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Abstract: This paper presents a design approach for a magnetic sensor module to detect
mover position using the proper orthogonal decomposition-dynamic mode decomposition
(POD-DMD)-based nonlinear parametric model order reduction (PMOR). The parameterization of
the sensor module is achieved by using the multipolar moment matching method. Several geometric
variables of the sensor module are considered while developing the parametric study. The operation
of the sensor module is based on the principle of the airgap flux density distribution detection by the
Hall Effect IC. Therefore, the design objective is to achieve a peak flux density (PFD) greater than 0.1 T
and total harmonic distortion (THD) less than 3%. To fulfill the constraint conditions, the specifications
for the sensor module is achieved by using POD-DMD based reduced model. The POD-DMD based
reduced model provides a platform to analyze the high number of design models very fast, with less
computational burden. Finally, with the final specifications, the experimental prototype is designed
and tested. Two different modes, 90◦ and 120◦ modes respectively are used to obtain the position
information of the linear motor mover. The position information thus obtained are compared with
that of the linear scale data, used as a reference signal. The position information obtained using the
120◦ mode has a standard deviation of 0.10 mm from the reference linear scale signal, whereas the 90◦

mode position signal shows a deviation of 0.23 mm from the reference. The deviation in the output
arises due to the mechanical tolerances introduced into the specification during the manufacturing
process. This provides a scope for coupling the reliability based design optimization in the design
process as a future extension.

Keywords: dynamic mode decomposition; linear motor; magnetic sensor; model order reduction;
multipolar moment matching method; parameterization; proper orthogonal decomposition

1. Introduction

To precisely control the mover in a linear motor, the correct information about the mover position
is needed. There are various methods available to detect the mover position using optical magnetic
and capacitive sensors. Among the optical sensors, optical encoders are widely used to detect the
mover position. There are different kinds of optical encoders available for this purpose, but for a
linear motor application, considering the linear movements, installation of linear optical encoders
would be expensive. Optical sensors can be substituted by capacitive type sensors, but again, their
complex design and working principle could be constraints in the application to linear motors. A cost
effective and accurate substitute could be a linear position magnetic sensor. There are different kinds of
magnetic sensors available in the literature [1–6]. Previously, authors have proposed a Hall Effect-based
linear magnetic sensor module which can accurately detect the mover position of linear motors [7].
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In [7], the authors applied the finite element method (FEM) to analyze the flux density profile
of a linear position magnetic sensor module. FEM is considered as a useful and powerful numerical
tool to analyze magnetostatic and magnetodynamic systems. From the manufacturing point of
view, designing a magnetic sensor includes a parametric study, optimization and advanced studies
based on manufacturing tolerance to achieve the desired output from the sensor module. All these
above-mentioned operations require multiple FEM studies of the basic model. Under this condition,
FEM analysis of the magnetic sensor module becomes expensive in terms of storage space, numerical
computation and simulation time.

To overcome this problem associated with the FEM, model order reduction (MOR)-based methods
are extensively used. Initially, MOR was introduced in the field of structural and fluid dynamics [8].
Different types of MOR methods have been documented in the literature over the last two decades.
Works based on the proper orthogonal decomposition (POD) method are ubiquitous for dimensionality
reduction of different engineering systems [9–14].

In magnetic field problems, the application of the POD-based MOR is relatively new. The use of
POD-based MOR to analyze magnetostatic and magnetodynamic problems is documented in [10,15,16].
Hanneron et al. presented their numerical study of an electrical motor using POD in [17]. Also, Far et al.
introduced a multiple input case for an electrical machine in [18]. To incorporate the nonlinearity in the
electromagnetic systems, references [19,20] presented the use of the so-called Empirical Interpolation
Method (EIM) and Discrete Empirical Interpolation Method (DEIM) along with POD. These methods
give a good approximation, but DEIM is a numerically complicated method. An alternative to the
POD-DEIM, dynamic mode decomposition (DMD), can be considered. DMD is used to approximate
the nonlinearity associated with the problem statement. The special feature of the DMD, which allows
the decomposition of data into spatiotemporal modes as well as associates the data to temporal Fourier
modes, makes it a suitable candidate to approximate the nonlinearity. A detailed study of the DMD
and its applications was presented by Tu et al. [21].

To analyze the magnetic sensor module for a linear motor mover position detection problem,
in this paper, a POD-DMD-based nonlinear magnetic sensor module is considered. To the best
of our knowledge, the implementation of the POD-DMD-based MOR on a magnetic system has
not been addressed in the literature before. The designed framework based on the reduced model
provides a computationally efficient and time saving method for the parameterization and optimization
process of the sensor module compared with the traditional FEM approach. For the special kind of
the optimization processes which consider manufacturing tolerances, the proposed framework can
provide a collective gain in terms of noncompliance cost as well as computational speed, therefore,
makes the proposed method invaluable for the manufacturers.

The paper is organized as follows: Section 2 introduces the basic mathematical framework
of the MOR. The implementation of the POD-DMD-based MOR on a nonlinear partial differential
equation and its comparison with other existing nonlinear MOR methods is presented in Section 3.
Section 4 discusses the linear position magnetic sensor for linear motor position detection with the
POD-DMD-based MOR of the sensor module and the parametric study. In Section 5, experiments using
the manufactured sensor module are presented. The paper concludes in Section 6 with a discussion of
the possible future extensions of this work.

2. A Formal MOR Framework for Nonlinear System

To develop a computationally inexpensive model of the magnetic sensor module for a linear
motor, using MOR, the required mathematical framework is discussed below.

2.1. Nonlinear System Model

A nonlinear system can be formulated as an ordinary differential equation (ODE) of the form:

d
dt

y(t) = Ay(t) + F(y(t)) (1)
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where, t ∈ [0, T] is the time, y(t) = [y1(t), y2(t) . . . , yn(t)]
T ∈ Rn×n is a state vector, F is a nonlinear

function of y(t), F = [F(y1(t)), F(y2(t)) . . . , F(yn(t))]
T and A ∈ Rn×n is a given matrix.

This general description of the nonlinear system arises in many real life systems. In such
cases, it is difficult and time-consuming to analyze the very large n-dimensional system. Thus a
computationally effective method based on MOR can be an alternative approach to the previously
developed FEM method.

2.2. Numerical Concept of MOR Using POD

One of the popular MOR methods is POD, which is a projection-based MOR method. The idea of
POD was first proposed by Sirovich [11]. This method is same as the Singular Value Decomposition
(SVD) in a finite dimensional space or in Euclidean space. POD can efficiently extract the basis elements
that contain the characteristics of the targeted system. Basis elements known as POD basis can be found
using the method of snapshot [13]. To obtain the snapshots, let us assume that the system is solved for
m exclusive times and the data is arranged in a snapshot matrix as S =

[
y1, y2, . . . , ym] ∈ Rn×m with a

rank r. Then, SVD is applied on S as follows:

S = UΣV∗ (2)

where, U = [u1, u2, . . . , ur] ∈ Rn×r and V = [v1, v2, . . . , vr] ∈ Rm×r are the orthogonal matrices and
Σ = diag(σ1, σ2, . . . , σr) ∈ Rr×r is a diagonal matrix, with σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0, known as the
singular values. The rank of S is r ≤ min(n, m).

Using energy distribution of the singular value spectrum σ1, σ2, . . . , σr, the state vector y(t) in
Equation (1) can be approximated to a reduced basis by a vector yk(t) ∈ Rn×k with k ≤ n as follows:

y(t) = Ψyk(t) (3)

where, is Ψ called as the projection operator. The expression for Ψ can be obtained from Equation (2) by
considering the energy distribution of σ1, σ2, . . . , σr. Then using Ψ, the reduced model of Equation (1)
can be written as follows:

d
dt

yk(t) = ΨT AΨyk(t) + ΨTF(Ψyk(t)) (4)

From Equation (4) it can be noticed that POD can provide an excellent reduced model of
Equation (1) order k ≤ n. However, the dimensionality reduction is usually limited to the linear
terms. POD alone cannot provide an appropriately reduced model when nonlinearity is present. This
is evident from Equation (4) because to compute the nonlinearity term in Equation (4), yk(t) ∈ Rk

needs to be expanded to an n dimensional vector Ψyk(t) ∈ Rn. Thereafter the nonlinearity F(Ψyk(t))
is calculated and returned back to the reduced model. Thus, the approximation of the nonlinearity is
computationally expensive since the high dimensional full model needs to be evaluated to calculate
the nonlinearity.

To overcome this difficulty, methods such as EIM and DEIM were implemented along with
POD [19,20]. Magnetostatic and magnetodynamics nonlinear systems were analyzed using the
POD-DIEM method previously. Although POD-DEIM is computationally efficient in magnetic device
design, it is a complicated method to implement. For our design process, an alternative to the
POD-DEIM method, we used recently developed DMD in this paper. DMD is an equation-free
spatiotemporal approach. Thus the analysis of the highly nonlinear system can simply be done
compared with the POD-DIEM method. To the best of our knowledge, the implementation of DMD to
achieve the reduced model of a magnetic device has not yet been documented in the literature.

3. Application of the DMD and Its Comparison with the Other Nonlinear MOR Methods

3.1. Basic Idea of DMD

The very initial study of DMD dates back to 1931, when Bernard Koopman introduced Koopman
operator. Thereafter in 2008, Schmid developed the DMD-based model for nonlinear complex flow to
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extract the dynamic flow data [22]. There is a good number of documented literature which established
the connectivity between Koopman operator and DMD [23].

Let us consider a set of snapshot matrix S =
[
y1, y2, . . . , ym] ∈ Rn×m. If we assume that the data

are generated by the linear dynamics as shown below:

yk+1 = Ayyk (5)

where, Ay is some unknown matrix which approximates the dynamics of a nonlinear dynamical
system. Thus to find the system behavior, our aim is find Ay. It can be done using the DMD as shown
in Algorithm 1 [21],

Algorithm 1 SVD based.

1 Arrange the data of snapshot matrix S into two different matrices, as:

S′ ,
[
y1 . . . ym−1

]
; S′′ ,

[
y2 . . . ym

]
2 Compute the SVD of S′; S′ = UΣV∗

where, U = [u1, u2, . . . , ur] ∈ Rn×r and V = [v1, v2, . . . , vr] ∈ Rm×r are orthogonal matrices and
Σ = diag(σ1, σ2, . . . , σr) ∈ Rr×r is a diagonal matrix.
3 Define a matrix Ãy such that, Ãy , U∗Σ−1VS′′ ; here, Ãy is the k× k projection of Ay such that,
Ãy = U∗AyU.
4 Compute the eigenvalues and eigenvectors of Ãy as: Ãyw = λw.
5 Calculate the DMD mode corresponding to λ: ΨDMD = S′′VΣ−1w.

3.2. DMD Approach for Nonlinear System Model

To begin with, let us find the snapshot matrix {ym}m
i=1 of the linear section of Equation (1) for a

given time {ti}m
i=1 and compute the POD basis ΨPOD of rank k. For the nonlinear section, we need to

collect the snapshot for the nonlinearity, {F(ti, ym)}m
i=1 and apply the Algorithm 1 mentioned above.

Thus DMD approximation of the nonlinear section can be written as follows:

F(t, y) =
k

∑
i=1

piψ
DMD
i exp(wit) (6)

where, ψDMD
i are the DMD basis for rank l for the nonlinear section F(t, y) of Equation (1), pi is the

initial condition and wi are the eigenvalues of Ãy mentioned in Algorithm 1. By applying the compact
notation to Equation (6) and substituting it to Equation (1) along with the approximation of the linear
section, we obtain the reduced model of the whole system as follows:

d
dt

yk(t) = Akyk(t) + ΨTΨDMDdiag
(

ewDMDt
)

p; p =
(

ΨDMD
)†

F1 ∈ Rl (7)

where, † denotes the Moore-Penrose pseudoinverse. Now, if we compare the dimensions of Equation (7)
with those of Equation (4), the dimension of Ak is same in both Equations (4) and (7). The dimension of
ΨTΨDMD in Equation (7) is Rl×r and is less than the dimension of the full model. Thus the POD-DMD
model has a dimension which does not depend on the dimension of the full model. This method also
provides a speed up in the nonlinearity analysis compared with the DEIM method, because using this
method there is no need to compute the nonlinearity further in offline.

3.3. Numerical Example

To check the validity of the mathematical proposition in the above sections, a numerical example
of the following parameterized function is considered as follows [24]:

y(x; m) = (1− x) cos(3πm(x + 1))e−(1+x)m (8)
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where, y : Ω×D 7→ R, x ∈ [−1, 1] and m ∈ D = [1, π] . Let
[
{xi}n

i=1
]T ∈ Rn, with n = 100. We also

define f : D 7→ Rn by f = {y(xi; m)}n
i=1 ∈ Rn. Figure 1a shows the behavior of the function (8) with

the variation of x and m within the predefined limits. The energy distribution of the singular values is
presented in Figure 1b. As shown in Figure 1b, the first 10 modes have the highest singular values.
Therefore, they constitute most of the system energy and thus, rather using n = 100, the whole system
can be approximated using only n = 10 modes. This shows the requirement of the Model order
reduction to address this issue associated with high dimensional system. Now, the effectiveness of
DMD in approximating the full model for Equation (8) is checked by considering three values of m
namely, m = {1, 1.17, π}. Figure 2a shows the full model simulation for three different values of m
respectively. In Figure 2b–d, the approximation of y (m = 1), y (m = 1.17), and y (m = 3.14) using DMD
is compared with the full model and DEIM. As shown in above, DMD is capable of reconstructing the
full model without significant deviation and it has the potential to substitute DEIM based nonlinear
system approximation. Thus, DMD combined with POD can be used to design the desired sensor
module for the linear motor position detection.
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4. A Linear Position Magnetic Sensor Module for Linear Motor Mover Position Detection

4.1. Magnetic Sensor Module and Geometric Parameters associated with the model

The three-dimensional view of the linear position magnetic sensor and its positioning over the
stator of the linear motor on XYZ plane is shown in Figure 3a [7].
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Figure 3. Linear position sensor module with the stator: (a) Sensor module arrangement over stator;
(b) sensor module with different parameters.

As shown in Figure 3b, the magnetic sensor module consists of a permanent magnet (PM), made
of Nd-Fe-B and three other iron steel cores I, II and III respectively. In between the iron cores I and II, a
Hall IC is placed. The Hall IC is A1324 linear Hall Effect sensor manufactured by Allegro Microsystems
LLC (Worcester, MA, USA). The PM is magnetized along negative Y direction and the desired magnetic
flux density is measured along X direction (BX) at the center point of airgap g2 in between the iron core
I and II. The iron cores I, II and III are used to provide low reluctance path for the magnetic flux.

The working principle of the linear position sensor module is based on the detection of the flux
density variation with the variation of the reluctance of the flux path. Due to the presence of the
alternate tooth-slot structure of the linear motor stator, at the position wherein the mover module is
aligned with the stator teeth or placed in between two stator teeth, due to symmetry, flux density Bx

will be zero. Thus for two pole pitch displacement, the flux density distribution at the central point of
g2 will be a sinusoid as shown in Figure 4.
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Figure 4. Distribution of the flux density at the center of g2 for two pole pitch movement of the sensor
module over the stator tooth-slot.

To obtain a minimum required output of 1 V peak to peak of the Hall IC, the required peak
flux density (PFD) for the sensor module should be at least 0.1 T. Added to that, the total harmonic
distortion (THD) is expected to be less than 3%. To achieve this goal, sensor module needs to undergo
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a detail parametric study. To carry out the parametric study, instead of using traditional FEM, the
POD-DMD based reduced model is designed based on the principle mentioned in Section 3, to achieve
faster and computationally efficient parametric model.

As shown in Figure 3b, to do the parametric analysis g1, g2, hi, ht, and w are considered as the
variables. The linear motor configuration and sensor variable ranges for the parametric design are
listed in Table 1.

Table 1. Specification for the Stator and Sensor module.

Stator Values (mm) Sensor Module Range (mm)

Tooth width, Wt 7 g1 1~3
Slot width, Ws 13 g2 2~4

Tooth Height, th 5 hi 0~3
Pole pitch, τp 10 ht 5~9

w 3~5

4.2. Parametric Design Using the Reduced Model Based on POD-DMD

Prior to carrying out the parametric study, the information of the design parameters and
their variations are required. The behavior of the parameter variation is modeled using the
multiparameter moment matching method-based parametric model order reduction (PMOR).
The overall computational operation of the magnetic sensor design can be divided into: (1) initial
parameter model based on FEM, (2) parameterization based on multiparameter moment matching
method and (3) POD-DMD-based MOR.

4.2.1. Multi-Parameter Moment Matching Method Based PMOR for Linear Magnetic System

The behavior of the magnetic sensor can be studied by using magnetic vector potential. For a
magnetic device, the device can be described by the magnetostatic problem of Maxwell’s equation. On
any domain D, Maxwell’s equation for a magnetic system can be defined by the equations:

curl H = Jm (9)

div B = 0 (10)

where, H is the magnetic field intensity, B is the magnetic flux density and Jm is the current density
due to the PM equivalent current source. Now according to the constitutive law, we can write:

H = υ[B− Br] (11)

where, υ is the magnetic reluctivity and Br is the remanent magnetic flux density. Maxwell’s Equations
(9) and (10) can be solved by vector potential finite element formulation. Magnetic flux density can
be expressed in vector potential as, curl A = B. Putting this value into the Equation (9) and using
Equation (11), we can write:

curl[υ curl A] = curl [υ Br] + Jm (12)

Using the Galerkin Method, Equation (12) can be formulated as:

M U = F (13)

where, Mm×m is the stiffness matrix, Um×1 is the vector of the nodal potentials with m degrees
of freedom(DoF), Fm×1 is the source vector. Now, let us consider some design parameters
p =

(
p1, p2, · · ·pnp

)
for the sensor module which varies during the design process. Equation (13) can

be modified as:
M(p)U(p) = F(p) (14)
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From Equation (14), the vector potential is a function of p. To analyze the system under parameter
variation an easy way is to remesh each geometry corresponding to new parameter set p. A new
remeashing of the domain of consideration adds a numerical noise on the output data, because the
mesh changes from one parameter set to another. Also, due to the change of shape function extra
computation is needed. To avoid such a computational burden, different methods to incorporate the
parameter variation effects are studied [25,26]. In the proposed framework, the effects of parameters
are included into the system using the multiparameter moment based method [25].

To reduce the computational time required to solve the parameterized system (14), the POD
method is applied [2] and the reduced model can be written as:

ΨTM(p)ΨUr(p) = ΨTF(p) (15)

U(p) ≈ ΨUr(p) (16)

where, Ψ is the discrete projection operator, calculated by the method of snapshot and Ur is the
approximation of U in Equation (14) with the POD method presented in Section 2.2. The DoF of the
reduced model in Equation (12) is r (r << m).

4.2.2. POD-DMD based PMOR

In the real world, no magnetic system is linear. Thus, to design the magnetic sensor module
accurately, the nonlinear dependency and magnetic saturation must be considered. For an instance,
for the nonlinear magnetic device, υ in Equations (11) and (12) varies nonlinearly. As mentioned in
Section 2.2, for the reduced model in Equation (15), calculation of M and F will be computationally
expensive. To achieve the reduced model of M and F, along with the POD model of Equation (15), we
applied the DMD method mentioned in Section 3. By considering the Equation (7), Equation (15) can
be modified as follows:

Mr(p)Ur(p) = Fr(p) (17)

where:
Mr(p)= ΨDMDdiag

(
ewDMDt

)
×ΨTM(p)Ψ

Fr(p) = ΨDMDdiag
(

ewDMDt
)
×ΨTF (18)

The combination of POD and DMD is attractive in terms of computational cost, but during the
process, we need to consider the error related to the approximation. A proper selection of POD and
DMD modes can reduce the approximation error of the system.

4.3. Parametric Design and Result

4.3.1. Parametric Modeling for 2D Model

To start with, one initial FE model of the sensor module, which is bit arbitrary is modeled using
Flux 2D software to investigate the performance. The five design variables mentioned in Table 1 are
chosen as: (g1, g2, hi, ht, w) = (1, 2, 3, 0, 7). Under these variables, the flux density variation at the
center of the sensor module of Figure 3b is shown in Figure 5, where the PFD is 0.134 T and the THD
is 3.18%. The flux density thus obtained fulfills the requirement of minimum PFD for our sensor
module. However, the THD needs to be minimized to reach under 3% as per requirement. To obtain a
parameter set that satisfies the design requirements, the effect of each individual parameters and their
combined effects on PFD and THD needs to be analyzed. The whole process is carried out as shown in
the flowchart in Figure 6. As shown in Figure 6, after selecting the five geometric parameters in our
case, 6 traditional FE models for the sensors are studied to list their effects on the sensor performance.
It is shown in the “Parameterization Method” of the flowchart. The values for the “Parameterized
Method” table shown in flowchart are found with the FE model data. Then, they are linked to the
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reduced model framework in MATLAB platform. Based on the singular value spectrum of the full
FE model data in Figure 7a, three different choices of POD modes are made, as shown in Figure 7b.
With the increase of the POD modes, the reduced model can be approximated with less deviation from
the full model. The choice of the POD modes lies on the user by considering the level of accuracy
and computational efficiency. For the optimization process of the sensor module, 10 POD modes are
considered, which gives only 0.1% deviation from the full model in terms of the flux density waveform,
showing excellent accuracy.
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Using the POD-DMD model of the sensor model, effects of each geometric parameter are checked.
For each parameter, a set of five different values is considered with the pre-specified range mentioned
in Table 1. Thus 25 initial models are simulated in POD-DMD platform and the variation of the PFD
and THD are plotted as shown in Figures 8 and 9. First if the variation of g1 and hi on PFD and THD
are analyzed, it is evident from Figure 8a that both g1 and hi have a similar influence on PFD and THD.
To analyze their effect in more detail, 2D plots for PFD and THD with the variation of g1 and hi is
plotted in Figure 8b. From the 2D plot, the region bounded in between the black and blue dashed
lines have the combinations of g1 and hi which fulfills the design requirements of PFD and THD of the
proposed sensor module. Thus, g1 and hi can give an important trade off on both PFD and THD.
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Now the variations of PFD and THD with other parameters namely, g2, ht, and w are plotted in
Figure 8. The effects of g2, ht, and w can be listed as follows:

1. With the increase of g2, PFD decreases whereas THD increases. The choice of g2 also, depends
on the size of the Hall sensor chip placed in between. For an instance, the size of the linear Hall
Effect sensor chip (A1324) manufactured by Allegro Microsystem LLC is 1.5 mm. Thus with this
limit condition, g2 should be chosen as small as possible.

2. The variation of ht does not show very significant effect on the PFD and THD values. The value
of t should be selected such that it helps in reduction of the reluctance of the flux path.

3. From Figure 9, an optimal value of 7 mm is perfect for w, which satisfies our design condition for
PFD and THD.
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Considering the results shown in Figures 7 and 8, a choice for 2D model of the sensor module can
be made as (g1, g2, hi, ht, w) = (1.5, 2, 2.8, 3, 7) [mm]. The POD-DMD model simulation of the chosen
model shows a PFD value of 0.11T and THD of 1.04%.

4.3.2. Analysis of the Simulation Time in 2D Analysis

To achieve an efficient simulation model, it is important to reduce the simulation time. Therefore,
the simulation time to analyze the magnetic sensor module by the tradition FEM and the POD-DMD
based reduced model are compared. For a specific set of g1, g2, hi, ht, and w, the 2D FEM model of
the sensor module over the stator teeth-slot structure with 5832 nodes, takes around 2.5 s for one
simulation. Whereas, the POD-DMD based reduced model with first 10 modes takes 15 ms. Although
for a single simulation, the difference in time does not look significant, but for a multi-parameter design
analysis and in the optimization process, which requires multiple simulations of the targeted model, the
difference in simulation time will significantly large. For an example, a multi-parameter optimization
of the sensor module based on Genetic Algorithm (GA) takes parameter values at different generations
to find the optimized set of parameters, which results in the analysis of a large set of simulation and the
whole process is time-consuming. Thus a significant reduction in time can be achieved if the reduced
model is used.

4.3.3. Parametric Modeling for 3D Model

The available commercial FE software (FLUX, Ansys) shows fast and promising results in
2D analysis. Thus comparison of the computational time of a simple model using POD-DMD
based reduced model with that of the FE model done by commercial FE software will not provide
big difference. But if we consider 3D analysis, the commercial 3D software takes a long time to
simulate models and the time increases with the increase of the complicacy. Therefore, to check the
computational efficiency of the proposed POD-DMD model, we introduced another design parameter
for 3D analysis. The sensor thickness th is considered as shown in Figure 10a and the thickness range
is selected in between 10 and 20 mm. Using the POD-DMD reduced model, simulation is carried out
with different thickness values. As shown in Figure 10a, the change in thickness does not affect the flux
density distribution much. Also to check the variation in PFD and THD in more detail, three values of
th, namely, 12.5 mm, 15 mm and 17.5 mm are chosen.
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Figure 10. (a) 3D configuration of the sensor module and Flux Density variation with thickness; (b)
Effect of sensor thickness variation on PFD and THD.

As presented in Figure 10b, PFD has almost no change with the variation of th and THD has a
minimum at 15 mm with THD of 1.3%. Thus, the thickness is considered as 15 mm as it fulfills our
condition of PFD and THD. The system summary and the required time for both 2D and 3D analysis is
listed below in Table 2.

Table 2. Analysis summary and timing.

Method 2D FEM 2D PMOR 3D FEM 3D PMOR

Snapshot Size 5832 × 100 5832 × 10 58,735 × 100 58,735 × 10
Time 2.5 s 15 ms 60 m 1 m

Software used Cedrat Flux Matlab Cedrat Flux Matlab

4.3.4. Analysis of the Simulation Time in 3D Analysis

The 3D FEM model the magnetic sensor module and the stator teeth-slot structure with
58,735 nodes take around 60 min for one simulation, whereas the time required for the POD-DMD
model is 1 min in MATLAB platform with 10 POD modes. Thus, for five different thickness values
between 10 and 20 mm, it will take only 5 min to obtain the simulation results. This shows the
capability of the reduced model in reducing the computational time.

5. Prototype of the Designed Model and Discussion

The structure of the designed prototype with the final design data obtained from the parametric
study is shown in Figure 11a. The arrangement of two sensor modules with a phase difference of 90◦

on the linear motor mover and the data acquisition system is shown in Figure 11b.
Figure 11c shows the generated outputs by the two sensor modules. From the output data of the

manufactured sensor module, following inferences can be made:

1. As shown in Figure 11c, both the signals possess differences in amplitude and offset. The PFD
values of the measured signals are also over than 0.1 T. And, the THD values are at 2 and 2.3%,
respectively, which is less than the required THD constraint of 3%.

2. The deviation in the PFD and offsets can arise due to a slight deviation in the placement of the
Hall IC in between the two cores. While simulation using the PMOR, the PFD value at the center
point, in between two iron cores I and II are considered. But in the manufactured prototype, the
misalignment of the Hall IC in between iron core I and II, causes deviation in the PFD value.

3. Also, the manufactured sensor module has some mechanical tolerances added to the design
parameters during the manufacturing process. This also adds to the deviation in the PFD
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and THD value of the sensor module. Thus, while selecting the final design parameters, an
optimization process considering the manufacturing tolerances should be considered.

4. This gives a scope to analyze the sensor module with further research work based on the reliability
design optimization techniques.
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Figure 11. (a) Manufactured sensor module; (b) Experimental setup with sensor module installed over
the linear motor and the data acquisition system; (c) Sensor voltage signal.

Finally, as shown in Figure 12, two different arrangements with separation of 90◦ or 120◦ electrical
between two sensor modules over the stator tooth-slot structure is considered to detect the moving
position of the mover unit of the linear motor [7]. During the position analysis, the amplitude of the
sensor output voltage signals is adjusted to unit amplitude to minimize the amplitude differences.
For 90◦ separations, the position value is obtained by applying arctangent on the output values of the
sensors. For 120◦ separations, three to two phase transformation is done to reduce the three multiples
of harmonic components. The final output thus obtained is converted to position data by the utilizing
of arctangent function. The position waveforms are shown in Figure 13a. The position information
obtained using the 120◦ mode has a standard deviation of 0.10 mm from the reference linear scale
signal, whereas the 90◦ mode position signal shows a deviation of 0.23 mm from the reference [7].
Figure 13b shows the zoom in waveforms within the broken line portion of Figure 13a.
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Figure 13. (a) Mover position of the linear motor detected using the sensor module and the comparison
of the position data with that of the linear scale; (b) Deviation of the sensor module data with that of
the linear scale [7].

A more detailed analysis on the comparison of the two abovementioned position detection
methods can be found in our previously published work [7]. Moreover, as shown above, the deviation
arises due to the errors associated with the manufacturing process. This error can be eliminated by
considering the effect of the tolerance into the design process.

6. Conclusions

A new computationally efficient design approach for the magnetic sensor module using the model
order reduction (MOR) method is proposed in this paper. A mathematical framework for the MOR is
designed using the proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD)
method. Firstly, the mathematical framework is tested on a benchmark equation to check the validity
of the designed method compared with the previously developed Discrete Empirical Interpolation
Method (DEIM). Considering the capability of the proposed method in approximating a full model, it is
implemented in designing and parametric study of a magnetic position sensor for linear motor mover
position detection. With the final parameters obtained using the proposed method, a sensor prototype
is designed and is tested for the required Peak Flux Density (PFD) and Total Harmonic Distortion
(THD). The manufactured sensor module output data fulfills the desired constraint conditions of PFD
greater than 0.1 T and THD less than 3%, respectively. The sensor prototypes are used to detect the
mover position on two different modes, 90◦ and 120◦ modes respectively. The position information
thus obtained are compared with that of the linear scale data. The position data obtained using the
sensor prototype contains a small deviation from the linear scale data. The deviation in the position
data arises due to the manufacturing tolerance incur during the manufacturing process. To improve
the sensor output, a further study on reliability based design optimization considering manufacturing
tolerances will be considered in the future research.
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