small if n lies in the direction of the edge. Therefore, ε′mn can be used as a measure whether
a pixel n lies along or across an edge. For the weights in (16) and (17), we use a normalized version of
ε′mn, i.e., εmn = 1

k ε′mn, where k is the normalizing factor.

Figure 9. The noisy edge region and an ellipsoidal kernel for the pixel position m. The major axis of
the ellipsoidal kernel is parallel to the edge direction.

The cost function defined in (15) can be re-written in matrix form as

J(uc) = ‖Duc‖2 + ‖Fuc − xc‖2, (22)

where the diffusion matrix D which spreads the color seeds is defined as

D(r, s) =


1 if r /∈ Ψc and s = r
−εrs else if r /∈ Ψc and s ∈ N (r)
0 otherwise.

(23)

The noise-suppressing fidelity matrix F is defined as

F(p, q) =


1 + γ if p ∈ Ψc and q = p
−γεpq else if p ∈ Ψc and q ∈ N (p)
0 otherwise.

(24)

Solving (22), the color difference channel can be estimated as follows:

ũc = (DTD + FTF)−1FTxc. (25)

By using the estimated color difference channel ûc, the primary color channel can be obtained as

c̃ = ũc + ŵ. (26)

3.4. Post Processing

The color channels c̃ ∈ {r̃, g̃, b̃} reconstructed by the method explained in Section 3.3 suffer from
low frequency noise. This is due to the fact that the color seeds from which they are reconstructed
contain noise themselves. In this section, we propose a post-process which subtracts the low frequency
noise nLF from c̃ to obtain a noise removed color channel ĉ:

ĉ = c̃− nLF. (27)
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Here, the low frequency noise nLF is estimated by subtracting ŵ obtained in Section 3.2 from w̃ which
denotes a noisy W channel to be constructed as follow:

nLF = w̃− ŵ. (28)

This is based on the assumptions that the low frequency noise contained in c̃ is highly correlated with
the noise in w̃, and that ŵ is free from this low frequency noise. The first assumption is satisfied since
the noisy w̃ is constructed by a linear combination of the noisy color channels:

w̃ = λr r̃ + λgg̃ + λbb̃ + λ1. (29)

Here, λr, λg, λb, and λ1 are linear coefficients which are obtained by the following L2 norm
minimization with respect to multiple arguments λr, λg, λb, and λ1:

λr, λg, λb, λ1 = argmin
λr ,λg ,λb ,λ1

‖ŵ− (λr r̃ + λgg̃ + λbb̃ + λ1)‖2
2. (30)

This is a multiple regression model [33] which makes the L2 norm difference between ŵ and are
w̃ as small as possible, thus resulting in the coefficients λr, λg, λb and λ1 that the overall brightness
of w̃ becomes similar to ŵ. This is similar to the guided filter approach proposed in [34], but instead
of a single parameter we use multiple parameters, and unlike the guided filter which tries to obtain
a noise-free channel, the purpose is to obtain a noisy white image w̃ which is used afterwards to
eliminate the noise in the reconstructed noisy color channels. The constructed channel w̃ contains the
same low frequency noise as in c̃ since it is constructed from it. The second assumption is satisfied
since ŵ is constructed from the sensed W channel, which has a larger SNR value than those of the
color channels. Using the linear least square method, (30) can be solved as follow:

λr

λg

λb
λ1

 =


µ{r̃} µ{g̃} µ{b̃} 1

µ{r̃ ◦ r̃} µ{g̃ ◦ r̃} µ{b̃ ◦ r̃} µ{r̃}
µ{r̃ ◦ g̃} µ{g̃ ◦ g̃} µ{b̃ ◦ g̃} µ{g̃}
µ{r̃ ◦ b̃} µ{g̃ ◦ b̃} µ{b̃ ◦ b̃} µ{b̃}


−1 

µ{ŵ}
µ{ŵ ◦ r̃}
µ{ŵ ◦ g̃}
µ{ŵ ◦ b̃}

 , (31)

where a ∈ {r̃, g̃, b̃, ŵ}, µ{a} denotes the mean of a vector a, and ◦ denotes the entrywise product
operator. Figure 10a–d show w̃, ŵ, c̃, and ĉ, respectively. As can be seen in Figure 10d, the low
frequency noise in ĉ is quite reduced.

(a) (b)

(c) (d)

Figure 10. (a) The reconstructed W channel w̃ by (29); (b) the reconstructed W channel ŵ after
applying the post-process in Section 3.2; (c) the reconstructed color channel c̃ obtained by the method
in Section 3.3; and (d) the noise removed color channel ĉ after applying the post-process in Section 3.2.
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4. Experimental Results

We compared the quality of the demosaicing result of the proposed method based on the proposed
RGBW CFA pattern with the demosaicing results of other methods based on other CFA patterns.
Experimental results show that in low light condition, spatial information which cannot be obtained
by the Bayer CFA pattern using demosaicing method can be obtained by the proposed method.
Furthermore, we also show that the proposed method produces results of good quality in sufficient
light condition. In order to obtain the original full resolution R, G, B and W channel images, we used
a filter-wheel-installed camera, where the wheel contains four different optical filters and is driven
by a stepping motor. The four optical filters selectively filter the R, G, B, and W bands. We took four
photographs of the same scene with the four different filters to obtain the R, G, B, and W channels.
Figure 1 shows the spectral responsibilities of the R, G, B, and W filters. Here, the exposure time was
set to 30 ms at 100 lux illumination. Using the full-resolution four channel images, we sampled the
R, G, B, and W pixels corresponding to the different patterns, i.e., the Bayer CFA pattern, the Sony
RGBW CFA pattern, and the proposed RGBW CFA pattern. For the proposed RGBW CFA pattern,
the numbers of the R, G, and B pixels are 306,500, 306,697, and 306,489, respectively, which are not
equal since there are randomly sampled, but together they cover 25% of the CFA pattern which has
a total of 3,686,400 pixels since the size of the image is 1920× 1920. The control constant τ is set to
a value around 100.

The images in the first column in Figure 11 show the demosaiced results of the Bayer CFA, and
those in the second column are the demosaiced results of the Sony RGBW CFA. For the Bayer CFA
results, the DLMMSE method [7] was used, while with the Sony RGBW CFA, the RGBW pattern was
first converted into the Bayer CFA pattern using the method in [22], and then finally got demosaiced
by the DLMMSE method. The images in the third column in Figure 11 show the results of the
proposed RGBW CFA which are reconstructed by the proposed colorization-based interpolation
method. As described in Section 3.1, the results using the Sony RGBW CFA shows the largest aliasing
artifacts due to the extra errors in the conversion from the RGBW to the Bayer CFA. The Bayer CFA
based conversion shows less aliasing artifacts in the circle region than the proposed RGBW CFA based
conversion in the first row of Figure 11. However, in the vertical stripe region, the result with the
proposed method is better than those using other methods in terms of both the aliasing and the noise
artifacts as can be seen in the second row of Figure 11.

(a) (b) (c) (d) (e) (f)

Figure 11. Experimental results and their aliasing artifacts in 100 lux light condition: (a,d) results
using the Bayer CFA; (b,e) results using the Sony RGBW CFA; and (c,f) results using the proposed
RGBW CFA.

Next, for an assessment in low light condition, we obtained the full-resolution R, G, B, and W
images using the four different optical filters with an exposure time of 1/60 s at 1 lux illumination.
After that, we sampled the R, G, B, and W pixels corresponding to the Bayer CFA and the proposed
RGBW CFA patterns. The image acquired at 1 lux illumination is very dark as shown in Figure 12a.
The energy levels of the R, G, B, and W channels are different due to the different spectral responses of
illumination and sensor sensitivity. Therefore, we first multiplied a large number (420) to the pixels
of the acquired image to stretch the ranges in the pixel values, and then applied a white balancing
as a pre-process to obtain Figure 12b. We performed the gray world method [35] which is one of
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the simplest white balancing method, but other methods [35–40] can be applied as well with little
difference in the reconstruction performance. Figure 12b illustrates the result and its corresponding
histogram after rescaling the intensity range and applying white balancing to the acquired image.
The color interpolation is then performed on this white-balanced image, resulting in the color image
shown in Figure 12c.

(a) (b) (c)

Figure 12. Images and their histograms: (a) the acquired image with the proposed RGBW CFA
pattern before white balancing; (b) the pattern image after white balancing; and (c) color image from
reconstructed from (b).

In Figure 13, we compared the results of the proposed method with the images reconstructed
from the Bayer CFA sampled images using the state-of-the-art Bayer denoising methods [28,29].
The methods in [28,29] utilize variations of the BM3D(Block-matching and 3D filtering) method for the
denoising of the Bayer-patterned image. We show that in low illumination, the proposed method
results in better reconstructed images even without any extra sophisticated denoising methods as
in [28,29] which is due to the nature of the proposed CFA having a very large number of W pixels.
In the case with 20 dB and 23 dB noise simulations, the BM3D denoising removes the noise well,
resulting in a reconstructed image of higher SNR values than that obtained by the proposed method
not using a sophisticated denoising method. To make a fair comparison, we also applied the BM3D
method to the W channel as a post-denoising method. We cannot apply the exactly same BM3D
method as in [28,29] to our method, because they are mainly designed for the Bayer pattern, which is
different from the proposed RGBW pattern. Therefore, we applied the BM3D denoising [41] on the
W channel, and afterward used it as the reference channel. We call the modified proposed method with
BM3D denoising the ‘proposed + BM3D’ method. The input parameter for the denoising methods
in [28,29,41] is the level of noise, for which we give the standard deviation of the noise. The standard
deviation of noise in the RGB channels is 0.25 (40 in 8 bit system), and that of the noise in the W
channel is 0.06 (16 in 8 bit system) in 1 lux low light condition.

Figure 13 compares the results reconstructed by the proposed RGBW CFA, the Bayer CFAs [7,11],
the denoised Bayer CFAs [28,29], and the Sony RGBW CFA [22]. It can be seen in Figure 13, that the
results obtained by the proposed method exhibit superior high frequency information compared with
other results. Moreover, the objects are better identified, and the image details, such as letters and
lines, are more distinguished, especially in Figure 13p compared with Figure 13a,d,g,j,m. Figure 13p
has also less noise than Figure 13a,d,g in flat regions. The results with Bayer CFA denoising show a
lot of noise removal in flat regions, but also have lost important detail information. The ‘proposed
+ BM3D’ method shows the best result both in flat and detailed regions which can be observed in
Figure 13s,t,u. Here, the denoising is done on the reconstructed W channel, which is then used for the
colorization of the color seeds.



Sensors 2017, 17, 1523 14 of 22

Figure 13. Experimental results with 1 lux low light condition. (a–c): results using the Bayer CFA with
DLMMSE [7], (d–f): results using the Bayer CFA with RI [11], (g–i): results using the Sony RGBW
CFA [22], (j–l): results using the denoised Bayer CFA with Akiyama [28], (m–o): results using the
denoised Bayer CFA with BM3D-CFA [29], (p–r): results using the proposed RGBW CFA, and (s–u):
results using the proposed RGBW CFA + BM3D.



Sensors 2017, 17, 1523 15 of 22

For objective assessments, we used the Kodak 24 test images of size 512 × 768 and measured the
FSIM [42] and PSNR of the reconstructed images, where the PSNR is given by

PSNR = 10× log10{1/MSE}. (32)

We made two sets of test images, one containing 20 dB noise, and the other 23 dB noise, where
the noise follows a Poisson distribution as is the case in low illumination. The noise was added to
the R, G, and B channels, respectively. The standard deviations of the noises in the RGB channels
are 0.1 (26 in 8 bit system) and 0.07 (18 in 8 bit system), respectively. The standard deviations of the
noises in the W channel are 0.1/

√
3 = 0.06 (16 in 8 bit system) and 0.07/

√
3 = 0.04 (10 in 8 bit system)

in 20 dB and 23 dB, respectively. This is due to the fact that the W channel is a superposition of the
R, G, and B channels. The standard deviations of the noises go in as the parameters to the BM3D
denoising methods. After that, the pixels were sampled according to the Bayer CFA, the Sony RGBW
CFA, and the proposed RGBW CFA pattern, respectively, to generate the CFA pattern images. For the
proposed RGBW CFA, the numbers of the color seeds for the R, G, and B channels are 32,456, 32,550,
and 32,659, respectively, which together sums up to 25% of the whole pixels (512× 768 = 393, 216),
and the rest of the pixels (75%) are W pixels. Then, the images sampled by the proposed RGBW CFA
were reconstructed by the colorization-based method, while the images sampled by Bayer CFA are
demosaiced by the DLMMSE and RI methods. We also added the results using the methods in [28,29].
As shown in Tables 1–4, the color images reconstructed by the proposed method show significant
improvements compared with the results of the Bayer CFA and Sony RGBW CFA. Bold text in the
tables are the optimum results for each Kodak images.

The PSNR is improved by an average of 3.2934 dB, 3.2938 dB, and 0.8639 dB, compared to the
results of the DLMMSE, RI, and Sony RGBW CFA, respectively, with 20 dB noise. In the case of 23 dB
noise, the PSNR is improved by an average of 2.7725 dB, 2.3157 dB, and 0.5639 dB, compared to
the results of the DLMMSE, RI, and Sony RGBW CFA, respectively. As shown in Figures 14 and 15,
the visual qualities of the images obtained by the proposed method are superior to those by the Bayer
CFA and Sony RGBW CFA.

The PSNR and FSIM values of the images obtained by combining the BM3D denoising are
higher than the those obtained by the proposed method without BM3D denoising. However, the
images reconstructed by the ‘proposed + BM3D’ method show higher FSIM values and similar PSNR
values compared with the results of [28,29]. As shown in Figures 14h,p and 15h,p, the results of the
‘proposed + BM3D’ show similar noise levels in flat regions, but preserve more detail information.
Also the ‘proposed + BM3D’ introduces fewer aliasing artifacts in high frequency regions as shown in
the window bars in Figures 14 and 15. The Bayer CFA denoising methods not only remove the noise
in the flat regions but also the details in high frequency regions. This is not reflected effectively in
the PSNR measure, but in the FSIM measure which reflects the edge fidelity and the color difference
consistency, which is the reason that the FSIM values of the ‘proposed + BM3D’ method are higher in
all cases.
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Table 1. Comparison of the PSNR (dB) values of the Kodak RGB images interpolated by the Bayer
CFA, Sony RGBW CFA, denoised Bayer CFA, and proposed RGBW CFA with 20 dB noise levels.

Data Bayer DLMMSE [7] Bayer RI
[11] Sony RGBW [22] Proposed Akiyama

[28]
BM3D-CFA

[29]
Proposed
+ BM3D

1 20.6240 21.0253 22.8337 24.0300 25.7640 26.2185 26.5624
2 21.0217 21.5777 24.1440 23.2595 28.7567 29.0252 27.2122
3 20.7928 21.5582 23.5414 23.8333 30.6593 30.8327 29.2358
4 20.7814 21.4473 23.7901 24.1515 29.3016 29.5208 28.4922
5 20.9141 21.3347 22.7660 23.8527 25.2292 26.0602 26.0390
6 20.8267 21.2730 22.9500 24.2042 27.0638 27.2829 27.6730
7 20.7311 21.3759 23.4218 24.3754 29.4845 29.9281 29.4038
8 20.7274 20.9955 22.7796 23.9210 25.4553 26.1903 26.7617
9 20.6406 21.3839 23.5115 24.5921 30.5982 30.7339 30.2494

10 20.6563 21.3936 23.4530 24.5911 30.0215 30.1505 30.2441
11 20.8227 21.3718 23.2586 24.3298 27.6005 28.0054 28.1005
12 20.7841 21.4705 23.4702 24.5056 30.5373 30.6068 30.0079
13 20.6527 20.8826 21.7919 23.4370 23.9516 24.2884 24.9340
14 20.8022 21.2953 23.0835 23.7002 26.4241 27.0160 25.8387
15 21.4102 21.8628 23.9531 24.4306 29.1291 29.3797 28.2387
16 20.6903 21.3393 23.4063 24.5378 29.4499 29.5209 29.0873
17 21.0825 21.6626 23.8226 24.8379 29.2484 29.5851 29.7193
18 20.8700 21.4001 22.9114 23.9673 26.0022 26.5466 26.5046
19 20.6914 21.2650 23.2757 24.3600 28.6516 29.0308 28.7008
20 21.8899 22.3182 24.1087 24.8277 26.9488 27.8986 28.0698
21 20.6429 21.2543 23.0521 24.2204 27.4789 27.8329 28.1341
22 20.6400 21.2883 23.1219 24.1220 27.8864 28.2483 27.8049
23 20.7934 21.5650 23.3896 23.2165 31.1036 30.8427 28.3076
24 20.6561 21.1593 22.6258 23.8926 25.9713 26.4484 26.6763

Avg 20.8394 21.3959 23.2693 24.1332 28.0299 28.3831 27.9999

Table 2. Comparison of the PSNR (dB) values of the Kodak RGB images interpolated by the Bayer
CFA, Sony RGBW CFA, denoised Bayer CFA, and proposed RGBW CFA with 23 dB noise levels.

Data Bayer DLMMSE [7] Bayer RI
[11] Sony RGBW [22] Proposed Akiyama

[28]
BM3D-CFA

[29]
Proposed
+ BM3D

1 23.4743 23.7315 25.2154 26.1998 27.1647 27.6840 28.2742
2 23.7555 24.0597 26.5783 26.0850 29.8295 30.1677 29.1778
3 23.6888 24.3995 26.5252 26.5784 31.9909 32.3835 31.0654
4 23.6173 24.1784 26.5210 26.3983 30.3262 30.6601 30.1931
5 23.6914 24.0412 24.9118 25.8992 27.0623 27.8761 27.7638
6 23.6902 24.0157 25.5248 26.3360 28.5588 28.8965 29.2019
7 23.6396 24.2284 26.3332 26.7672 31.2039 31.8072 31.1182
8 23.4988 23.6250 25.0019 26.0813 27.1062 27.8035 28.3955
9 23.5865 24.2659 26.5441 27.0729 32.1003 32.3720 31.6528

10 23.6309 24.2935 26.5336 27.1205 31.4922 31.8247 31.8130
11 23.6742 24.1131 25.9178 26.5520 28.9809 29.5593 29.5306
12 23.6820 24.3276 26.4528 26.8893 31.7944 32.1896 31.4717
13 23.4140 23.4268 23.5726 25.1309 25.5672 25.8364 26.3775
14 23.5546 23.9508 25.4867 25.7873 27.8713 28.4915 27.3360
15 24.0929 24.4846 26.5509 26.7164 30.4343 30.7897 29.9927
16 23.5826 24.1387 26.3258 27.0410 30.6613 30.9932 31.0541
17 23.8864 24.3835 26.5670 27.2550 30.8645 31.2523 31.3186
18 23.5707 24.0102 25.1366 25.9099 27.5905 28.0707 28.0735
19 23.5820 24.0696 26.0365 26.6651 29.8626 30.3696 30.2485
20 24.6759 25.0065 26.8145 27.1831 27.4626 28.4592 30.0495
21 23.5265 24.0586 25.6518 26.4513 28.9960 29.4035 29.6244
22 23.4976 24.0450 25.7935 26.3496 29.1417 29.5544 29.3926
23 23.6690 24.3757 26.2651 26.2849 32.3738 32.5457 30.7539
24 23.4244 23.8393 24.8499 25.8906 27.4968 28.0037 28.1189

Avg. 23.6711 24.1279 25.8796 26.4436 29.4139 29.8748 29.6666
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Table 3. Comparison of the FSIM values of the Kodak RGB images interpolated by the Bayer CFA,
Sony RGBW CFA, denoised Bayer CFA, and proposed RGBW CFA with 20 dB noise levels.

Data Bayer DLMMSE [7] Bayer RI
[11] Sony RGBW [22] Proposed Akiyama

[28]
BM3D-CFA

[29]
Proposed
+ BM3D

1 0.8672 0.8781 0.8914 0.9244 0.9233 0.9292 0.9524
2 0.7978 0.8044 0.8313 0.8701 0.8878 0.9156 0.9382
3 0.7502 0.7671 0.7955 0.8574 0.9330 0.9391 0.9516
4 0.7961 0.8107 0.8373 0.8856 0.9223 0.9339 0.9519
5 0.9067 0.9152 0.9190 0.9418 0.9297 0.9337 0.9595
6 0.8688 0.8789 0.8857 0.9234 0.9189 0.9264 0.9512
7 0.8290 0.8404 0.8593 0.9052 0.9441 0.9466 0.9631
8 0.8991 0.9078 0.9171 0.9409 0.9462 0.9500 0.9687
9 0.7640 0.7807 0.8045 0.8644 0.9425 0.9397 0.9549

10 0.8024 0.8176 0.8357 0.8900 0.9302 0.9306 0.9530
11 0.8406 0.8512 0.8678 0.9103 0.9206 0.9310 0.9504
12 0.7999 0.8140 0.8309 0.8832 0.9124 0.9285 0.9474
13 0.9100 0.9177 0.9178 0.9431 0.9135 0.9250 0.9499
14 0.8684 0.8783 0.8913 0.9241 0.9170 0.9252 0.9500
15 0.7889 0.7998 0.8254 0.8738 0.9293 0.9383 0.9539
16 0.7934 0.8084 0.8290 0.8830 0.9123 0.9201 0.9419
17 0.8368 0.8505 0.8689 0.9127 0.9308 0.9338 0.9564
18 0.8802 0.8890 0.8985 0.9261 0.9028 0.9127 0.9430
19 0.8295 0.8410 0.8610 0.9051 0.9201 0.9312 0.9512
20 0.7783 0.7891 0.8195 0.8691 0.9440 0.9472 0.9589
21 0.8639 0.8735 0.8824 0.9205 0.9241 0.9305 0.9541
22 0.8263 0.8392 0.8578 0.9011 0.9029 0.9191 0.9424
23 0.7393 0.7570 0.7808 0.8504 0.9522 0.9432 0.9554
24 0.8417 0.8533 0.8687 0.9087 0.9234 0.9299 0.9538

Avg. 0.8283 0.8574 0.8401 0.9006 0.9243 0.9317 0.9522

Table 4. Comparison of the FSIM values of the Kodak RGB images interpolated by the Bayer CFA,
Sony RGBW CFA, denoised Bayer CFA, and proposed RGBW CFA with 23dB noise levels.

Data Bayer DLMMSE [7] Bayer RI
[11] Sony RGBW [22] Proposed Akiyama

[28]
BM3D-CFA

[29]
Proposed
+ BM3D

1 0.9154 0.9221 0.9314 0.9497 0.9480 0.9513 0.9668
2 0.8657 0.8689 0.8924 0.9179 0.9146 0.9378 0.9535
3 0.8313 0.8436 0.8705 0.9079 0.9483 0.9555 0.9642
4 0.8650 0.8757 0.8986 0.9275 0.9426 0.9525 0.9653
5 0.9413 0.9465 0.9478 0.9611 0.9558 0.9579 0.9733
6 0.9156 0.9215 0.9304 0.9489 0.9468 0.9503 0.9656
7 0.8878 0.8957 0.9132 0.9386 0.9612 0.9644 0.9738
8 0.9345 0.9401 0.9465 0.9609 0.9635 0.9668 0.9779
9 0.8398 0.8522 0.8747 0.9128 0.9599 0.9595 0.9671

10 0.8715 0.8815 0.9007 0.9313 0.9523 0.9528 0.9681
11 0.8950 0.9023 0.9161 0.9407 0.9433 0.9505 0.9653
12 0.8689 0.8785 0.8939 0.9250 0.9345 0.9466 0.9602
13 0.9428 0.9471 0.9456 0.9596 0.9453 0.9500 0.9661
14 0.9148 0.9211 0.9307 0.9501 0.9430 0.9477 0.9645
15 0.8565 0.8641 0.8875 0.9176 0.9480 0.9545 0.9650
16 0.8634 0.8735 0.8922 0.9257 0.9374 0.9428 0.9591
17 0.8936 0.9020 0.9186 0.9440 0.9518 0.9529 0.9694
18 0.9225 0.9285 0.9354 0.9502 0.9397 0.9439 0.9615
19 0.8888 0.8971 0.9136 0.9386 0.9423 0.9491 0.9648
20 0.8510 0.8576 0.8882 0.9166 0.9586 0.9627 0.9695
21 0.9131 0.9194 0.9271 0.9484 0.9489 0.9521 0.9685
22 0.8875 0.8962 0.9124 0.9353 0.9290 0.9409 0.9579
23 0.8241 0.8375 0.8606 0.9050 0.9657 0.9611 0.9665
24 0.8982 0.9059 0.9180 0.9403 0.9473 0.9516 0.9673

Avg. 0.8870 0.8949 0.9102 0.9356 0.9470 0.9523 0.9659



Sensors 2017, 17, 1523 18 of 22
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(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 14. Experiment results of Kodak images with 20dB noise. (a,i): original images; (b,j): results
using the Bayer CFA with DLMMSE [7]; (c,k): results using the Bayer CFA with RI [11]; (d,l): results
using the Sony RGBW CFA [22]; (e,m): results using the proposed RGBW CFA; (f,n): results using
the denoised Bayer CFA with Akiyama [28]; (g,o): results using the denoised Bayer CFA with
BM3D-CFA [29]; and (h,p): results using the proposed RGBW CFA + BM3D.

Figure 16 illustrates the relation between the modulation transfer function(MTF) and the aliasing
artifact in the reconstructed images with the proposed method. The value of the horizontal axis in
Figure 16a is equal to the line number shown in Figure 16d, which also represents the spatial frequency
value. This is due to the fact that the line becomes thinner and denser as the line number increases as
can be seen in the yellow boxes in Figure 16d. When the line number is sufficiently low, aliasing is
weak as can be seen in Figure 16e. The aliasing artifact is strongest in the region of line 16 (Figure 16f),
and again decreases in the region of line 20 due to the lens diffraction (Figure 16g) which also decreases
the MTF value. Meanwhile, the MTF is greatly affected by the noise in low light conditions and color
artifacts occur due to the diffusion of false signals as can be observed in Figure 16c which is obtained
with low lighting, compared to Figure 16b obtained with high lighting.
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Figure 15. Experiment results of Kodak images with 23dB noise. (a,i): original images; (b,j): results
using the Bayer CFA with DLMMSE [7]; (c,k): results using the Bayer CFA with RI [11]; (d,l): results
using the Sony RGBW CFA [22]; (e,m): results using the proposed RGBW CFA; (f,n): results using
the denoised Bayer CFA with Akiyama [28]; (g,o): results using the denoised Bayer CFA with
BM3D-CFA [29]; and (h,p): results using the proposed RGBW CFA + BM3D.

Figure 16. (a) MTF graph with high lighting (650 lux, blue line) and low lighting (2 lux, red line)
condition; (b) reconstruction result with high light condition; (c) reconstruction result with low light
condition; (d) reconstruction result (full image) with high light condition; Showing the region of
(e) line 3; (f) line 16; and (g) line 20, with the aliasing artifact in the lower parts.
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5. Conclusions

In this paper, we proposed a colorization-based demosaicing method which suits well with the
proposed RGBW CFA pattern, having a large number of white pixels. Using the proposed demosaicing
technique, color images can be reconstructed using a small number of sensed color pixels while the
majority of the pixels can sample the white channel, which makes it possible to obtain a reconstructed
color image with high SNR value. Compared with the Bayer CFA based results, the image details, such
as the letters or lines, are better preserved with the proposed method in low illumination condition.
This is important especially for surveillance camera systems, and therefore, the proposed method can
find its application in such areas.
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